
FPGA Side Channel Attacks without
Physical Access

Chethan Ramesh∗, Shivukumar B. Patil∗, Siva Nishok Dhanuskodi∗, George Provelengios∗,
Sébastien Pillement†, Daniel Holcomb∗, and Russell Tessier∗

∗Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
†IETR, University of Nantes, France

Abstract—As FPGA use becomes more diverse, the shared
use of these devices becomes a security concern. Multi-tenant
FPGAs that contain circuits from multiple independent sources
or users will soon be prevalent in cloud and embedded computing
environments. The recent discovery of a new attack vector using
neighboring long wires in Xilinx SRAM FPGAs presents the
possibility of covert information leakage from an unsuspecting
user’s circuit. The work described in this paper makes two
contributions that dramatically extend this finding. First, we
rigorously evaluate several Intel SRAM FPGAs and confirm
that long wire information leakage is also prevalent in these
devices. Second, we present the first successful attack on an
unsuspecting circuit in an FPGA using information passively ob-
tained from neighboring long-lines. Information obtained from a
single AES S-box input wire combined with analysis of encrypted
output is used to rapidly expose an AES key. This attack is
performed remotely without modifying the victim circuit, using
electromagnetic probes or power measurements, or modifying the
FPGA in any way. We show that our approach is effective for
three different FPGA devices. Our results demonstrate that the
attack can recover encryption keys from AES circuits running
at 10MHz, and has the capability to scale to much higher
frequencies.

I. INTRODUCTION

FPGAs are quickly growing in importance in a variety of
computing spaces including cloud computing and embedded
platforms (automotive, military, and aerospace). As FPGAs
grow in size and complexity, it is apparent that numer-
ous applications from independent users may simultaneously
reside in a single FPGA device. This use of multi-tenant
FPGAs opens the door to numerous potential attack vectors
on unsuspecting co-located FPGA circuits. Although FPGA
devices in cloud computing environments such as Microsoft
Catapult [1] and Amazon EC2 F1 [2] are currently dedicated
to a specific application, the growing capabilities of FPGAs
makes it easy to envision single-FPGA platforms containing
multiple independent applications created by completely sep-
arate entities.

The identification of a new covert channel in FPGAs based
on measurable crosstalk between long wires has opened up
a new attack vector for multi-tenant FPGAs. A study of
several Xilinx FPGAs showed that neighboring long wires in
an interconnect routing channel can be used as a transmitter-
receiver pair [3], [4]. The receiver is part of a ring oscillator
while the transmitter is part of a user design. The ring
oscillator frequency was shown to be directly related to the
logic value present on the transmitter. The effect was shown to

be robust across a variety of transmitter clock frequencies and
device locations. This covert communication channel opens
up the possibility of on-chip data spying by an adversary
with no physical access to the FPGA device. Although this
prior work provides value in identifying a new FPGA covert
communication channel, it was confined to Xilinx devices and
was not used to perform an attack on a multi-tenant user
design.

In this paper, we verify that the covert channel exists on
long wires in Intel Cyclone IV and Stratix V devices using a
diverse set of experiments on multiple FPGA boards. More
importantly, we demonstrate that it is possible to covertly
extract the encryption key from an AES-128 encryption core
that has been automatically placed and routed by Quartus
design tools by simply using side channel information leaked
from long wires. Our AES experiments are performed multiple
times for a variety of design clock frequencies and long wire
signal lengths to verify correctness.

The remainder of this paper is structured as follows. Section
II provides background on multi-tenant FPGAs and the risks
posed by crosstalk information leakage. We present our exper-
iments and characterization results on long wire information
leakage for a family of Intel SRAM FPGAs in Section III. In
Section IV we describe the details of our AES implementation
and the attack approach used to identify the encryption key.
The experimental results regarding our attacks on AES are
presented in Section V. Section VI provides conclusions and
offers directions for future work.

II. BACKGROUND AND RELATED WORK

A. Multi-Tenant FPGAs
The concept of multi-tenant FPGA use by independent

applications is perhaps best illustrated in the context of FPGA-
based cloud computing. In 2014, the Microsoft Catapult
project [1] introduced the scalable use of FPGAs within Mi-
crosoft data centers with a goal of accelerating the Bing search
engine. This effort has grown to include FPGA-based hardware
for many if not all of Microsoft’s data center installations [5].
In late 2016, Amazon introduced the EC2 F1 that leverages
its AWS cloud infrastructure. To date, both Microsoft and
Amazon only allow one user access to an FPGA resource at a
time. To do otherwise presents a security threat as evidenced
by this comment on the Amazon F1 web site [2]: “Each F1
instance includes up to eight FPGAs that are dedicated to
the instance. They are not shared between instances, users,



or accounts. This ensures that the full power of the FPGA
is dedicated to the instance, and improves security through
user and account isolation." However, given the size and cost
of FPGAs it is likely that these resources will be shared in
the future in much the same way that cloud microprocessors
are shared across multiple virtual machines. Additionally,
given the distributed interconnect in FPGAs, even if logic
for different subcircuits are isolated, their routing resources
in channels may be in close proximity.

B. Long Wire Attacks in FPGAs

The discovery of a covert communication channel between
neighboring FPGA long wires (also called "long lines") has the
potential to dramatically change the threat level of multi-tenant
FPGAs. In a comprehensive set of experiments, Giechaskiel
et al. [3] showed that the logic value carried on a long wire
influences the delay of both its immediate neighbor and a
long wire in the same channel two wires away. When a
logic 1 value is carried on a wire (the transmitter), the delay
in the neighboring wire (the receiver) is reduced relative to
when a logic 0 is transmitted. This result was shown to be
unaffected by the signal switching rate of the transmitter,
the long wire location on the FPGA, and the direction of
signal transmission for the transmitter and receiver in FPGA
channels. In addition to verifying the robust presence of this
covert communication channel for multiple generations and
instances of Xilinx SRAM FPGAs, the authors characterize
the achievable communication bandwidth, investigate several
simple countermeasures, and offer directions for possibly
using the phenomenon in a data snooping attack. Several
hypotheses are provided for the source of the phenomenon,
although no definitive cause is provided.

Although interesting, this earlier work leaves several
unanswered questions. Specifically, since the source of the
crosstalk1 effects between long wires is unclear it is unknown
whether the same effect can be observed and measured in
SRAM FPGAs from Intel. In this work, we confirm that
the effect is indeed present. Perhaps more importantly, we
demonstrate that the encryption key for an AES-128 circuit
can be successfully obtained by adding a snooping (receiver)
circuit to a design that is automatically placed and routed
by FPGA physical design tools. The attack is shown to be
effective if a single wire of the core is routed on a vertical C4
long-line that spans four logic array blocks (LABs).

C. Relationship to Previous FPGA Attack Approaches

Attempts to extract information from FPGAs via physical
attacks have mostly focused on power or thermal analysis.
Power side channel attacks apply statistical processing to
steal encryption keys based on data-dependent differences
in the power consumption of block ciphers [6]. Power in
side channel attacks is typically measured through a sense
resistor external to the chip [6], or through electromagnetic

1The term “crosstalk” often refers specifically to capacitive coupling
between wires. In this paper we adopt the terminology of Giechaskiel et
al. [3] and use the word crosstalk in a more general sense to describe the
unspecified interaction between neighboring wires.

Fig. 1: Experimental framework for evaluating long wire delay
effects on Intel SRAM FPGAs.

emanations [7] which can provide more localized information
about consumption. When data-dependent power consumption
causes small local fluctuations in supply voltage, these same
power analysis techniques may allow supply voltage sensing
circuits, such as oscillators or tuned path delays inside the
FPGA, to detect the local fluctuations and steal data. Recent
work has explored power side channel attacks inside FPGAs
[8], [9].

It is possible to implement a temperature-to-frequency
transducer suitable for thermal monitoring on FPGAs using
a ring oscillator [10]. The dependence between delay and
temperature can be used to measure temperature in the FPGA.
Further, multiple such modules can be realized to measure
temperature in different parts of the FPGA. One sender circuit
co-located on the same FPGA with a receiver circuit (but
which do not have a direct communication path) can leak
secrets. The sender can heat up the FPGA fabric and the
receiver can read the increased temperature. A temperature-
based covert communication channel has been shown to be
possible in stand-alone FPGAs [11] under tight restrictions.
However, in these cases temperature information transmission
is deliberate. In contrast, thermal leakage is of limited use for
monitoring data from unsuspecting victims.

It is well known that interconnect crosstalk inside an FPGA
can change signal values and cause critical signal delays
[12]. Crosstalk is potentially a much larger threat in security
than in reliability. An attacker can leverage a wide array
of detectable couplings via trial and error (e.g. via dynamic
FPGA reconfiguration) while reliability is only compromised
by a relatively large coupling. FPGA physical design tools
for individual designs explicitly check and avoid crosstalk
conditions to prevent on-chip interference. In the multi-tenant
scenario where sub-designs are created separately, it is more
difficult to prevent crosstalk.

III. LONG WIRE ATTACK VERIFICATION FOR INTEL
FPGAS

In an initial set of experiments, we carefully examine the
potential leakage of information across near-neighbor long
wires in a vertical interconnect channel.

A. Experimental Approach
To evaluate long wire effects we perform experiments on

three Altera DE2-115 (EP4CE115F29) boards, one Cyclone



C
4

 
C

4
 

C
4

 
C

4
 

LAB LAB

FPGA V
ic

ti
m

R
in

g
 O

s
c

il
la

to
r

. 
. 
.

. 
. 
.

LABLAB

Fig. 2: Transmitter (victim) and receiver implemented in a
Cyclone IV FPGA.

IV GX (EP4CGX150DF31) FPGA Development Kit, and one
Stratix V (5SGXEA7K2F40C2N) GX Development Kit. Fig. 1
shows the block diagram of the test setup used to assess
the long wire covert channels in these system types. The
transmitter is implemented in the FPGA in one or more
vertical C4 long wires. The test pattern generator (Fig. 1)
assigns either a logic 1 or a logic 0 to the transmitter. Similar to
[3], the receiver is implemented as a three-stage ring oscillator
(RO) with one inverter and two buffers. One of the wires of the
RO is located on one or more connected long wires adjacent
to the transmitter. For this experimentation, the ring oscillator,
transmitter and receiver are placed and routed using place and
route constraints. A view of a transmitter and a receiver (RO)
using LABs and C4 wires is shown in Fig. 2.

A binary counter measures the RO’s frequency by incre-
menting a 32-bit count value at every positive edge of the
ring oscillator clock for a fixed time duration (measurement
period). After the measurement period, the count values are
sampled and stored into an on-chip SRAM. A SignalTap II
JTAG interface is used to read the stored count values. The de-
sign has a JTAG-accessible configuration memory and a finite-
state machine (FSM) which coordinate test pattern generation,
counting, and sampling of counter values. Unless otherwise
noted, all circuitry, except the transmitter and receiver, are

Cyclone IV E Cyclone IV GX Stratix V GX
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ΔR
C

1e−4 Left Middle Right

Fig. 3: Relative ring oscillator count difference due to the value
of the adjacent transmitter (see Eq. 1). For this experiment,
both transmitter and receiver include two vertically-connected
C4 wires. Across locations and FPGAs, driving a 1 onto the
transmitter causes a receiver speed up on the order of 0.01%
(1 part per 10,000).

auto-placed and routed by Quartus Prime v17.0. Each ex-
periment is performed five times on each device and a total
of 4,096 samples are collected for each measurement period.
Unless otherwise noted, each test uses a 21 ms measurement
period derived from a 100 MHz system clock generated by an
on-chip PLL. After each test, the binary counter is reset.

We evaluate the difference in RO frequency for two trials
by using a relative count metric [3] determined over two
measurement periods. For example, the count difference ∆RC
of the receiver for trials when the transmitter is first 0 (first
trial) and then 1 (second trial) can be represented as:

∆RC =
C1 − C0

C1
(1)

where C1 and C0 are the measured counts for transmitted
logic 1 and 0, respectively.

B. Characterization Results
In this section, we verify the existence of the covert

communication channel between neighboring long wires (C4)
in three Intel SRAM FPGAs. Unless otherwise noted, all
experiments use a single transmitter with one or more vertical
C4 wires. The transmitter is driven with either a static logic
0 or a static logic 1 during a measurement period. In an
initial experiment, transmitter-receiver pairs that consist of
two consecutive vertical C4 wires were implemented in three
distinct locations (left, middle, and right) on the Intel FPGAs
described in Section III. As seen in Fig. 3, relative counts in all
three cases clearly differentiate the transmitted logic 0 from a
logic 1. The value of ∆RC varies across the chip location and
the FPGA model, but in all cases it is observed that the state
of the neighboring wire impacts the ring oscillator frequency
by an amount that is on the order of 0.01% (one part per ten-
thousand), which we will show later in the paper is sufficient



Device 0 Device 1 Device 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ΔR
C

1e−4 Left Middle Right

Fig. 4: Repeating the experiment from Fig. 3 on the Cyclone
IV E devices from three identical DE2-115 boards produces
comparable results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of C4 routing elements

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ΔR
C

1e−4

Fig. 5: Relative count differences increase with the transmit-
ter/receiver lengths (in terms of number of C4 long wires).
The experiment uses a transmitter/receiver pair at the bottom
left of the Cyclone IV (EP4CE115F29) FPGA.

for conducting side channel attacks. Consistent count results
were achieved for all five trials on the three distinct boards.

In a second experiment, the same transmitter-receiver ex-
periment as described above is applied to identical Cyclone
IV FPGAs on three DE2-115 boards. The results shown in
Fig. 4 indicate that the results from Fig. 3 are repeatable and
consistent across FPGA chip instances.

The covert channel between the transmitter and receiver
becomes stronger as the length of the neighboring wires
increases. As seen in Fig. 5, relative count differences increase
linearly as the extent of the pair increase. However, it is
noteworthy that the effect can be seen for pairs that are
only one or two C4 wires long. As shown in Section V, a
successful key extraction attack on AES can be performed

1.0μs 10.0μs 100.0μs 1.0ms 10.0ms 100.0ms
Measurement Period

−4

−2

0

2

4

ΔR
C

1e−4

Fig. 6: Relative frequency count with respect to measurement
period. Both the receiver and transmitter use two C4 wires.

Configuration ∆RC (1e-4)

0.965

1.002

2.000

-0.041

–

TABLE I: Relative count results for different transmitter
configurations. The transmitter and receivers have a length
of two C4 wires. The final row is the baseline configuration
against which the ∆RC values of the other configurations are
evaluated.

using a transmitter that is a single C4 wire.
Fig. 6 indicates that, for short measurement periods, relative

oscillator counts are noisy, due to the use of a small number
of samples (an effect also seen for Xilinx devices [3]). As the
measurement period extends towards 21 ms (the period used
for other experiments in this section), the results become more
stable due to an averaging of noise across many oscillations
and because the integer counts collected from the oscillator
become relatively less granular when the count values are
higher.

Finally, we consider relative count differences when multi-
ple transmitters are used with a single receiver. The transmis-
sion configurations and resulting relative counts are shown in
Table I. It can be seen in the first two rows that the impact to
∆RC is roughly the same for either neighbor. The third row
shows that using both neighbors as logic 1 transmitters roughly
doubles the impact to ∆RC. Non-immediate neighbors appear
to have little effect, as shown by the fourth row of the table.



The final row of the table is the baseline configuration against
which all the other configurations are evaluated.

IV. DESCRIPTION OF AES ATTACK

AES is a symmetric-key encryption algorithm that is widely
used in electronic circuits. The algorithm uses a number of
iterated rounds to transform blocks of input plaintext into
blocks of output ciphertext based on the encryption key. The
algorithm has variants for 128, 192, and 256-bit key lengths,
which all make use of the same basic round function but differ
in the number of iterations through the round. We will focus
in this work on AES-128 in particular, which uses 10 rounds.
Each round uses in its transformation a 128-bit round key;
the 10 different 128-bit round keys are computed from the
encryption key using an iterated key scheduling computation
that runs alongside the iterations of the round.

The data transformation operations performed in each round
of AES are bytewise substitutions on each byte according to
a known substitution table (S-Box), Shift Rows operation that
reorders the bytes, Mix Columns operation that performs a
modular multiplication with an irreducible polynomial, and
addition of the round keys using bitwise XOR (see Subfig. 7a).
All 10 rounds of AES-128 are identical, except that the final
round omits the Mix Columns operation. There is also an
additional key addition that is performed as a pre-processing
step before the first round.

A. Extracting AES Key

The side channel analysis that we use to attack AES is
inspired by Differential Power Analysis [6], [13]. In DPA,
and our own technique, an attacker measures a side channel,
and uses the side channel measurements to confirm or refute
specific guesses on the value of key bytes. The attack is

S S S S S S S S S S S S S S S S

Mix Cols Mix Cols Mix Cols Mix Cols

Shift Rows

k1k0 k14 k15k13k12k4 k5 k6 k7 k8 k9 k10 k11k3k2
++ + ++++ + + + + + + +++

16-byte state at start of round

16-byte state at end of round (and start of next round)

(a) Generic AES round

ct+
88 8

8

8

k

r

b S-Box

state byte at start of 10th round 
(unknown to attacker)

Byte of 10th roundkey
(unknown to attacker)

Ring oscillator count from cycle in 
which byte of ciphertext is computed

(known to attacker)

b[0]

Ciphertext byte
(known to attacker)

Shift 
Rows

(b) Portion of last round used in attacking one key byte

Fig. 7: (a) shows a single round of AES. (b) Bottom shows
the portion of final round circuit that is used to attack one key
byte. The final round of AES omits mix columns and has no
interaction between the 16 different bytes being processed.

powerful because it can, given enough data, extract keys
from extremely small correlations that exist between the side
channel measurements and data values in the algorithm which
depend on the secret key. To give a sense of the power of DPA,
in classical DPA, where the side channel measurement is the
power consumption of the entire chip, the data dependency
exploited in the attack can be as small as the key-dependent
charging or discharging of a single logic node in the computa-
tion. In comparison to DPA, the frequency effects we exploit
in our attacks are rather large.

The attack as described here extracts a single byte of the
round key in the final round of 128-bit AES by using a ring
oscillator for which the measured counts are correlated to the
value of a specific wire in the design. The ring oscillator serves
as the receiver of the leakage, and the wire that is the source
of the leakage is denoted here as the victim wire. All bytes of
the round key are recovered in the same way. Once all bytes
of the final round key are recovered through the side channel
attack, then the original AES encryption key can be calculated
from the round key by inverting the key schedule.

The relevant portion of the final round circuit for attacking
a key byte, using information leaked from a single wire, is
shown in Subfig. 7b. Recall that the final round of the AES
algorithm performs bytewise substitution (S-Box), shift rows,
and key addition using XOR, but it omits the mix columns
operation. The output of the final round is the ciphertext,
which is public information. To set up the attack scenario
for recovering a key byte, the attacker chooses as the victim
any bit of S-Box input that is routed on a long wire (C4); in
Subfig. 7b, bit 0 of the S-Box input is chosen as the victim.
The ring oscillator is then routed next to this signal so that its
oscillation count in each clock cycle will depend slightly on
the value of the S-Box input bit.

Using the ring oscillator as a sensor, the attacker mon-
itors many encryptions to collect information for the side
channel attack. For each of n encryptions performed, the
attacker records the ciphertext byte and the ring oscillator
count during the cycle the ciphertext byte was produced; we
denote these two quantities as cti and ri respectively for
the ith encryption. After n encryptions, the attacker has a
collection of measured oscillator count and ciphertext pairings
(r0, ct0), (r1, ct1), . . . , (rn−1, ctn−1). The attacker will con-
sider all 256 possible values for each key byte and use the
collection of measurements to confirm one of the 256 guesses
as being the correct key byte value which is used in the circuit.

To confirm one of the key byte guesses as correct, the
attacker considers all 256 possible values to find the one that
is consistent with the side channel measurements. For each
key guess kj (i.e. k0 . . . k255), the attacker computes an S-Box
input value bi,j for each of the i ∈ [0, n − 1] measurements
using Eq. 2 to invert the circuit’s round key addition and S-Box
computation. 2

bi,j = S−1 (cti ⊕ kj) (2)

2Note that shift rows is not considered in Eq. 2 when inverting the round
function as it only reorders the bytes.



By inverting the S-Box function under key guess kj , the
attacker now knows what S-Box input value would have
induced ciphertext cti if the key byte was in fact kj . For
key guess kj , the computed values at the S-Box input in
the n encryptions would be denoted b0,j , b1,j , . . . , bn−1,j . The
predicted S-Box inputs each contain a specific prediction on
the value of the victim wire (bit 0 of the S-Box input), and we
check for its effect on the oscillator counts to know whether
kj is the correct key byte value. The attacker next partitions
the n measurements into two subsets according to whether the
victim wire would have a 0 or 1 value under the key guess
kj – one subset contains all the measured RO counts (ri)
for encryptions when the victim would have a 1 value, and
the other subset contains all the measured RO counts when
the victim would have a 0 value. The attacker then uses the
average RO counts of the two subsets to confirm or refute his
guess that kj is the key byte value as follows:

• If the key byte is in reality kj , then partitioning according
to key guess kj is accurately partitioning the data based
on whether the victim is 0 or 1. The average RO count
will tend to be higher in the subset of encryptions that
predict a 1-value for the victim wire, and lower in the
subset of encryptions that predict a 0-value. Observing
a sufficient difference between the average RO counts in
the two subsets confirms that the partition is meaningful,
and thus supports the hypothesis that the correct key byte
value is kj .

• If the key byte is not in reality kj , then partitioning
according to key guess kj is arbitrary and not correlated
to the computation of the circuit. Because the partition
is arbitrary, each subset will contain a similar proportion
of RO counts taken when the victim wire is 0 and 1.
In this case, the average RO count from each subset
will be similar, and the difference between the average
RO counts of the two sets will approach 0 with enough
data. Observing no difference between the average RO
counts of the two subsets therefore serves to refute the
hypothesis that the key byte value is kj .

Fig. 8 shows graphically how a collection of RO counts
can confirm or refute a key guess. The attacker in this case
collects 500 RO counts and corresponding ciphertexts; the RO
counts for the 500 measurements are shown in the top plot
of Fig. 8. The middle plot shows which of the counts are
predicted, according to the correct key guess, to occur when
the victim wire is 1 and 0. We can see that, in measurements
when the key guess predicts the victim wire to have a 1 value,
the RO counts tend to be higher. The significant difference in
average RO counts gives an attacker confidence that the key
guess is correct. The lower plot of Fig. 8 uses an incorrect key
guess to predict the 1 and 0 values of the victim wire. Using
this key guess there is no difference between the average RO
counts, indicating to an attacker that the key guess is not the
correct one. Using this approach, with enough side channel
data, the attacker will be able to identify the correct key byte
guesses, even when the difference between the average RO
counts is quite small.

To extract all 16 bytes of the final round key, the attacker

6

8

10

12

14

16

R
O

 C
o
u
n
t

+1.432e4 All measurements

6

8

10

12

14

16

R
O

 C
o
u
n
t

+1.432e4 Correct Key guess

250 300 350 400 450 500

Trials

6

8

10

12

14

16

R
O

 C
o
u
n
t

+1.432e4 Incorrect Key guess

logic 0
logic 1

Fig. 8: RO count values partitioned into two classes based on
predicted value of victim wire (10KHz clock, 2C4 long wire).
Average count difference between classes is higher in the case
of a correct key guess.

performs the analysis as described above on each key byte
independently. In a circuit that implements a full AES round
combinationally (as shown in Subfig. 7a), this requires one
ring oscillator and one victim wire for each of the 16 key bytes.
Once the attacker has guessed all bytes of the final round key,
he can invert the key schedule and compute the encryption
key. In the next subsection we show that for compact 8-bit
AES datapaths, which use a single S-Box, the entire attack
can be performed using a single oscillator and leakage from
a single victim wire.

B. 8-bit AES Implementation
Applications that don’t require high encryption throughput

often implement AES with an 8-bit datapath in order to save
area. Each round in an 8-bit AES implementation completes in
16 clock cycles, and all 16 substitution operations of the round
(see Subfig. 7a) are computed using a single S-Box circuit
operating on different data bytes in each cycle of the round.
Serializing the computation to use a single physical S-Box
circuit allows all key bytes to be attacked on a single victim
wire at the S-Box input. Therefore, instead of measuring
counts on 16 different signals (one per key byte) in the final
round of encryption, the attacker can measure the oscillation
counts of a single wire during the 16 different cycles (one
per key byte) of the final round. To restate this for clarity
and emphasis, in the 8-bit architecture, the entire 128-bit key
is recovered from a single victim wire using counts from a
single well-placed ring oscillator.

V. AES ATTACK RESULTS

In this section we present results of attacking an 8-bit
datapath implementation of AES-128. The RTL is obtained
from an online source [14]. We synthesize and implement
the design on Cyclone IV E and Cyclone IV GX FPGAs



using Quartus Prime. Initially, we perform a basic attack on
a design where a victim wire (2 C4 long) and ring oscillator
are manually placed-and-routed. We also perform the attack
on an auto placed-and-routed AES design that uses a single
C4 wire as a victim. In all results, we successfully extract the
correct 128-bit AES encryption key with a ring oscillator that
snoops on a single victim wire.

As explained in the previous section, the encryption key is
obtained by first guessing all 16 bytes of the final round key,
and then inverting the key schedule. When attacking a key
byte, the correct guess can be distinguished from incorrect
ones because it partitions the side channel measurements into
two subsets that are correlated to the value of the victim wire.
This results in a non-zero difference between the average
ring oscillator counts of the two subsets. Incorrect guesses
for the key byte lead to partitions that are uncorrelated to
the victim wire value, and therefore the difference in average
ring oscillator counts between these subsets approaches 0 with
enough data. In many cases, it may be necessary for the
attacker to collect a large dataset before the attack succeeds at
distinguishing the correct key guess from the incorrect one.

Consider the plots in Fig. 9. The 256 lines in the graph
show, for each of the 256 key byte guesses, the difference of
the average ring oscillator counts in the two subsets partitioned
according to the key guess. Due to measurement noise, it
takes some number of encryptions before the correct key guess
stands apart from others. We use the metric of “measurements-
to-disclosure” (MTD) to quantify the number of encryptions
performed before the correct guess can be distinguished. More
specifically, we consider one key guess to be distinguished
from others when it has the highest average ring oscillator
count difference, and remains the highest for 200 encryptions.

From Fig. 9, it takes 217 and 1.5M encryptions, respectively,
to extract a key byte at operating frequencies of 10kHz and
4MHz. The higher clock frequency has a smaller side channel
signal and requires more encryptions for the correct key guess
to stand apart. Similarly, the attack is repeated on other key
bytes and the correct key guess is determined by the "peak"
in the average count difference trace. Fig. 10 shows the
average count difference for each of the 256 guesses for all 16
key bytes after observing 2.66M encryptions at 4MHz clock
frequency; for each key byte, the highest count difference
coincides with the correct key byte value. We regenerate the
128-bit encryption key from the recovered final round key to
verify attack success.

A. MTD versus Length of Wire
As the length of the victim wire increases, so does the

coupling effect (Fig. 5) leading to a larger side channel signal,
making the attack easier as seen in Fig. 11. This effect is
consistent across both the Cyclone IV E and Cyclone IV GX
boards. As the wire length is increased, the MTD decreases
from 328k for a length of one C4 long wire, to 40k for a
length of 10 C4 wires.

B. MTD versus Clock Frequency
Fig. 6 shows that, although the frequency change of the

ring oscillator doesn’t depend on the system clock frequency,

0 200 400 600 800 1000

Number of measurements

−2

−1

0

1

2

A
v
e
ra

g
e
 C

o
u
n
t 

D
if
fe

re
n
ce

MTD=217
Key=0x8e

(a) 10kHz

0 0.5M 1.0M 1.5M 2.0M 2.5M

Number of measurements

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

A
v
e
ra

g
e
 C

o
u
n
t 

D
if
fe

re
n
ce

MTD=1451460
Key=0x8e

(b) 4MHz

Fig. 9: Successful attack on a key byte, with 2C4 long victim
wire at two clock frequencies. Figures show the average count
difference for each of the 256 guesses of a single key byte.
Once enough measurements are collected, the correct key
guess stands apart from all others. The attack is harder at
4MHz and requires more measurements to disclose the key.

the stability of the side channel signal is diminished at higher
operating frequency. One would therefore expect larger MTD
values at higher clock frequencies. Fig. 12 shows the observed
increase in MTD with clock frequency on Cyclone IV E
and Cyclone IV GX boards. The attack remains successful
up to the highest frequencies we’ve tested, which is 10MHz.
There is no fundamental limit to the clock frequencies that
can be attacked, and higher clock frequencies can similarly be
attacked given enough measurements or a more sophisticated
measurement circuit instead of a simple ring oscillator.

C. Attack on an auto-placed design

Apart from our experiments with a manually-placed victim
wire, we also try our attack on the 8-bit AES design automat-
ically placed-and-routed using Quartus Prime. For the attack,
we identify a vulnerable signal routed through a C4 element
and manually place-and-route a wire in the ring oscillator in



Key=180=0xb4 Key=143=0x8f Key=81=0x51 Key=17=0x11

Key=62=0x3e Key=239=0xef Key=24=0x18 Key=207=0xcf

Key=35=0x23 Key=146=0x92 Key=91=0x5b Key=142=0x8e

0 50 100 150 200 250

Key=111=0x6f

0 50 100 150 200 250

Key=233=0xe9

0 50 100 150 200 250

Key=226=0xe2

0 50 100 150 200 250

Key=203=0xcb

Fig. 10: Trace shows the bin difference for all 256 key guesses
for each of the 16 bytes in the final round key. The correct key
guess in each byte has the largest average count difference,
which allows the attacker to extract the key using the side
channel. Design clocked at 4MHz, target wire is two C4 long.

0 2 4 6 8 10

Wirelength (# of C4 elements)

0

50000

100000

150000

200000

250000

300000

350000

M
a
x
im

u
m

 M
T
D

Cyclone IV GX
Cyclone IV E

Fig. 11: MTD to break a 1MHz design when the target wire
has a length of 1, 2, 5, and 10 C4 long wires. The coupling
effect is stronger when the target wire is longer, and this
reduces the MTD on both Cyclone IV E and Cyclone IV GX.

an adjacent C4 routing element. After the automatic place and
route, no element of the design is modified except for the
routing of the ring oscillator that we use to snoop on the victim
signal. We are able to successfully perform our attack in this
auto-placed design running at 1MHz with an MTD of 233k
encryptions on the Cyclone IV GX device. From Fig. 12, the
auto-placed design follows a similar trend as the manually-
placed design which has a two C4 long victim wire. With
more measurements, the auto-placed design can be attacked
at higher clock speeds.

VI. CONCLUSIONS AND FUTURE WORK

The recent discovery of a new attack vector using neighbor-
ing long wires in Xilinx SRAM FPGAs has exposed a threat to
FPGAs that contain subcircuits created and used by different
users. In this paper, we show that the long wire covert channel
is also present in a collection of Intel SRAM FPGA families,
including the Stratix V family used in Microsoft Catapult

104 105 106 107

Clock Frequency (Hz)

102

103

104

105

106

107

M
a
x
im

u
m

 M
T
D

Cyclone IV GX
Cyclone IV E
Cyclone IV GX auto-placed

Fig. 12: MTD increases with clock frequency in all designs
due to a smaller signal in the side channel. 10MHz was
the maximum frequency tested but with more measurements
higher frequencies can be attacked.

servers. Information leaked through the channel enables a side
channel attack to extract the key from an AES circuit that has
been auto-placed and routed in an Intel FPGA. This attack is
performed remotely with no need for physical access to the
device, a scenario similar to FPGA-based data center use. In
the future, we plan to assess attacks on designs that operate
at higher clock frequencies, determine techniques to locate
exposed long wire signals in victim designs, and develop
countermeasures to prevent these attacks.3

REFERENCES

[1] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in ISCA, Jun. 2014, pp. 13–24.

[2] “Amazon F1 web site,” https://aws.amazon.com/ec2/instance-types/f1/.
[3] I. Giechaskiel, K. B. Rassmussen, and K. Eguro, “A

robust covert channel on FPGAs based on long wire
delays,” CoRR, vol. abs/1611.08882v2, 2017. [Online]. Available:
http://arxiv.org/abs/1611.08882v2

[4] ——, “Leaky wires: Information leakage and covert communication
between FPGA long wires,” in AsiaCCS, Jun. 2018.

[5] A. Caulfield et al., “Configurable clouds,” IEEE Micro, vol. 37, no. 3,
pp. 52–61, 2017.

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology, CRYPTO, Aug. 1999, pp. 789–789.

[7] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
side-channel(s),” in CHES, Sep. 2003, pp. 29–45.

[8] F. Schellenberg et al., “An inside job: Remote power analysis attacks on
FPGAs,” in DATE, Mar. 2018.

[9] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in IEEE Symp. Security and Privacy, May 2018, pp. 805–820.

[10] E. Boemo and S. Lopez-Buedo, “Thermal monitoring on FPGAs using
ring-oscillators,” in FPL, Aug. 1997, pp. 69–78.

[11] T. Iakymchuk, M. Nikodem, and K. Kepa, “Temperature-based covert
channel in FPGA systems,” in ReCoSoC, Jun. 2011, pp. 1–7.

[12] S. J. E. Wilton, “A crosstalk-aware timing-driven router for FPGAs,” in
FPGA, Feb. 2001, pp. 21–28.

[13] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential
power analysis,” Journal of Cryptographic Engineering, vol. 1, no. 1,
pp. 5–27, Apr. 2011.

[14] “8bit datapath hardware implementation of AES,”
https://github.com/ChengluJin/8bit_datapath_AES.

3This research was funded by NSF/SRC grant CNS-1619558 and a grant
from Intel’s Corporate Research Council.


