A Hardware Monitor to Protect Linux System Calls

George Provelengios, Arman Pouraghily, Russell Tessier, and Tilman Wolf
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, 01003 USA

Abstract—Internet-connected embedded systems have limited
capabilities to defend themselves against remote hacking attacks.
The potential effects of such attacks, however, can have a
significant impact in the context of the Internet of Things,
industrial control systems, smart health systems, etc. Embed-
ded systems cannot effectively utilize existing software-based
protection mechanisms due to limited processing capabilities
and energy resources. We propose a novel hardware-based
monitoring technique that can detect if the system calls of
sophisticated embedded operating systems (e.g. Linux) deviate
from the originally programmed behavior due to an attack. We
present an FPGA-based prototype implementation that shows the
effectiveness of such a security approach using a known Linux
exploit. Our approach detects the attack with minimal overhead
and without slowing processor operation.

Index Terms—hardware security, hardware monitor, system
call, FPGA

I. INTRODUCTION

The Internet of Things (IoT) represents the convergence
of cyber-physical systems (CPS), which control physical pro-
cesses, and the Internet, which provides global interconnectiv-
ity for access to data systems. Embedded systems are at the
core of any IoT solution as they provide the necessary compu-
tational power at the location where devices interact with the
physical world. Due to their deployment in the environment,
these embedded systems are typically constrained in their
computational resources (performance and/or energy) but still
connected to a network to interact with the other components
of the IoT solution. This type of networked embedded system
experiences a particularly challenging problem when it comes
to security, specifically, protection from attacks on the embed-
ded operating system. The network connectivity provides an
attack vector to the system and the system performance or
energy resources are insufficient to run conventional defense
mechanisms, such as virus scanners and malware detection
software, that provide protection on conventional computers.
An effective defense mechanism that has been developed in
related work is “hardware monitors”. These monitors are logic
components that are co-located with the embedded system
processor core and track the execution of software. Hardware
monitors require no change or addition to the software that is
run on the processing system. Instead, such monitors verify
that a processor executes a piece of software faithfully by
comparing two pieces of information: (1) processing steps
reported by the processor at runtime and (2) a model of what
is considered correct execution of the software that is to be
executed. Attacks that hijack the processor inherently cause the

processing to deviate from the model of the original software
and thus can be detected.

When discussing related work in Section II-A, we show how
our work distinguishes itself from other monitoring techniques.
The main novelty of our work is that our hardware monitoring
system works with Linux, a common, widely-used operating
system, whereas previous work has either looked at specific
applications running directly on the processor or highly con-
strained, simplistic embedded operating systems. In addition,
we show that our system defends against real, practical attacks
(in our case the CVE-2013-1828 vulnerability, which has a
known exploit), whereas previous work has shown defenses
against attacks exploiting synthetically crafted vulnerabilities.

The main idea of our work is to focus the monitoring system
on the portions of the operating system that are particularly
vulnerable. Since many vulnerabilities and associated exploits
occur in the context of system calls, we have designed our
hardware monitor to track their processor operations at very
fine granularity. By verifying operation at the level of an
individual processor instruction, we can detect any deviation
(i.e., attack) almost instantaneously. By limiting the monitor-
ing to a fraction of the operating system code (i.e., system
calls) and not the entire code base, we can achieve low
overhead compared to other hardware monitoring approaches.
This combination of sensitivity to attacks on vulnerable code
and low hardware overhead (and no modification to any soft-
ware) provides a promising approach to protecting embedded
systems in the IoT domain or anywhere else.

The remainder of the paper is organized as follows. Sec-
tion II discusses how our work relates to other efforts to protect
embedded systems. The principles of our monitoring system
are described in Section III. The design and implementation of
our prototype system are presented in Section IV. Experimen-
tal results are shown in Section V, and the paper is summarized
and concluded in Section VI.

II. BACKGROUND
A. Related Work

Monitoring of correct program execution has been pro-
posed in various forms, such as verification of control-flow
integrity (CFI) [1]. These software techniques may slow down
program execution and do not validate individual processor
instructions. Hardware monitoring reduces the performance
impact of monitoring. The seminal work by Arora er al
described a fine-grained hardware monitoring system that
verifies correct execution at the granularity level of a basic
block [2]. This work was advanced by Mao et al. in verifying

TABLE I
RELATED WORK ON HARDWARE MONITORING.

Abadi et al. [1] Arora et al. [2] [Mao et al. [3] [Pouraghily et al. [4]] this paper
verification | control flow operations all processor instructions
granularity basic block single processor instruction
target application / OS monolithic application simplistic OS Linux OS
coverage application / OS entire application entire OS system calls
overhead software high hardware cost low hardware cost

individual processor instructions and the resulting ability to
stop attacks within one processor clock cycle instead of having
to wait until the basic block has ended [3]. Recent work
by Pouraghily et al. further expanded the previous work to
not only monitor monolithic applications, but the underlying
operating system [4].

Our work also focuses on monitoring the operating system.
However, unlike related work, we aim to work with a real
Linux operating system, not a light, embedded variant of a
simplistic operating system. The large code size of the Linux
kernel makes previous approaches to monitoring impractical
due to their large overhead. In our work, we focus the moni-
toring effort on the portions of the code that are particularly
vulnerable to attacks: system calls. Thus, we can effectively
detect a good number of attacks while keeping the monitoring
overhead low enough to make such a system practically useful.
The progression of work on hardware monitoring and the
context of our contribution is summarized in Table I.

System-call monitoring is another technique that attempts
to detect intrusion. The approach tracks the system calls that
are executed by an application, which is much coarser than
tracking individual processor instructions. A survey on system-
call monitoring [5] describes how the work has evolved over
time. The main difference between this work and our approach
is that we do not track patterns of system calls. Instead, we
focus on ensuring that the processor instructions associated
with a system call are executed faithfully. This approach
ensures that attacks via system calls do not succeed. The
existing approaches to system call monitoring can be used
orthogonally to our work.

B. Focus on System Calls

As mentioned above, our hardware monitoring system fo-
cuses on validating the correct execution of system calls in the
operating system. The current Linux kernel (version 4.13.15)
contains code for 337 different system calls. Between 1999 and
2017, 1,931 vulnerabilities in the Linux kernel were reported
to the Common Vulnerabilities and Exposures (CVE) database
that is maintained by MITRE. Of those, 45 vulnerabilities
(2.3%) directly relate to system calls. This may seem like a
small percentage. However, the existence of a vulnerability
is particularly problematic if an exploit exists that can let
an attacker use the vulnerability in a practical manner. Of
148 publicly available exploits (listed in the Exploit Database
maintained by Offensive Security) that lead to privilege esca-
lation attacks (which gives the attacker full control over the

system), 25 exploits (16.9%) are based on vulnerabilities in
system calls.

A typical attack, as we describe in more detail in Section IV,
uses a buffer overflow to redirect program execution to shell
code or other attack code. Since the kernel operates at the
highest level of privilege in the system, achieving the execution
of malicious code through redirection of a system call can
give an attacker the highest level of access. By protecting
system calls from such attacks through verification of correct
execution, which can detect buffer overflow attacks that change
code execution, we can protect the system from exploits that
use known and unknown vulnerabilities. This protection works
for attacks that are launched through software that is executed
on the system directly, as well as attacks that are launched
remotely through the network.

III. MONITORING ARCHITECTURE

The main goal of our monitoring system is to prevent exe-
cution deviations from system calls to malicious code. If such
a deviation is detected, execution is stopped and the processor
is reset. Our security model assumes that an attacker may
access the target system and tamper with processor instructions
and data remotely through an I/O interface, although it is not
possible to tamper with the monitoring system.

A. Basic Monitor Operation

As mentioned in Section I, hardware monitors are com-
ponents that are co-located with processor cores to track the
processing of software on that core. The objective is to assess
the operation of the processor and determine when incorrect
behavior is detected (which can be due to benign faults or
malicious attacks). In our work, we use a hardware monitor
that receives information about every instruction executed on
the processor core and compares it to a “monitoring graph”
that is generated from the processing binary. Each instruction
is represented by a hash value (to reduce the size of the
monitoring graph compared to the size of the binary) and state
transitions correspond to possible control flow paths between
instructions. We use a deterministic finite automaton (DFA)
representation of the monitoring graph (as detailed in [6]).

For this work, a monitoring graph is generated during design
compilation [6] for selected system calls. Each instruction in
the system call is encoded as an entry in the graph that includes
the valid hash value(s) of the next instruction (or instructions
in the case of a branch) and the next graph state(s). A detailed
view of our monitoring subsystem is shown in Figure 1. The
portions of the monitoring system can be split into monitoring

recovery

CPU signal

interrupt

ettt O O
controller positior of : groupl 0x00010h i
matching 3 group2 0x01c20h | 0x00000h: groupl address
hash in the sequencing 17 | group3 0x13003h | group2 address
5 |
- hash vector logic igroupA Ox18121h i
. . |
from the instructign | 0x00010h{ nextstate | valid hash
CPU 3
pipeline program [
counter base addresses
register file slot 1 region
——

_________}___wri:e_d_a_ta__‘

37% read data

system callstarting
address (D)

address
pointer

read

0x40f2a840h 1
0x42acc564h 0

control unit

<>

address

0x0c000h + 0300000

group2 address

frame

T Ao

system call

base address

A 4

address

|
|
|
|
|
|
|
|
|
|
| system calladdress CAM
|
|
|
|
|
|
|
|
|
|

T
|
system call ID valid retum PC N | 0x0c000h + 0x00010h{ nextstate | valid hash
address 1D pointer | |
0x40f2a840h |0x00000h| 1 0x40f2a840h|0x40f2a840h|0x23bd 7 h| }
x 0x08000h| 0 [DMA »
|
x 0x10000h| 0 ! slot 4 region
X 0x18000h| 0O | graphmemory | ~--------- I
| system callto framebinding retum information stack _}convoller

from graph pool

Fig. 1. System architecture for a hardware monitor that supports selective system call monitoring

hardware (three boxes in upper left corner of the figure),
which checks the per-instruction operation of the companion
processor, graph memory, which stores monitoring graphs, and
controller. The monitoring hardware checks each processor
instruction using an entry from the monitoring graphs stored
in graph memory. In the figure, graphs for four separate
system calls are stored in slots in the graph memory. Each
graph includes one row per instruction, effectively representing
expected program control flow as a state machine. A read ad-
dress pointer indicates the entry in the graph that corresponds
to the instruction that has just completed execution. During
the execution of an instruction, a multi-bit (in our case 4-
bit) hash value of the instruction is generated and converted
to a one-hot representation. Previous work has shown a 4-bit
hash value to be sufficient to limit collisions [7]. The one-hot
encoding is compared against the expected next instruction
hash values (valid hash) that are stored in the graph entry
for the previously executed instruction. The use of a one-hot
representation simplifies these comparison operations.

A match of an instruction hash against a stored valid hash
indicates a valid instruction. If no match occurs, an illegal
instruction has been executed, leading to the generation of a
recovery signal which is used by the processor for process
termination. Since control flow instructions (e.g. branch) may
have several possible next instructions, and, consequently,
several possible valid hashes, multiple one-hot valid hash bits
may be set per entry. A match of any of these hashes indicates
a valid instruction. Our approach can handle dynamic branch
targets by profiling the code to determine all branch targets
for a system call prior to graph generation. Entries for these
targets are then added to the graph.

The next read address (memory row) in the monitoring
graph is determined using next state information stored in the
current entry, the matched hash value, and information stored

in base address registers which group states based on fan-
in count [6]. These values are combined via addition in the
sequencing logic box in the figure. The resulting address is
stored in the address pointer and subsequently added to the
start address for the appropriate graph slot for the system call.
The implemented monitor requires only one memory lookup
per instruction. Effectively, the monitoring information for
each system call at any given point in execution is defined
by the contents of the address pointer, the monitoring graph
for the process and the contents of the base address registers.
The location of each system call monitoring graph in the graph
memory is stored in the system call to frame binding memory.
The procedure required for activating monitoring for system
calls is described next.

B. Enabling and Disabling Monitoring

Since monitored system calls can be invoked from within
user applications or unmonitored system calls, a mechanism
to seamlessly enable and disable the hardware monitor once a
system call is invoked or retired is included in our monitoring
system. Monitoring is stopped after the monitored system call
is finished and the user application or unmonitored system call
execution is restarted. We consider four specific scenarios: (1)
a monitored system call is called from an application (monitor
activated), (2) a return from a monitored system call to an
application or unmonitored system call (monitor deactivated).
(3) an unmonitored system call is called from a monitored
system call (monitor deactivated), and (4) a return from an
unmonitored system call to a monitored system call (monitor
activated).

1) Call to monitored system call from unmonitored code:
After Linux is compiled into a loadable image, the addresses
of the kernel functions and system calls are fixed. The starting
address of each system call is used as a unique identifier.
For each system call, there is only one entry point, which is

used to trigger the monitor. A hardware-based solution triggers
monitoring upon entry into a system call by matching the
system call program counter to one of a series of valid stored
values (valid bit = 1) in a content addressable memory. It
is shown in Figure 1 as the system call address CAM. As a
transition to the monitored system call is made, the monitor
is enabled.

For example, when the microprocessor executes an instruc-
tion, the program counter which has been extracted from the
exception stage of the processor pipeline is compared against
all of the valid system call starting addresses in the CAM. If
it matches a stored address, the monitor is activated to start
tracking microprocessor code execution using the monitoring
graph generated during the compilation process for the system
call. Prior to Linux execution, the CAM is loaded with the
start addresses of the monitored system calls. Information in
the monitor, including monitoring graphs and the system call
address CAM, are loaded through a secure channel that is not
accessible to application users. Any modifications to the CAM
table is performed using secure techniques [6].

2) Return from monitored system call: A scalable approach
is used to disable the monitor upon leaving a monitored
system call since multiple exit points in the call may exist.
To avoid using a large CAM to match the PC against all
exit points, monitor disable information is embedded within
the monitoring graph of the system call. As discussed in
Section III-A, each entry in the monitoring graph contains a
one-hot encoding of the valid hashes for the next instructions
which succeed the current one. Normally, one or more of those
bits are set to one according to the number of legitimate next
instructions. However, if the instruction is the last instruction
of the system call, all hash bits are set to zero indicating a
system call return. This value disables monitoring.

C. Handling Nested System Calls

The mechanism described above is most effective if the call
to a monitored system call is made from application code and
a return to this code is made when the system call terminates.
However, in many cases a monitored system call may invoke
another system call that may be monitored or unmonitored.
Thus, monitoring may need to be suspended for a time and
then restarted upon return to the monitored system call.

1) Call to unmonitored system call from monitored system
call: 1f unmonitored code is called from the monitored system
call, the return address of the monitored code is stored on the
return information stack and the monitor is deactivated. When
a current, monitored system call switches to a new system call,
its return address is stored on the stack. The stack consists
of three different fields: system call ID which is the starting
address of the monitored system call, return PC which is the
next PC of the current system call which will be executed on
the microprocessor after returning from the callee, and finally
the current pointer to the monitoring graph of the current
system call.

2) Return from unmonitored system call to monitored sys-
tem call: When a return is made from the unmonitored code

TABLE 11
MONITORING GRAPH SIZES FOR FOUR LINUX SYSTEM CALLS

num. num. raph
system call instr, | entries | size g(bi?s)
getsockopt 49,252 | 68,422 | 2,531,614
execve 49,816 | 70,318 | 2,601,766
open 37,953 | 54,520 | 2,017,240
mmap 171 254 9,398

to monitored code, the return PC is checked against the top of
the return information stack to determine if monitoring should
be re-enabled. If a return is made to the monitored code, the
monitor is reactivated and the return PC is popped from the
stack.

IV. PROTOTYPE IMPLEMENTATION

Our experimental system uses a 7-stage LEON3 processor,
release 2017.2-b4193 [8] and an attached hardware monitor.
The floating point unit was not included in the design. The
hardware was synthesized and mapped to a Stratix IV FPGA
on a Terasic DE4 board with 1GB of DDR2 memory. To
perform monitoring, the instruction under execution and the
program counter (PC) from the processor are tapped for
use by the monitor. For monitoring to work effectively, it
is necessary to ensure that only committed instructions are
monitored, since a number of fetched instructions may be
flushed or annulled from the processor pipeline. For this
reason, the PC and associated instruction are tapped from the
exception stage of the processor after the annul signal can
be examined. As discussed in Section III-A, the instruction
is subsequently converted to a hash value and compared to
a stored entry in the monitoring graph. The PC is used to
determine if monitoring should be enabled or disabled. If the
monitor detects a deviation from expected computation, the
processor is reset using a recovery signal. Detection and reset
takes place as the inappropriate instruction is executed. The
processor additions needed to tap the PC and instruction are
negligible and our results show no loss of processor clock
speed performance as a result of this action.

A. System Calls

In a secure system, all system calls should be monitored
to prevent any system-call-based attack. Our monitor micro-
architecture shown in Figure 1 is designed to monitor a
subset of all calls as needed. For this work, we focus on
the four system calls shown in Table II (more calls can be
easily added). We chose these four system calls since the first
contains the known vulnerability CVE-2013-1828 and others
have been characterized as particularly vulnerable calls and
used for kernel exploitation [9].

B. Attack Scenario

To evaluate the ability of our monitor to detect and prevent
an attack, we tested our processor/monitor system with a
known and published Linux attack from the Exploit Database,
ID 24747 [10] and an additional attack that is derived from

ssh test@l192.168.2.40
test@192.168.2.40's password:
[test@buildroot ~]% cat /etc/passwd
root:x:0:0:root:/root:/bin/sh
test:x:1001:1001:Linux User,,,:/home/test:/bin/sh
[test@buildroot ~]$./priv_escalation
[test@buildroot ~]% cat /etc/passwd
root:x:0:0:reot:/root:/bin/sh
test:x:8:0:Linux root,,,:/home/test:/bin/sh
[test@buildroot ~]$ exit
logout
Connection to 192.168.2.40 closed.

ssh test@l92.168.2.40
test@l92.168.2.40's password:
[root@buildroot ~]1# I

Fig. 2. Console output showing that the attack script changes the test account
privilege from a normal user to root

it. The latter attack exploits a vulnerability in the function
sctp_getsockopt_assoc_stats() of the getsockopt system call
and leads to a privilege escalation.

In the function, a call to copy_from_user() is used to copy
the contents of a user-provided buffer into a data structure
defined inside the function’s local scope. Since there is no
size check before calling the function, the user can provide
a buffer to the system call which is bigger than the size of
the local buffer. Therefore copying the buffer contents to the
sctp_getsockopt_assoc_stats() function’s local stack frame can
overwrite substantial portions of the stack.

In Linux, the /etc/passwd plain text file holds information
about user accounts and their access levels. By modifying this
file, one can grant any account root access. However, all users
except root can only read this file and write access to this file
is only granted to the root account. In our attack, instead of
rewriting the stack with some random data and therefore de-
stroying the return address, the system call is fed a buffer with
meaningful data so that a user can gain root access. Specif-
ically, the return address of the sctp_getsockopt() function is
changed to the starting address of the call_usermodehelper()
function which is a part of kernel and is used to prepare and
run a user mode application from within the kernel. Using this
function, /bin/sed, a stream editor in Unix based operating
systems, is executed to rewrite /etc/passwd and grant root
access to the user. Figure 2 shows the attack in action.

A key aspect of this attack is the writing of the at-
tack arguments to call usermodehelper() that are passed to
/bin/sed and the branch to the function from the system call
sctp_getsockopt(). When call_usermodehelper() is called, it
receives its four operands on the stack, (two char*, one char**,
and an int). Using monitoring, it is possible to detect the unex-
pected branch to call_usermodehelper() since the instructions
of this function will not have entries in the monitoring graph.

V. EXPERIMENTAL RESULTS

To evaluate performance, our processor and monitor ar-
chitecture was mapped to the DE4’s Stratix IV EP4SGX230
FPGA. A maximum system clock frequency of 110 MHz
was achieved both with and without the monitor. Signals
internal to the FPGA were monitored using Intel SignalTap,
leading to the waveforms shown in Figure 3. The observed

waveforms come from an attempted return from the system
call function sctp_getsockopt(). Figure 3 (top) shows processor
behavior during a normal return from the function starting at
cycle 130. At this point, the one-hot hash encoding (0000
0000 0000 0100) of the next instruction matches one of the
acceptable encoded valid hashes in the stored monitoring graph
(0100 0000 1110 0100) in bit 2. The same observation can
be made for the hashes of the next instruction. Thus, the
instruction execution matches one of the expected execution
paths determined during design compilation.

A. Attack Detection and Recovery

Figure 3 (bottom) shows the details of monitoring activities
when the attack described in Section IV-B is performed.
In this case, the return address of the sctp_getsockopt()
function has been overwritten with the address of the
call_usermodehelper() function. Since the first instruction
in this function was not an acceptable return target for
sctp_getsockopt(), the one-hot hash of this instruction will
not match a valid hash value in the monitoring graph entry.
Figure 3 (bottom) shows that this is the case. The one-hot hash
of the instruction at cycle 130 is (0000 0001 0000 0000) while
the stored valid hash value is (0100 0000 1110 0100). Since bit
8 is not set in the valid hash value, an unexpected instruction
has been executed and the processor reset (recovery signal)
can be asserted low. Note that the set bit in the one-hot hash
of the next instruction also does not match the appropriate bit
in the valid hash value. It should be noted that although the
reset signal causes the processor to restart, possibly leading
to a denial of service attack, this outcome is preferable to an
unauthorized user gaining superuser access to the system.

Using the graph generation approach described in Sec-
tion III-A, we examined the size of four representative Linux
(version 3.8.0) system calls, including the getsockopt call
described in Section IV-B. The number of instructions, the
number of monitoring graph memory entries, and the total
graph sizes in monitoring graph memory in bits for each
system call are shown in Table II.

B. Monitoring System Overhead

For performance reasons, the monitoring graph is stored
on-chip to allow for instruction-by-instruction hash value
comparisons. Thus, we assess both the logic overhead and
the overhead of on-chip memory. In addition, if a new system
call is used, its monitoring graph may need to be securely
loaded from off-chip memory using DMA to one of the graph
memory slots shown in Figure 1 [4]. The resources needed to
implement the microprocessor, the monitor and its associated
graph transfer circuitry are shown in Table III.

The table shows that the monitor and associated control
circuitry require dramatically less circuitry than the processor
since it is a simple finite state machine. On-chip memory
is needed so that each graph entry can be quickly obtained
and compared to the currently-executing instruction. The table
also includes the resources needed to securely load encrypted
system call monitoring graphs from external memory. This

legitimate return address and
corresponding instruction

Allas an] 126 27 728 2 130 7w 2 i
leon3s:cpul:rstn
annul [1
serving trap |
hw monitor enable b
pc + FO00B4F4h FOO0B4F8h X FO00B4FCh FO42F43Ch F0321010h F0321014h F0321018h
e + 81CC8000h X 81E80000h X 10800037h X 81E80000h 81C7E008h 91E80008h 9DE3BF90h
hash | oh X Fh X 3h Fh 2h 8h Ah
onehot | #(__0000001000000000b) 1000000000000000b) 0000000000001000b 10000000000000006 X 0000000000000fipob) 00! i b 0000010000000000b
vaiid hash values | + G7000000111001005 CTTCOCORRL | T G | T D G —
EE— ¥
monitoring is paused while processor monitoring reenabled once One-hot coded hash value of the instruction matches
is not executing system call system call is executed one of the acceptable hash values in the monitor
attack detected and
CPU being reset
Alias an] 125 126 27 28 2 30 31]
leon3s:cpul:rstn :’_q
annul | |
seving trap | |
hw monitor enable |
pc + FOO0BAFOh X FOOOBAF4h X FOO0B4F8h FO00B4FCh X FO42F43Ch T F042C20Ch T F042C2E0h
+ 81C44000h X 81CCB000h X 81E80000h X 10800037h X B1E80000N) 033C1305h i 821063380
hash | & Dh X Sh X Fh X 3h X Fh X Bh Fh
onehot | + 0010000000000000b X 0000001000000000b___ X____1000000000000000b 0000000000001000b 1000000000000000b 00K i b 10000000000000006
valid hash values | (+ 0100000011100100b omooﬁidmrxnooo X___0000110000000000b
recover I
monitoring reenabled once illegitimate instruction Instruction hash does not match
system call is executed being executed any of the valid hash values
Fig. 3. Waveforms showing normal execution of the system call (top) and detection of the attack (bottom).
TABLE III
RESOURCE UTILIZATION OF THE HARDWARE MONITOR AND LEON3 PROCESSOR
Auvailable LEON3 w/o | Hardware monitor Secure HW
resource . CAM/stack
hardware monitor and controller mon. loader
Logic LUTs 182,400 20,070 380 6,555 2,603
Memory LUTs 91,200 170 0 0 0
Flip flops 182,400 15,053 324 11,457 2,936
. off-chip | 8,589,934,592 100,326,512 0 0 0
Memory (bits) -
on-chip 14,625,792 534,752 3,054,752 0 977,332

circuitry includes a decryption circuit which increases the
overhead of the interface. Finally, the resources needed to
implement the system call address CAM and return informa-
tion stack used to identify monitoring start and stop points
(described in Section III-B) for up to 337 different system
calls are shown in the table.

By far, the most expensive part of monitoring is the on-chip
memory needed to store the monitoring graphs. In this system,
Linux instructions are stored off-chip so monitoring storage
takes up the bulk of the on-chip storage. In our design, the
monitoring graphs consume less than one-quarter of available
on-chip memory so sufficient space is available for other
circuitry. Overall, our results show that system call monitoring
for advanced embedded operating systems, such as Linux, can
be performed efficiently.

VI. SUMMARY AND CONCLUSION

System calls in sophisticated embedded operating systems
are known to be vulnerable targets for attackers. We present
a low-overhead monitoring approach that allows for selec-
tive instruction-by-instruction monitoring of system calls. Our
approach has been demonstrated in hardware to successfully

identify and prevent a known Linux system call attack. The
overhead of the monitor is modest and does not impact the
performance of the microprocessor.'

REFERENCES
[1]
[2]

M. Abadi et al., “Control-flow integrity principles, implementations, and
applications,” in ACM CCS, Nov. 2005, pp. 340-353.

D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure em-
bedded processing through hardware-assisted run-time monitoring,” in
IEEE/ACM DATE, Mar. 2005, pp. 178-183.

S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” in IJEEE/ACM DAC, Jun. 2007, pp. 483-488.

A. Pouraghily, T. Wolf, and R. Tessier, “Hardware support for embedded
operating system security,” in /JEEE ASAP, Jul. 2017, pp. 61-66.

S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system-call
monitoring,” in Comp. Security Appl. Conf., Dec. 2008, pp. 418-430.
K. Hu et al., “System-level security for network processors with hard-
ware monitors,” in IEEE/ACM DAC), Jun. 2014, pp. 211:1-211:6.

T. Wolf et al., “Securing network processors with high-performance
hardware monitors,” IEEE TDSC, vol. 12, no. 6, pp. 652-664, Nov.
2015.

J. Gaisler and S. Habinc, “Grlib IP library user’s manual,” Cobham,
Tech. Rep., Nov. 2017.

C. Linn et al., “Protecting against unexpected system calls,” in Usenix
Security Symposium, Aug. 2005.

“Exploit database,” https://www.exploit-db.com, accessed: 2017-11-18.

[3]
[4]
[5]
[6]
[7]

[8]
[9]
[10]

IThis research was sponsored by NSF grant CNS-1617458.

