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Abstract—Internet-connected embedded systems have limited
capabilities to defend themselves against remote hacking attacks.
The potential effects of such attacks, however, can have a
significant impact in the context of the Internet of Things,
industrial control systems, smart health systems, etc. Embedded
systems cannot effectively utilize existing software-based pro-
tection mechanisms due to limited processing capabilities and
energy resources. We propose a novel hardware-based monitoring
technique that can detect if the embedded operating system or
any running application deviates from the originally programmed
behavior due to an attack. We present an FPGA-based prototype
implementation that shows the effectiveness of such a security
approach.

Index Terms—embedded system, security, attack, defense,
hardware monitor, operating system, monitoring graph, FPGA
prototype

I. INTRODUCTION

Embedded processing systems are core components of the

emerging Internet of Things (IoT), as well as general control

systems, smart health systems, and many other application

domains. These systems are typically connected to each other

and cloud computing infrastructure through the Internet. The

value of data on these systems, their access to physical

environments, and the potential destruction that can be caused

by them make these devices attractive targets for attackers.

There are two aspects that are of particular importance in this

security context. First, the embedded systems are connected

to the Internet and thus vulnerable to remote attacks. Second,

the embedded systems typically do not have the processing

capacity or power budget to run software-based defense mech-

anisms, such as virus scanners or intrusion detection systems,

which are commonly used as security solutions in network-

connected workstation and server computers.

Therefore, it is critical to develop defense mechanisms for

these embedded systems that are effective to defend against

attacks and that are practical to implement in a resource-

constrained environment. In our work, we present a hardware-

based monitoring system that can track each instruction that is

executed by the embedded processor and check if it matches

the expected behavior of the system. To determine what

behavior is correct, we analyze the operating system (OS) and

application binaries to create a monitoring graph for each. If

the system is attacked, it necessarily will execute instructions

that are not part of such a monitoring graph and thus the

hardware monitor can detect this deviation. Our system is able

to track the dynamics of the system (e.g., context switches,

operating system interrupts, etc.) to ensure that the monitor

can verify the faithful execution of every single instruction on

the embedded processor.

The main contribution of our work is a lightweight security

mechanism that can track operating system and application

execution and detect attacks at the granularity of individual

processor instructions without needing to know any character-

istics of such an attack. Specifically, our paper presents the

following contributions:

• Design of a hardware-based monitoring system that can

detect any deviation in processing behavior in the oper-

ating system or application tasks, even when caused by

previously unknown attacks.

• Prototype implementation of a hardware-based monitor-

ing system on an Altera DE4 FPGA board using the

µC/OS-II operating system to show the feasibility of this

approach.

• Evaluation of the prototype system shows the ability

to dynamically switch contexts, handle interrupts, and

detect attacks while requiring only a few hundred logic

gates and memory comparable to that of the instruction

code and causing a minimal processing slowdown of 6

processor cycles per context switch.

The remainder of this paper describes the design, operation,

and implementation of this hardware security mechanism for

operating systems of embedded processing systems.

II. RELATED WORK

The importance of security in embedded environments, such

as in IoT, has long been acknowledged in academic research

[1] and by government institutions [2]. Recent attacks on

Internet infrastructure exploited vulnerabilities in IoT devices

to launch distributed denial-of-service attacks [3], which high-

lights the continued need for novel security solutions in this

space.

Although general purpose operating systems contain a va-

riety of security mechanisms, embedded OS versions are

limited and monitoring for embedded operating systems is

constrained. Several techniques are used to provide operating

system security at run-time. Typical mechanisms include a

trusted computing base and a reference monitor [4]. The
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TABLE I
QUALITATIVE COMPARISON TO RELATED WORK.

malware
[10] [11] [12] [13]

this
scanner paper

technique software hardware

overhead high low

granularity I/O basic bl. processor instruction

programs multiple single multiple

OS support yes no yes

OS monitor yes no yes

software mechanisms enforce a security policy and access

to compute objects, respectively. Dynamic information flow

security [5] can be applied to operating systems to prevent

data from input channels from being used as instructions or

jump targets. A data-centric approach adds security infor-

mation to storage locations and registers to track security

levels [6]. A more recent approach uses a neural network

to evaluate use patterns for the processor program counter

and cycles per instruction [7]. Anomalous operating system

behavior can be observed from these parameters. The Tamper

Evident Processor [8] tags data values with hashes to identify

unexpected changes. These values are used to identify OS data

modifications.

The idea of using a hardware-based monitoring system to

detect processing deviation is certainly not new: Monitors have

been used to track function and system call sequences (e.g.,

[9]), to verify checksums over basic blocks (e.g., [10]), and

to validate execution at a per-instruction level (e.g., [11]).

What is new in our work is that we present an instruction-

by-instruction level hardware monitoring approach for an en-

vironment of complex, interacting software components (i.e.,

multiple processing tasks running on an operating system).

Such a fine-grained monitoring approach has not previously

been demonstrated for a full-blown operating system with

multiple tasks. The work in [12], [13] considers multiple

processing tasks but does not monitor the operating system

itself, which is often the target of attacks. Coarser-grained

approaches have considered operating systems and processing

tasks, but do not track processing behavior at the level of

individual instructions, which opens them up to vulnerabilities,

such as described in [14], where attacks have been executed on

network processors using only a few instructions of malicious

code. A qualitative comparison of related work and our

contribution is shown in Table I.

III. SYSTEM AND SECURITY MODEL

To provide context for our design that we describe in

Section IV and evaluate in Section V, we briefly discuss the

system architecture, the construction of a monitoring graph,

and the security model that is the basis for our work.

A. Monitoring Graph Construction

The basic idea of hardware monitoring is to compare system

behavior against a golden indicator. Here we use a fine-

grained indicator called a monitoring graph. This graph is

a deterministic finite automaton in which the states are the
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Fig. 1. System architecture of embedded hardware monitoring system that
can validate correct execution of applications and operating system.

assembly instructions and edges are the possible transitions

between those instructions. It can be constructed by analyzing

the binary code of an application. A big challenge in graph

construction is resolving indirect control flow instructions

where the target address of an instruction is determined by

the content of a register. To handle these instructions, source

code analysis, profiling, and binary code emulation [15] can

be used. The graph extraction process is discussed in detail in

[16].

B. System Architecture

The system architecture of our hardware monitoring system

is shown in Fig. 1. The processor core reports each executed

instruction to the hardware monitor which compares the in-

struction against an entry in the monitoring graph. In the case

of deviation for an expected graph traversal due to attack, a

recovery procedure is initiated, as discussed in Section V.

Such a hardware monitoring approach has been described in

related work [9]–[11]. We choose the per-instruction monitor-

ing approach proposed in [11], rather than the per-basic-block

monitoring presented in [10] or the system-call monitoring

presented in [9], to ensure fast response to attacks. Also, we

use the 4-bit hash of the processed instruction for reporting

described in [17] (rather than the full instruction word) to

reduce memory requirements. Finally, we use the security

techniques described in [17] to prevent an attacker from

tampering with the monitoring graph to avoid detection.

The challenge for this system, which is the main novelty

over related work, is the need to associate the current pro-

cessing context (operating system or one of multiple appli-

cations) with the correct monitoring context. As illustrated in

Fig. 1, each application and the OS have their own monitoring

graph (and associated monitoring state). When the processor

switches between application and operating system processing



(e.g., due to context switch, interrupts, etc.), the hardware

monitor needs to follow along with these dynamic changes.

C. Security Model

Having described the system architecture and the construc-

tion of a monitoring graph, we consider security properties

that are tied to the security model. The security requirements

of our system are:

SR1 The system should only execute code that belongs to

the operating system or any of the validly installed

applications.

SR2 Any attack that introduces malicious code should be

detected and stopped.

The attacker capabilities that we assume are:

AC1 An attacker has access to the embedded system through

any input/output channel.

AC2 An attacker can tamper with application and operating

system binaries loaded into the main memory, the pro-

cessing stack, and data memory.

In our work, we also assume the following limitation on

attacker capabilities:

AC3 An attacker cannot tamper with the monitoring graph

(e.g., by using the techniques from [17]).

In addition to these security requirements, there are perfor-

mance requirements, such as low implementation cost and low

performance overhead, to make the system practically useful.

The hardware monitoring system described in the following

section meets these requirements as we show in Section V.

IV. MONITOR DESIGN

This section describes the various aspects of our hardware

monitor design in detail.

A. Operating System Task Management

The key aspect of our monitoring system is its ability to

monitor both user and operating system tasks. Task switching

can be initiated by the operating system (e.g., new user task

is scheduled), by applications invoking system calls, or by

external events (e.g., timer or external interrupt). In the first

two cases, the context switch happens synchronously, meaning

that the instruction after which the context switch occurs is

known. Therefore, the appropriate information can be provided

to the hardware monitor prior to the event by adding a small

piece of code to the OS and the applications. However, in the

latter case, the context switch can happen with no prior notice.

Context switch procedure on the hardware monitor includes

saving the state of the monitoring graph for the code currently

being executed and switching to the graph for the next

processor task. Since interrupts can happen asynchronously,

this whole procedure should be done seamlessly and without

any coordination between the main processor and the hardware

monitor. It also must be ensured that monitoring is synchro-

nized with OS task execution following OS context switch

operations such as register file save and restore.

Our OS monitoring approach has been developed for

µC/OS-II1, a widely used embedded operating system. All

the OS internal functions (e.g. task scheduling), interrupt

service routines, and system calls, handling software traps

were continuously monitored.

B. Multi-Task Hardware Monitor System

A detailed view of our monitoring subsystem is shown in

Fig. 2. The portions of the monitoring system can be split

into monitoring hardware, which checks the per-instruction

operation of the companion processor, graph memory, which

stores state information about monitoring graphs, sequencing

logic, which determines the next state in the graph, processor

interfaces, which coordinates with the processor when context-

related information is received, and bookkeeping tables, which

associate monitoring graphs with specific user and OS tasks.

The tables also keep track of the monitoring status for each

graph. Monitoring graphs can be loaded into a secure memory

from external memory via a cryptographic coprocessor. Activ-

ity in the monitoring hardware is controlled by a finite state

machine. We have implemented this system and evaluated its

performance on a DE4 FPGA board.

For each executed instruction, the monitoring hardware

checks the instruction versus an entry in the associated mon-

itoring graph. If an unexpected result is determined from the

comparison, the instruction execution is flagged as a possible

attack and the processor is either reset or interrupted. Graphs

are loaded into slots in the graph memory. Once loaded, the

starting address of the slot is associated with the graph ID

(GID) of the appropriate graph in the bookkeeping tables.

Once the OS creates a new task, it sends a message to

the hardware monitor with the process ID (PID) of the newly

created task and its relevant graph ID. Then the hardware

monitor loads the appropriate graph into its graph memory

if it is not already resident and associates this PID with the

received GID in the bookkeeping tables. These bookkeeping

tables are consulted and updated during a context switch.

C. Context Switch Handling

In the processor, context switches can be triggered by three

different events: Interrupts, System Calls, and the Scheduler

resuming a user application. Next, we discuss how the hard-

ware monitor follows the processor’s context switch in each

case and thus ensures the security of the system continuously.

1) Interrupts: The most frequent triggers of context switch-

ing are interrupts. Since interrupts happen asynchronously,

the physical interrupt signal (IRQ) is presented to both the

processor and the monitoring hardware. The ISR monitoring

graph is always resident in monitoring graph memory. If the

monitor detects an illegal instruction execution during the

execution of the ISR, it resets the processor. The processor can

elect to disable interrupts. In this case, the processor writes to

a register in the monitor indicating that it should ignore future

IRQ strobes. The monitor keeps tracking the processor until

1http://micrium.com/rtos/ucosii/overview/



Fig. 2. Detailed view of multi-context monitoring system.

the processor writes the disable interrupt command into its

status register.

2) System Calls: Another source of context switching is

system calls. During these calls, the user function is suspended

until the operating system returns control back to it. For

monitoring, system calls are assigned a GID and control is

passed to a monitoring graph for the system function. When

a user task calls a system function, the GID of the function is

determined from a field embedded in the user task monitoring

graph for the executed instruction. Once the GID for the

system call is determined, the hardware monitor saves the state

of the current task’s monitoring in the bookkeeping tables,

finds the memory slot holding that system call’s graph using

its GID and starts traversing that graph. During the automatic

loading of the system call’s monitoring graph, the CPU is

stalled by the deactivation of the Done signal from the monitor.

3) OS Scheduler: The most common source of context

switches is the OS user task scheduler. The two most frequent

invocations of the OS scheduler are from the timer ISR and

an application’s system call to yield the processor. When the

scheduler is invoked, it chooses the next process to execute.

In µC/OS-II, a priority-based scheduler is used, although

round-robin or other approaches are also possible. When the

next task is determined, the processor forwards the task’s

PID to the monitor. The monitor identifies the appropriate

monitoring graph by consulting the bookkeeping tables. Once

the monitoring graph information is in place, the context

switch is made and monitoring is switched from the ISR or

system call monitoring graph to the graph for the user task.

The processor is notified that it can proceed via the Done

output from the monitor.

D. Recovery

When an attack is detected, the monitor signals a reset to

the processor. For application processes, the operating system

can simply kill the process and use internal mechanisms to

recover memory and restart the application. Many embedded

applications can recover from such a restart. If necessary,

more complex checkpointing and recovery mechanisms can

be implemented. If the reset occurs during operating system

processing, then the entire system needs to be restarted.

One concern with the recovery process is that a simple

attack (e.g., caused by a small number of I/O operations)

can cause a costly recovery operation (e.g., rebooting the

system). An attacker could use this as a denial-of-service

mechanism. However, the hardware monitoring system ensures

that the attack does not succeed (i.e., no malicious code is

executed) and no attack vectors beyond this denial of service

are available to an attacker.

V. PROTOTYPE IMPLEMENTATION

We have developed a prototype implementation of the hard-

ware monitoring system to show its effectiveness in providing

security to embedded operating systems and their applications.

A. System Setup and Attack Scenario

Our system consists of a simple NIOS II soft processor,

which is augmented by our hardware monitor. The system is

described in Verilog and implemented on Terasic DE4 FPGA

board utilizing an Altera Stratix IV FPGA. To install new

binaries and graphs, another NIOS II core with a dedicated

RSA decryption engine for secure hardware monitor loading is

co-located with the main processor and the hardware monitor.

The role of this co-located processor is to read encrypted

binaries and graphs from an SD card, decrypt and verify them,

and feed them to the main processor and the hardware monitor.

Security installation of the binaries and graphs are discussed

in detail in [17].

To test the ability of the hardware monitor to detect run-

time attacks, we implemented a format string attack scenario

[18]. Exploiting the vulnerability in snprintf function, we

overwrite the first instruction of the interrupt service routine

and replace it with a call to an arbitrary function which prints

a simple message on the console. In a practical attack, this

redirection of control flow can be used to execute arbitrary

attack code.

B. System Operation

Under normal operation, our hardware monitor follows

along with the context switches that occur in the operating

system. When switching from an application process to the

operating system (or the other direction), the current monitor-

ing context is stored and the new monitoring context is loaded.



Fig. 3. Context switch interactions between processor and monitor.

Fig. 4. Attack on processor system, which is detected by hardware monitor.

Fig. 3 shows the interactions that take place during such a

context switch. Our hardware monitor is blocking in the sense

that the embedded processor stalls if the processor switches

between contexts more quickly than the monitor (see cycles

10–16 in Fig. 3). While this stalling causes a slight overhead

(see Section V-E), it ensures that no instruction is executed

without being monitored.

C. Detection of Attack

When the processor is being attacked and the execution of

attack code is attempted, the monitor reports an instruction

execution that does not match with the monitoring graph of

the application binary or operating system that is currently

active. Fig. 4 shows such an attack detection. In particular,

at cycle 18, there is a difference between the reported hash

value (0x0008, i.e., 3 in one-hot coding) and the acceptable

hash values (0x0800, i.e., 11 in one-hot coding). Thus the reset

signal is asserted.

These results show that the security requirements (SR1 and

SR2 in Section III-C) are met. In particular, as long as the

attacker cannot modify the monitoring graphs (AC3), any

change in the processing system (AC1 and AC2) that leads

to any change in processing behavior can be detected by the

monitoring system.

D. Monitoring Graph for Benchmarks and the OS

Using the graph extraction method described in [16], we

extracted the monitoring graph for µC/OS-II and a set of

benchmarks from [19]. To run the benchmarks on our NIOS

TABLE II
MONITORING GRAPH SIZES FOR OPERATING SYSTEM AND APPLICATIONS.

number of number of graph size
instructions graph entries (bits)

µC/OS-II 22,913 23,625 850,500

basic math 10,446 11,563 416,268

bitcount 6,731 7,823 281,628

qsort small 7,113 9,055 325,980

qsort large 7,302 9,116 328,176

based platform, minor modifications were performed. For

example, our system does not have a file system. Therefore,

we had to use static predefined data sets instead of reading

from files. The number of instructions, the number of graph

memory entries, and the total graph sizes in graph memory

for each benchmark and the OS are shown in Table II.

E. Monitoring System Overhead

There are two types of overhead that we need to consider

for our system. One overhead is the additional on-chip area

that is required by the hardware monitor. This area consists

of the logic necessary to implement monitoring functionality

and context switching and the memory that is necessary to

store monitoring graphs and contexts. We show the resources

necessary for implementing the hardware monitor in Table III.

The hardware monitor requires less logic than the embedded

processor since its functionality is much simpler. It does

require comparable memory resources because the monitoring

graph needs to be stored in a format that allows fast transition



TABLE III
RESOURCE USE ON A STRATIX IV FPGA.

Available Nios II w/o HW monitor Secure HW
on FPGA HW mon. + controller mon. loading

LUTs 182,400 2,997 764 2,603

FFs 182,400 3,200 922 2,936

Mem. bits 14,625,792 2,199,552 2,580,288 977,332

between states (within one processor cycle). In addition, the

system requires a mechanism for securely loading monitoring

graphs (to avoid tampering by an attacker). This security

mechanism requires resources comparable to that of the pro-

cessor and is shown in the final column of the table.

From these resource figures, the hardware monitoring sys-

tem may seem relatively expensive to implement. However,

the absolute resource use is very small. Also, the cost of

the monitor does not increase with a higher-performance

processor. For example, a higher-end processor may require

more logic and have significantly more data memory, but

the monitoring system would require the same amount of

resources. Also, the secure loading system would only be

required once when using a multi-core embedded system.

Thus, the overall resource consumption is practically feasible.

The other overhead is the processing delay that is introduced

by stalling the processor core during a context switch (see

Section V-B). The delay for an interrupt on the processor

(without any monitoring in place) is 6 cycles. As Fig. 3 shows,

an additional 6 cycles of stalling is introduced by the hardware

monitor which is not comparable to the hundreds of cycles

needed to execute the ISR itself. The effect of this additional

delay depends on the frequency of interrupts in the system.

It should be noted that the original NIOS based system had

the highest possible clocking rate of 198MHz and adding the

hardware monitor and the cryptographic processor to it did

not impose any slow down in terms of maximum clocking

frequency.

These results show that our hardware monitoring system,

which can detect any attack that changes processing behavior,

can be implemented with reasonable amounts of additional

hardware resources and practically no performance degrada-

tion on the system.

VI. SUMMARY AND CONCLUSIONS

In summary, embedded systems are particularly vulnerable

to attacks. Their limited resources do not allow the use

of conventional software-based defense mechanisms. In this

paper, we presented a hardware-based security mechanism that

can ensure correct execution of applications and operating

system code at the granularity of individual instructions. Our

prototype system shows that the proposed mechanism is fea-

sible for these highly dynamic environments and effective in

detecting any attack, even those that were previously unknown.

We believe that this work presents an important step towards

secure embedded processing systems for a broad range of

applications domains.
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