
A Bandwidth-Optimized Routing Algorithm for
Hybrid FPGA Networks-on-Chip

Shivukumar B. Patil, Tianqi Liu, and Russell Tessier
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA 01003

Abstract—In this paper, a heuristic routing algorithm that is
tuned for routing traffic in hybrid FPGA NoCs is presented. This
multi-iteration routing algorithm requires a limited amount of
hardware for prescheduled stream-based routing while allowing
for bandwidth-optimized usage of NoC routing resources. By ef-
ficiently scheduling data streams, the remaining NoC bandwidth
can be used for bursty, packet-switched traffic. We demonstrate
our approach using a hybrid NoC and show an average 11%
data stream bandwidth improvement for a collection of five
benchmark traffic patterns.

I. INTRODUCTION

The need for both hard and soft FPGA NoCs has been well-
documented and a number of NoC architectures have been
developed. Packet-switched (PS) NoCs (similar to those used
on multi-core microprocessors) are well-suited to bursty traffic
with unpredictable destinations. Time division multiplexed
(TDM) NoCs route stream-based traffic using a schedule de-
rived at compile time. In general, TDM NoCs exhibit reduced
latency and energy consumption versus packet-switched NoCs
since router buffering can be largely eliminated. This savings
does come at the cost of some per-router storage for the
schedule memory. Recently, hybrid FPGA NoCs [1][2] have
been introduced that support both PS and TDM routing. Since
TDM routing is performed at compile time and PS routing is
performed at run time, care must be taken during TDM routing
to provide low latency and high throughput for stream-based
traffic without blocking additional PS traffic.

The selection of NoC channels and time slots for each
TDM route requires an extensive spatial and temporal search
even if routes are constrained to shortest paths. The lack of
buffering for TDM routes requires time slots to be allocated
sequentially. Additionally, the use of routing resources should
be balanced across the network to allow for sufficient time
slots for PS routing at run time. Previous work on TDM
routing algorithms for FPGA NoCs [1][2] generally focuses
on algorithm speed rather than optimizing the amount of
TDM bandwidth or balancing routing resources by minimizing
channel congestion. Given the amount of compile time needed
for physical design of the FPGA logic, allocating a few
seconds of additional compile time to obtain higher-bandwidth
TDM routes can be an effective goal.

Our new TDM routing approach for hybrid NoCs maximizes
and balances TDM bandwidth by using a multi-iteration one-
step routing algorithm. For each routed TDM flit, the algorithm
performs a breadth-first search that simultaneously considers
both physical routing channels and time slots. A key aspect

of the algorithm is its use of a Pathfinder [3] approach to
ripup and reroute. Wire and time-slot overuse in a specific
iteration is reflected in a non-decreasing cost value that can
be used to gently guide routes away from a resource during
later iterations. Our TDM routing algorithm is applied to a
hybrid FPGA NoC for five widely-used NoC routing patterns.

II. BACKGROUND

FPGA NoCs have several characteristics that differentiate
them from multi-core microprocessor NoCs. Since FPGA
cores are expected to be simple, transmitted data values are
expected to arrive in order at the receiver. This issue gener-
ally results in shortest-path routing for TDM communication
and communication protocols with predictable paths (e.g.
dimension-ordered routing (DOR)) for PS routing [4].

Most previous compile-time TDM approaches first identify
the routing channels used by paths and then select routing
time slots. This two-step approach is easy to implement but
can lead to suboptimal results. For example, Lu and Jantsch
[5] use a depth-first search to select routing paths followed
by scheduling. In Carle et al. [6], TDM routes are limited to
DOR to reduce route search complexity. A previous hybrid
FPGA router [1] can support simultaneous TDM and PS
routing although all traffic is limited to DOR patterns. Multiple
TDM routing approaches have combined channel with time
slot selection. These algorithms greedily identify feasible
solutions. Kapre et al. [7] attempt to schedule routes using
the first available time slot. Multi-iteration ripup and reroute is
mentioned but not implemented. Shpiner et al. [8] use a single-
iteration random-greedy scheduling algorithm to determine
route time slots. Evain and Diguet [9] use a space-time route
allocation algorithm to minimize the TDM schedule.

In contrast, our approach combines path and time slot
selection in a single pass. TDM routes are not restricted to
DOR; they can take any available shortest path from source
to destination. The approach uses multiple rip-up and reroute
passes to eliminate the effects of net ordering. Although our
TDM routing algorithm could be applied to any FPGA NoC
that supports TDM, it is optimized for hybrid NoCs with
both TDM and packet-switching. A router from a typical
FPGA hybrid NoC [2] is shown in Fig. 1. The router contains
a context memory for TDM schedule information that can
configure the crossbar to connect a specific source port to each
output port (e.g. S, N , ..). Output ports with a − in the context
memory on a specific cycle instead accept PS data. If a TDM
connection is allocated and no input data is available, PS data



Switch Allocator

.

.
.
.

Output Port Destinations

Input Modules Output Modules

VC Allocator

Control Logic

Cycle counter

S N - - -

N S E W C

.

.
.
.

.

.
.
.

.

.

Context Memory Source Input Ports

Fig. 1: Router for Hybrid FPGA NOC [2]

may be forwarded instead. Each input module contains two
sets of FIFOs that serve as PS buffers and a bypass register
for TDM data. Packet-switched routing is performed using
DOR. Since the TDM schedule length is short (eight time
slots), effective routing heuristics are needed to efficiently use
available bandwidth.

III. ROUTING ALGORITHM IMPLEMENTATION

Our multi-iteration routing algorithm attempts to maximize
TDM routing up to the allocation requested by the user at
compile time. Unused routing time slots can be used for
packet-switched routing. Our algorithm consists of three parts
illustrated in Algorithms 1, 2, and 3. Each FPGA source com-
ponent (e.g. soft processor, IP core) communicates with one
or more destination components forming a connection. Each
connection supports one or more periodic data transmissions
(e.g. flits). To provide comparisons to PS routing, four flits are
considered a packet.

Algorithm 1 shows the top-level loop of data communica-
tion scheduling. An attempt is made to schedule a route for
each connection beginning at a starting time slot at the source
router. After paths consisting of (inter-router channel, time
slot) assignments are made for each connection, a check for
route success is performed. A successful schedule includes no
inter-router channel, time slot pairs that are shared by multiple
connections. If unsuccessful, paths for connections without
overlap are locked and another set of routing attempts for the
remaining unrouted connections are performed beginning at
the next starting time slot (e.g. starting time slot+1). The pro-
cess terminates when all connections have been successfully
scheduled with no overlap or no schedule can be found for

Data: List of multi-fanout connections (input to output)
Result: List of routing paths (S) for every connection

1 /* Try all starting time slots */
2 for i=0 to num_slots do
3 unrouted_set = all connections; start slot = i
4 for j = i, j < num_slots, j++ do
5 unrouted_set = perform_set_route(unrouted_set, j)

if no shared (channel, time slot) paths then
6 break
7 end
8 end
9 end

Algorithm 1: Traffic path algorithm

Data: Set of unlocked connections, starting slot j
Result: List of routing paths (S) with no (channel, slot)

pair overlaps
Result: Set of connections with (channel, slot) pair

overlap
1 Pathfinder_ts(j, set)
2 Lock all connections with paths with no (channel, slot)

pairs that overlap
3 set = set - locked connections
Algorithm 2: Route a set of unlocked connections per-
form_set_route

them. In the latter case, unrouted connections are routed at
run-time using packet switching.

Algorithm 2 illustrates the use of our Pathfinder_ts algo-
rithm that considers both spatial (channels) and temporal (time
slots) information. One application of Pathfinder_ts is per-
formed per starting time slot. Connections that are successfully
routed are locked.

Algorithm 3 forms the heart of our route scheduling ap-
proach. Each source-destination connection i is built from a
series of channel, time slot pairs along a shortest path. Multi-
fanout connections are supported and multiple iterations of
rip-up and reroute are performed. As a route proceeds from
source to destination, the cost of a new channel, time slot pair
is considered. The lowest cost pair is selected at each step to
create the lowest-cost scheduled path with cost Ci.

cn(ts) = (1+congestionts×pfac)(1+historyts×hfac) (1)

The Pathfinder cost function [3] in (1) determines the
cost of using an adjacent node (channel, time slot pair) in
Algorithm 3. Congestion cost (congestionts) of a node is
the number of routing paths that are currently sharing it.
History cost (historyts) is a non-decreasing value which is
increased by the amount of congestion cost at the end of
each iteration. Values pfac and hfac are congestion cost and
history cost multiplication factors, respectively. They are set
to constant values of 1.2 and 0.2, respectively, as determined
via experimentation.



Data: List of connections (source, destination, and
starting time slot)

Result: List of routing paths (S) for each connection of
channel, time slot pairs

1 while shared (channel, slot) pairs exist and (iteration <
max_iter) or iteration = 0 do

2 for all connections i starting at time slot i.slot do
3 Rip up existing connection path Pi

4 Pi ← (source, i.slot)
5 Initialize expansion_list = new MinHeap()
6 while all destinations dij not found do
7 Remove lowest cost node m with time slot j

from expansion_list
8 while fanouts n of node m at time slot (j+1)

mod max_slot on shortest path exist do
9 Add n to expansion_list at cost cn + Ci

10 end
11 for all nodes n in path from dij to source do
12 Update cn
13 Add n to Pi

14 end
15 end
16 end
17 end

Algorithm 3: Pathfinder_ts algorithm including time slots

Topology 64-node, 8 × 8 2D mesh
Technology 45 nm at 1.1V, 1.0 GHz
Channel width 128 bits (16 bytes)
Packet size 4 flits
Virtual channels 2/port
Buffer size per VC 10 flits in depth

TABLE I: Routing Parameters

IV. EXPERIMENTAL APPROACH

To evaluate the performance of our scheduling algorithm
on a hybrid NoC, Booksim 2.0 [10] was used to assess data
throughput, packet latency and NoC dynamic power. The
simulator was previously modified to allow for hybrid TDM
and packet-switched routing and power measurements [2] and
a physical router layout was used to obtain NoC physical
parameters [2]. Each router component and the inter-router
wires were assigned dynamic energy consumption values
determined via the post-synthesis simulation described in [2].
These values were scaled by flit-level toggle rates determined
during the Booksim simulations. The network was warmed
up with enough packets to reach a stable state prior to results
recording. Unless otherwise stated, the NoC parameters shown
in Table I were used for experimentation. All experiments use
a routing schedule of eight time slots and 500 Pathfinder_ts
iterations.

Using our modified version of Booksim, three communi-
cation patterns for hybrid routing were considered [10]. The
patterns include 1) transpose (messages from (x, y) are sent to
(y, x)), 2) bit-reverse (messages from the node labeled x are
sent to the node whose label is bit-reversed(x), and 3) tornado

Single Iteration Pathfinder_ts
Pattern BW Min/ Ave σ BW Min/ Ave σ

% Max % Max
BitRev. 53 1/8 4.3 1.8 55 3/8 4.4 1.6
Tornado 28 1/5 2.2 0.8 31 2/3 2.5 0.5
Transp. 56 2/8 4.5 1.9 56 3/8 4.5 1.7
2-Side 71 5/7 5.7 0.7 99 7/8 7.9 0.2
4-Side 79 5/8 6.5 0.9 100 8/8 8.0 0.0

TABLE II: Time slot routing results of single iteration shortest
path (SP) and Pathfinder_ts (PF) algorithms for single-source,
single-destination traffic patterns.

(messages from (x, y) are sent to (x+ k
2 −1 mod k, y+ k

2 −1
mod k) where k is the dimension of x and y. Results are also
reported for 2-side (sources and destinations on parallel edges
of the NoC) and 4-side (sources and destinations along the
NoC perimeter) traffic patterns [2] at throughput rates of 10
Gbps for each source-destination pair. Combined execution of
Algorithms 1, 2, and 3 requires on the order of seconds.

V. RESULTS

In this section, the routing results from using our
Pathfinder_ts routing algorithm are directly compared against
results using a single iteration shortest-path (SP) TDM ap-
proach [2]. The latter algorithm is similar to the routing
algorithm described in [1]. All routes for TDM follow shortest
paths.

The routing results shown in Table II illustrate the benefits
of multi-iteration path selection and scheduling for TDM
routing versus the previous routing approach. Pathfinder_ts
(PF) achieves improved bandwidth (BW%) for all five traffic
patterns. Up to 100% of required source-destination commu-
nication (BW%) in the routing network can be accommodated
using PF with an average 11% bandwidth improvement for PF
versus SP. The remaining available bandwidth can be allocated
and used at run-time using longer-latency packet switched
routing. The table also shows that the time slot usage for TDM
in the routers is more balanced if PF is used. The minimum,
maximum, and average time slot usage (out of 8 available
slots) across the routers is noted. By balancing slot usage for
TDM at compile-time, unused slots can be more easily used
for packet-switched routing at run-time.

Figure 2 shows average packet latency for transpose, tor-
nado, and bit-reverse traffic patterns under increasing traffic
injection rates. TDM-only routing using PF and SP are used
to route connections at compile-time. The packet latency of
routing using these approaches is compared against routing
all traffic using packet switching (PS) with DOR. For PS-
only traffic, latency increases sharply at the injection rates of
0.04 to 0.06, due to limitations in dimension order routing.
In TDM-only routing, the PF latency is better than the SP
latency for all traffic patterns. Since more TDM routing slots
are available with PF, data is assigned to a free slot more
easily at the source, reducing source-to-destination latency. For
tornado and low-injection-rate transpose and bit-reverse, PS-
only achieves lower latency in some cases since PS traffic can



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
Injection rate (packets/node/cycle)

20

40

60

80

100

120
la

te
nc

y 
(c

yc
le

s)

TDM-PF-transpose
TDM-SP-transpose
PS-transpose

TDM-PF-tornado
TDM-SP-tornado
PS-tornado

TDM-PF-bitrev
TDM-SP-bitrev
PS-bitrev

Fig. 2: Average packet latency for transpose, tornado and bit-
reverse traffic patterns using only compile-time TDM or run-
time PS routing using DOR.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
TDM Injection rate (packets/node/cycle)

24

26

28

30

32

34

36

38

40

42

44

La
te

nc
y 

(c
yc

le
s)

SP-TDM-0.05
SP-PS-0.05
PF-TDM-0.05
PF-PS-0.05

Fig. 3: Average NoC latency for varying amounts of TDM
versus PS traffic for transpose under a moderate, fixed total
packet injection rate of 0.05 packets/node/cycle. Note that
TDM latency increases as TDM injection rate increases due
to more contention for time slots.

be immediately transmitted by a source rather than having to
wait for a pre-scheduled TDM time slot.

Figure 3 shows results for experiments when the total
packet injection rate at each source is constant at 0.05
packets/node/cycle. The fraction of transmitted data that is
scheduled via TDM versus the amount of PS traffic is varied
from all PS (left) to all TDM (right). Initially, as the amount
of PS traffic is high, all packets have high latency. As the
TDM injection rate is increased, the PS traffic and associated
latency are reduced. Latencies for TDM traffic routed with
the PF algorithm are consistently less than corresponding SP
results.

Figure 4 shows the total power consumption of the NoC for

6 8 10 12 14 16 18 20 22 24 26
Throughput (Gbits/s)

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Po
w

er
 (

m
W

)

TDM-PF-transpose
TDM-SP-transpose
PS-transpose
TDM-PF-tornado
TDM-SP-tornado
PS-tornado
TDM-PF-bitrev
TDM-SP-bitrev
PS-bitrev

Fig. 4: Total power consumption for transpose, tornado and
bit-reverse traffic using PS-only or TDM-only routing.

SP-only, PF-only, and PS-only routing for three traffic patterns.
For SP- and PF-only routing, the routes have similar power
numbers at low injection rate. At higher injection rates, the
power consumption of PF routing is slightly greater than that
of SP due to a larger number of time slots available for routing.

VI. CONCLUSION

In this paper, a heuristic routing algorithm that is tuned for
routing traffic in hybrid FPGA NoCs is presented. This multi-
iteration router balances routed traffic across routing resources
to reduce congestion. Multiple rip-up and reroute iterations are
used to enhance low-latency, time-scheduled communication.
Substantial data stream bandwidth and latency improvement
for a collection of five benchmarks is shown using our new
routing approach.1

REFERENCES

[1] N. Kapre, “Marathon: Statically-Scheduled Conflict-Free Routing on
FPGA Overlay NoCs,” in FCCM, May 2016, pp. 156–163.

[2] T. Liu, N. K. Dumpala, and R. Tessier, “Hybrid hard NoCs for efficient
FPGA communication,” in FPT, Dec. 2016, pp. 157–164.

[3] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in FPGA, Feb. 1995, pp. 111–
117.

[4] M. S. Abdelfattah, A. Bitar, and V. Betz, “Take the highway: Design
for embedded NoCs on FPGAs,” in FPGA, Feb. 2015, pp. 98–107.

[5] Z. Lu and A. Jantsch, “TDM virtual-circuit configuration for network-
on-chip,” IEEE TVLSI, vol. 16, no. 8, pp. 1021–1034, Aug. 2008.

[6] T. Carle et al., “Static mapping of real-time applications onto massively
parallel processor arrays,” in Int’l Conf. on Application of Concurrency
to Sys. Design, Jun. 2014, pp. 112–121.

[7] N. Kapre et al., “Packet switched vs. time multiplexed FPGA overlay
networks,” in FCCM, May 2006, pp. 1–10.

[8] A. Shpiner et al., “On the capacity of bufferless networks-on-chip,” IEEE
TPDS, vol. 26, no. 2, pp. 492–506, Mar. 2014.

[9] S. Evian and J.-P. Diguet, “Efficient space-time NoC path allocation
based on mutual exclusion and pre-reservation,” in ACM GLSVLSI, Mar.
2007, pp. 457–460.

[10] N. Jiang et al., “A detailed and flexible cycle-accurate network-on-chip
simulator,” in ISPASS, Apr. 2013, pp. 86–96.

1This research was funded by a grant from Xilinx Corporation.


