
Fault Recovery from Multi-Tenant FPGA Voltage Attacks
Shayan Moini, Dhruv Kansagara, Daniel Holcomb, Russell Tessier

Department of Electrical and Computer Engineering
University of Massachusetts Amherst

Amherst, MA, USA
{smoini,dkansagara,dholcomb,tessier}@umass.edu

ABSTRACT
As multi-tenant FPGA applications continue to scale in size and
complexity, their need for resilience against environmental effects
and malicious actions continues to grow. To ensure continuously
correct computation, faults in the compute fabric must be identified,
isolated, and suppressed in the nanosecond to microsecond range.
In this paper, we detail a circuit and system-level methodology to
detect compute failure conditions due to on-FPGA voltage attacks.
Our approach rapidly suppresses incorrect results and regenerates
potentially-tainted results before they propagate, allowing time
for an attacker to be suppressed. Instrumentation includes volt-
age sensors to detect error conditions induced by attackers. This
analysis is paired with focused remediation approaches involving
data buffering, fault suppression, results recalculation, and com-
putation restart. Our approach has been demonstrated using an
RSA encryption circuit implemented on a Stratix 10 FPGA. We
show that a voltage attack using on-FPGA power wasters can be
effectively detected and computation halted in 15 ns, preventing
the injection of timing faults. Potentially tainted results are suc-
cessfully regenerated, allowing for fault-free circuit operation. A
full characterization of the latency and resource overheads of fault
detection and recovery is provided.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; Side-
channel analysis and countermeasures;Hardware security
implementation; Hardware attacks and countermeasures; •
Hardware → Hardware accelerators; Fault tolerance.

KEYWORDS
Hardware Security, Fault Detection and Recovery, On-chip Voltage
Sensor

ACM Reference Format:
Shayan Moini, Dhruv Kansagara, Daniel Holcomb, Russell Tessier. 2023.
Fault Recovery from Multi-Tenant FPGA Voltage Attacks. In Proceedings
of the Great Lakes Symposium on VLSI 2023 (GLSVLSI ’23), June 5–7, 2023,
Knoxville, TN, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3583781.3590246

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06. . . $15.00
https://doi.org/10.1145/3583781.3590246

1 INTRODUCTION
FPGAs are now used in a wide range of machine learning [25], net-
working [12], and data mining applications [26], among others. To
support these applications, FPGA designs often include intellectual
property cores that potentially could include malicious circuitry.
These multi-tenant scenarios and others that could arise from mul-
tiple independent customers sharing a cloud FPGA at the same time
[5] raise the risk of malicious on-FPGA attacks. It is well-known
that on-FPGA voltage can be easily manipulated using simple power
wasting logic circuits, causing faults in unsuspecting user designs
[11, 14, 20]. These fault injection attacks can compromise encryp-
tion circuits [13]. To ensure correct and uncompromised system
operation, these attacks must be identified in the nanosecond to
microsecond range and remediation must be taken to avoid the
propagation of faulty results. In this paper, we outline a circuit and
system-level methodology to detect timing failure conditions due
to a voltage attack, rapidly suppress incorrect results generation,
and regenerate potentially-tainted results.

Fault recovery for FPGAs has generally been focused on bit-
stream [18] and system-level [21] errors. Bit flips due to radiation
are addressed using hardware redundancy [8] at the cost of signifi-
cant overhead or partial FPGA reconfiguration [18]. At the system
level, computation checkpoints and rollback are used to recover
FPGA computation that has incurred errors [2, 21]. This approach
requires significant checkpoint storage. Due to resource constraints,
these approaches cannot be easily adapted tomaliciousmulti-tenant
computing activity in embedded and cloud environments.

Our approach successfully protects against voltage-induced tim-
ing faults at the functional block level. Input and output values of
functional blocks (e.g., datapath elements) are stored in shallow
shift registers until timing correctness can be assured. If an on-
FPGA voltage sensor detects a significant voltage drop, pipeline
data into the block is stalled and the potentially-faulty output data
is flushed. Once the attack has been cleared, the stored input values
are used to recalculate output values. Computation then proceeds
normally. In our system, a time-to-digital converter (TDC) based
voltage sensor is used. The amount of required buffering depends
on the response time following voltage droop detection.

Our protection approach has been validated using a Stratix 10
1SX280 FPGA on a commercial DE10-Pro board [24]. Characteriza-
tion and calibration was performed using a 512-bit adder operating
at 200 MHz. Information gained from this evaluation was used to
protect the 512-bit adder that serves as the primary computation
component in a 1,024-bit Rivest-Shamir-Adleman (RSA) encryp-
tion circuit [17]. The protection mechanism is carefully detailed
to examine latency penalties and resource overheads incurred in
providing fault protection against ring oscillator (RO) based power
wasters.

https://doi.org/10.1145/3583781.3590246
https://doi.org/10.1145/3583781.3590246
https://doi.org/10.1145/3583781.3590246

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Moini and Kansagara, et al.

2 BACKGROUND AND RELATEDWORK
FPGA multi-tenancy exists in many forms [9]. For example, FPGA
applications often use intellectual property (IP) cores and interfaces
(e.g., shells) provided by third-party vendors. Additionally, although
the ability of multiple independent customers to share a commercial
cloud FPGA is not currently supported, it is expected in the near
future [10]. Thus, run-time protection against multi-tenant voltage
attacks is an important concern [3].

Fault recovery in FPGAs has primarily focused on recovery from
single-bit upsets due to radiation. For example, triple modular re-
dundancy (TMR) triples the implementation of critical hardware
components and uses majority voting to select valid outputs [8].
Underlying configuration bit upsets can be addressed via partial
reconfiguration (also known as scrubbing [7]). These approaches
are ineffective in addressing faults caused by voltage attacks since
all replicated functional blocks with the same timing characteristics
may be affected and the configuration memory is generally left
unchanged.

Although voltage attack suppression has been addressed for both
synchronous [20] and asynchronous [16] power wasters, fault re-
covery in multi-tenent FPGAs remains a concern. Timing faults in
FPGAs can be addressed at both fine- and coarse-grained levels. A
Razor implementation [4] duplicates flip flops in critical IP blocks
in a effort to identify and correct timing faults. The clock signal for
shadow flip flops arrives slightly later than for the original flops,
providing for single signal recovery. Although suitable for processor
pipelines, this fine-grained approach becomes inefficient for even
modest-sized IP cores. Additionally, the custom variable-threshold
transistor pair circuitry used for detecting possible flip-flop meta-
stability is not feasible in FPGA implementations [22]. In contrast,
computation checkpointing and rollback provides a system-level
approach to FPGA fault recovery. Kilobytes of FPGA state are peri-
odically stored at time checkpoints [2, 21] as computation proceeds.
If computation errors are detected, state can be rolled back to the
nearest checkpoint. Checkpointing requires user design modifica-
tions to facilitate fast interruption and rollback [1] that can incur a
performance overhead.

Our approach fits between these fine- and coarse-grained tech-
niques. Critical functional block inputs are retained in shallow
buffers for a few cycles until core results can be assured to be unaf-
fected by a potential attack. As a result, recovery storage and control
circuitry is greatly simplified versus Razor and checkpointing ap-
proaches. Our approach has some similarities to microprocessor
micro rollback [23] that is applied to individual pipeline stage in-
puts. In our case, we focus only on critical functional blocks inputs
rather than on all pipeline stages. Another remediation approach
detects FPGA faults and rolls back computation tens of clock cycles
[15]. Our approach supports results regeneration in five or fewer
cycles.

Time-to-digital (TDC) sensors have been previously used to
detect the presence of power wasting circuits in an FPGA [6, 15, 27].
We use a TDC sensor to detect the activation of power wasters
and deploy fault recovery. The integration of both detection and
real-time, rapid recovery demonstrated in FPGA hardware forms
the core of our contribution.

detect
si+1 si+2si

safe
…

detect

si…
revert

si+1 si-k si-1si-2si+k1

Figure 1: Sequence of states illustrates detection and recovery
once the attack has been suppressed.

3 DETAILS OF THE RECOVERY SYSTEM
3.1 Overview
Our approach considers the protection of various types of func-
tional blocks with voltage sensors that can bemonitored in real time.
These digital system blocks are responsive to computation halt and
restart, as needed. Since the fast response times of the functional
blocks are critical to safety, the responsiveness of blocks can be for-
malized with temporal logic properties that express latency bounds
at the interface between sensor-based control and the block logic
which responds to attack detection. Design requirements include:

• On attack detection, a functional block must move to a safe
state within 𝑘 cycles; In this case, safe indicates that no
further potentially faulty computation will be performed,
not that the attack has been suppressed.

• On attack detection, a block must undo 𝑘 cycles of computa-
tion and revert to state from 𝑘 cycles prior;

• A block will remain in state 𝑠𝑖−𝑘 until the attack is resolved.
Then, the 𝑘 potentially corrupted computations must be
recalculated.

The requirements are depicted in Fig. 1. The value𝑘 will generally
be small, as shown in our examples. Blocks protected by these
requirements have competing objectives of performance (latency
and throughput), and robustness. For high assurance, the properties
could be verified at block level using a model checker.

3.2 Implementation
A high-level overview of our fault detection and recovery approach
is shown in Fig. 2. An input shift register of depth 𝑘 (bottom, left
in the figure) preserves input data so results can be recalculated if
timing errors caused by voltage attacks may have occurred. The
synchronous output from the victim circuit is stored in a shift
register of depth𝑘 (bottom, right in the figure). A value that emerges
from the shift register output is assumed to be valid. Values inside
the shift register may or may not be valid based on the TDC sensor
value. The output shift register effectively serves as a buffer for
results until they can be assured to be fault free. In the absence of
faults, the output from the Victim Circuit is delayed by 𝑘 cycles. As
we demonstrate in Section 4, 𝑘 is limited to two clock cycles in our
130 MHz RSA circuit, the amount of time needed to detect a voltage
attack and initiate fault suppression.

Our fault detection system uses a time-to-digital converter (TDC)
to identify sudden voltage drops. The 128-stage TDC contains a
chain of fast fixed-purpose FPGA elements typically used to perform
timing-critical arithmetic carry operations. The TDC computation
is started by the rising edge of a 200 MHz clock signal. A set of

Fault Recovery from Multi-Tenant FPGA Voltage Attacks GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

flip flops triggered by the same clock phase shifted 750 ps is used
to determine how far the the adder carry propagates through the
chain. The 128-bit value stored in the flip flops is interpreted as
a Hamming weight. Large voltage drops across the FPGA power
distribution network (PDN) result in a higher Hamming weight in
the TDC output. TDC element placement is constrained to provide
a predictable delay that is matched to the TDC clock frequency.
During a fault-inducing voltage drop, the TDC input clock pulse will
be delayed in traversing the carry chain, signaling a potential attack.
Prior to design deployment, the sensor is calibrated to determine
its maximum Hamming weight during normal design operation
(e.g., a threshold).

During the design operation, each TDCHammingweight reading
is compared to the threshold value (Controller in Figure 2). If a TDC
reading above the threshold value is detected, the Unsafe signal
is triggered, stalling further operation in the Victim Circuit until
voltage readings return to a safe level (e.g., the attack has been
suppressed). The input shift register is also stalled, preserving saved
inputs until attack suppression completion. An OutValid signal
indicates the presence of valid output. As soon as the Unsafe signal
is set, OutValid is negated indicating to the remainder of the user
design outside of the Victim Circuit that the protected circuit is no
longer consuming input nor generating outputs. Effectively, the
OutValid signal can be used as a backpressure signal to suppress
further input generation and as a flag to downstream logic to stop
output processing until the attack has been suppressed.

Attack suppression is managed by the controller. The inverse of
OutValid, the Recovery Mode signal, configures the multiplexer just
before the Victim Circuit to obtain input from the input shift register.
Once the attack has been cleared, the Unsafe signal is deactivated,
allowing the input shift register to propagate saved, valid inputs
from before the attack forward for output recalculation. The Recov-
ery Mode signal is deactivated 𝑘 cycles after the attack is suppressed
(Unsafe is deactivated.) At this point, all recalculated values are in
the output shift register and the reactivation of OutValid signals
that new inputs to the Victim Circuit can be accepted and outputs
from the output shift register are valid.

It should be noted that potentially faulty values in the output
shift register are never output. As soon as Unsafe is asserted, these
values become invalid and they are ignored.

4 ATTACK AND RECOVERY ANALYSIS
To assess our fault recovery approach, we evaluated two circuits
in the presence of voltage attacks, a 512-bit adder and a complete
1,024-bit RSA circuit that includes a 512-bit adder. Attack detection
and recovery circuitry were instrumented for both.

4.1 Characterization with a 512-bit adder
In an initial set of experiments involving just the adder, 15,000
single lookup-table ring oscillators (ROs) [20] were instantiated
and activated probabilistically for five clock cycles per activation
using an enable signal. Previous work [6] has shown that signif-
icant on-FPGA voltage drops can be achieved by toggling power
wasters on and off at a fixed rate. For this work, we assume that
the toggling occurs probabilistically, making it difficult to defend
against repeated attacks. During each clock cycle, the wasters are

1

0

TDC

Output

Unsafe

Input

128

128-bit Adder

Clock

Phase Shift

FA
COUTCIN

SOUT

FA
COUTCIN

SOUT

FA
COUTCIN

SOUT

…

T
D

C
 S

e
n

s
o

r
C

o
n

tro
lle

r

TDC > Threshold ?

Threshold

Counter
RST

Count < k ?

Recovery Mode

Output

OutValid

(Stall Shift Register)

Enable

Victim CLK

Victim Circuit

750 ps

Figure 2: Detailed view of the voltage sensing and recovery
system.

randomly enabled with a preset probability. The rate of activation
ranged from 0% of clock cycles (never activated) to 6% of cycles. In
other words, 0% indicates that the wasters are never enabled and
6% indicates a 6% probability that the wasters will be enabled in a
given clock cycle. Once enabled, the wasters remain active for five
clock cycles. Effectively, this approach induces significant voltage
drops at unpredictable times, providing an ideal scenario to test the
effectiveness of our recovery approach.

Each 512-bit vector used as input into the adder was randomly
selected from a fixed set of vectors by an input generator module.
Each vector stimulates an adder carry chain path of length between
80 and 440 stages. The power wasters were placed adjacent to the
victim and TDC in the FPGA. It has previously been shown that
power wasters located in an FPGA die can induce faults [19].

For the adder circuit, which operates at 200 MHz, the length
of the input and output shift registers is 𝑘 = 5. The sequence of
signal activations associated with attack detection, triggering of
Unsafe and Recovery Mode signals is shown in Fig. 3. The PW Enable
signal activates the power wasters. The effect of power waster
activation appears in the TDC-based sensor within one clock cycle.
The threshold was set at 70 following pre-experiment calibration.
Once the TDC value exceeds the threshold, the Unsafe signal is
triggered, the entire design, including the input shift register, is
stalled and the Recovery Mode signal is asserted. The Recovery Mode
signal switches the input of the victim circuit to the input values
stored in the input shift register although shifting is not enabled
until the attack is suppressed. The OutValid signal, which is the
negation of the RecoveryMode signal, is de-asserted to invalidate the
output values and indicate that circuitry surrounding the protected
circuit should stall. Once the Unsafe signal is deactivated (e.g., the

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Moini and Kansagara, et al.

0

1
L

og
ic

V
a
lu

e

PW enable

70

75

80

85

90

T
D

C
R

ea
d

in
g

TDC value

Threshold

0 2 4 6 8 10 12 14 16 18 20 22

Clock Cycle

0

1

L
og

ic
L

ev
el

Unsafe

Recovery Mode

Figure 3: Recovery signal sequencewhen an attack is detected
for a stand-alone adder with 𝑘=5.

100 150 200 250 300 350 400 450

Sensitized Path Length

0

5

10

15

20

25

30

N
u

m
o
f

G
en

er
at

ed
O

u
tp

u
ts

Completed Operations

Errors

Figure 4: Unprotected system, power wasters activated with
probability 3.5%.

attack is over), the Recovery Mode signal is de-asserted after 𝑘 clock
cycles to account for the delay in recomputing the potentially faulty
results using the input values stored in the shift register, and normal
operation continues. As annotated in Fig. 3, two clock cycles are
consumed from the activation of the power wasters until the Unsafe
signal is raised. Attacks that occur during the recovery period can
be tolerated since input values are buffered until their output is
guaranteed to be fault-free.

Fig. 4 illustrates the need for fault protection. To generate these
results, experiments using adder input vectors of different lengths
were performed. Ten experiments were performed for each vector
length. Experiments were performed both with and without power
waster activation. During normal operation (e.g., no power wasters
activated) the full carry chain in the 512-bit adder can be used with

100 150 200 250 300 350 400 450

Sensitized Path Length

0

5

10

15

20

25

30

N
u

m
of

G
en

er
at

ed
O

u
tp

u
ts

Completed Operations

Errors

Figure 5: Protected system, power wasters on during same
time span as computation in Fig. 4. Power wasters activated
with probability 3.5%

no faults at 200 MHz. However, as shown in Fig. 4, when power
wasters are enabled, faults are induced in the longer path lengths
(e.g., length 380 to 440). In the experiments that generated the figure,
the power wasters were enabled with a probability of 3.5%. The
orange line in the figure illustrates how many trials resulted in
faults. Fig. 5 illustrates the benefits and limitations of activating
fault recovery. The results for each path length indicate the number
of successfully completed operations in the same time period as each
point on the blue line in Fig. 4. Since recomputation is performed,
necessarily fewer operations are completed, although all of them
are fault-free.

Effectively, fault recovery reduces the overall throughput of the
circuit since some results need to be recalculated using buffered
input values to overcome potential faults when power wasters are
activated.

Throughput loss can be better quantified across a range of power
waster activation probabilities. As seen in Fig. 6, as wasters are
enabled at a rate approaching 6%, throughput is reduced by about
30% as the rate of output recalculation necessarily increases. In most
cases, attackers will be quickly identified and suppressed, limiting
attack frequency to a very low probability after the first activation.

Determining the shift register depth (𝑘) is important in assuring
fault-free operation. Faulty results generated due to the activation
of power wasters have a higher chance of escaping the design with
short shift register length. Fig. 7 shows the probability of error for
different shift register depth values when the power wasters are
activated with 3% probability for the 512-bit adder. Shift register
sizes larger than four result in error-free operation.

Relaxing the TDC threshold affects the error probability of the
results. A lower TDC threshold can give higher chance of recov-
ering from all faults. In a final experiment with the 512-bit adder,
we examine how relaxing the TDC threshold affects error proba-
bility and design throughput. Fig. 8 indicates that TDC threshold
values that are greater than 72 lead to improved throughput at the
cost of undetected faults. Since reliable operation is paramount,
the selection of a fault-free TDC threshold during calibration is
critical. Note that both the probability of error and throughput
increase non-linearly with threshold. Higher thresholds allow for
high throughput since fewer recalculations are performed. How-
ever, the likelihood of errors is much higher than the case when
the predetermined threshold is used.

Fault Recovery from Multi-Tenant FPGA Voltage Attacks GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Probability of PW Activation [5 cyc]

0.8

0.9

1.0

T
h

ro
u

gh
p

u
t

[R
es

u
lt

s/
C

y
cl

e]

Figure 6: Throughput versus probability of power waster
activation for a 512-bit adder with a TDC threshold of 70.

3 4 5 6 7 8 9 10 11
Shift Register Depth

0.0000

0.0002

0.0004

0.0006

P
ro

b
ab

il
it

y
of

E
rr

or

Figure 7: Probability of error as a function of the shift register
depth for the 512-bit adder

70 72 74 76 78 80 82 84 86
TDC Hamming Weight

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

P
ro

b
ab

il
it

y
of

er
ro

r

Prob of Error

Throughput

0.7

0.8

0.9

T
h

ro
u

gh
p

u
t[

re
su

lt
s/

cy
cl

e]

Figure 8: Fault probability and throughput versus TDC Ham-
ming weight threshold for a PW activation rate of 6%.

4.2 Fault Recovery of an RSA adder
To evaluate the functionality of our fault recovery approach, we
used the circuitry in Fig. 2 to protect the 512-bit adder in a 1,024-bit
RSA encryption circuit. The adder was the only subcircuit which
required protection since it was, by far, the most critical in terms
of timing. Faults induced by the power wasters were determined to
only affect the adder, not other RSA subcircuits.

The RSA circuit uses the Chinese Remainder Theorem (CRT) to
speed up the operation of RSA encryption [17]. The CRT imple-
mentation of RSA requires the availability of the two large random
numbers 𝑝 and 𝑞 which are used to generate the encryption key
pair. It allows for the division of the exponent size in the fast expo-
nentiation operation by two (512-bit exponentiation for 1024-bit
RSA) resulting in an acceleration of the RSA encryption operation
by a factor of four. A 512-bit adder is instantiated in the modular
multiplication unit of the RSA encryption circuit which is used for
fast exponentiation. A single run of RSA encryption requires ∼3.6

million clock cycles. About 26% of these clock cycles are spent on
∼968,000 512-bit addition operations, all of which are performed us-
ing a single 512-bit adder protected by our method. For this design,
the protected 512-bit adder operates at 130 MHz. Voltage attacks
induced by the 15,000 RO power wasters for this circuit can be iden-
tified within two 130 MHz clock cycles, leading to input and output
shift registers sizes of 𝑘 = 2, and a reaction time of 15 nanoseconds.
The smaller shift register size compared to the 512-bit adder in the
previous section is due to the differing circuit clock frequencies.
This effect leads to a shorter delay between the deactivation of the
power wasters and the end of recomputation. The long combina-
tional path of the adder and its high operational frequency assure
that it is the only circuit in the RSA affected by the voltage attack.

A threshold value for the TDC measurement was determined
to be 68 through calibration. The RSA encryption circuit, without
implementing the proposed fault recovery method, performs one
RSA encryption on an input message block every 57 milliseconds.
Adding the fault recovery circuitry introduced in Fig. 2 and setting
the shift register size as 𝑘 = 2, results in increasing the RSA circuit
delay to 72 ms, a 26.3% increase compared to the base design. If the
power wasters are enabled with the probability of 6%, the delay of
the RSA circuit with fault recovery increases to 80 milliseconds, a
40.3% latency increase compared to the base design, while ensuring
fault free operation in the presence of power wasters. This latency
penalty is due to the re-computation of adder results after detecting
the activation of the power waster.

The resource utilization of the RSA encryption circuit is shown
in Table 1. The proposed recovery method adds an overhead of 6.0%
to the look-up table (LUT) resources of the RSA circuit and 5.4% of
its flop-flop (register) resources, while successfully protecting the
design against faults injected by power wasters.

Table 1: resource utilization of the RSA encryption circuit
and fault recovery method. Overhead row shows the added
utilization overhead of the proposed fault recovery method

Circuit Name # LUTs (Avail. 933K) # Regs (Avail. 1.86M)
RSA Encryption 14825 (1.6%) 21277 (1.1%)
Recovery Circuit 900 (<1%) 1159 (<1%)

Overhead 6.0% 5.4%

4.3 Discussion
Our results lead to several observations and system optimizations,
as noted below:

• The TDC threshold value for both the RSA and adder cir-
cuits remained stable across a range of operating conditions.
However, to allow for flexibility, the TDC threshold value is
written into a register at the beginning of computation and
could be adjusted without requiring design recompilation if
aging or other environmental effects are present.

• Our attack detection and recovery approach can be used for a
range of feed-forward circuits, including multi-cycle circuits.
The depth of the shift registers 𝑘 indicates how many cycles
are needed for recovery.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Moini and Kansagara, et al.

• Multiple close-to-critical path subcircuits could be protected
by replicating the TDC sensor and protection circuit.

• Our focus on protecting critical path logic paths as opposed
to all the logic circuits on the FPGA allows for low resource
utilization overhead and no maximum frequency (𝐹𝑚𝑎𝑥) per-
formance overhead.

4.4 Comparison to Previous Work
Our approach has similarities to two recent attack protection and
recovery techniques. Attia and Betz [2] propose an FPGA check-
pointing approach that allows for state collection from flip flops,
digital signal processing (DSP) blocks, and block RAMs. Since inputs
to the latter two components can be difficult to retrieve following
a fault, shadow registers are provided to buffer input values exter-
nally. Although this approach is similar to our input shift register
technique, checkpointing collects large amounts of data for a much
delayed computation restart. Our approach stores a small amount
of input data (𝑘 ≤ 5) and restarts computation a few cycles after an
attack is cleared. Additionally, our method does not introduce a vic-
tim circuit timing penalty as opposed to an average checkpointing
𝐹𝑚𝑎𝑥 performance overhead of 5.5% [2].

Luo and Xu [15] propose a full FPGA fault recovery system
that uses a voltage sensor to detect a fault injection attack. Their
system has the ability to regenerate faulty results after an attack by
rereading input values from bulk on-chip storage. This technique
resulted in a 47 cycle delay for output regeneration for an AES
encryption circuit following a voltage attack. Our approach results
in overall faster recovery for feed-forward circuits.

5 CONCLUSION
Recent FPGA usage trends towards multi-tenancy have introduced
new security challenges due to the physical co-location of poten-
tial adversaries with their victims. This co-location increases the
potential for remote fault injection attacks via voltage manipula-
tion. In this paper, a new system for the automatic detection of
voltage-based fault injection attacks and the subsequent recovery
of potentially faulty computation results is presented. The system
can react to the activation of fault-injecting power wasters in 15
nanoseconds for an RSA encryption circuit. In all instances, the
victim is able to successfully recover from fault injection attacks
with zero output faults at the cost of tolerable latency penalties.
Future work will include the evaluation of countermeasures to dis-
able power waster circuits prior to fault injection, as well as the
assessment of the fault recovery approach in sophisticated circuits
with complex state machines. Our current approach is also directly
applicable to additional circuits with long critical paths such as
Diffie-Hellman key exchange and elliptic curve calculation.

REFERENCES
[1] Sameh Attia and Vaughn Betz. 2020. Feel free to interrupt: Safe task stopping

to enable FPGA checkpointing and context switching. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 13, 1 (2020), 1–27.

[2] Sameh Attia and Vaughn Betz. 2020. StateReveal: Enabling Checkpointing
of FPGA Designs with Buried State. In International Conference on Field Pro-
grammable Technology. 206–214.

[3] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif
Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam
Leeser, et al. 2022. The future of FPGA acceleration in datacenters and the cloud.

ACM Transactions on Reconfigurable Systems and Technology (TRETS) 15, 3 (2022),
1–42.

[4] Dan Ernst et al. 2003. Razor: A low-power pipeline based on circuit-level timing
speculation. In IEEE/ACM International Symposium on Microarchitecture. 7–18.

[5] Ognjen Glamočanin, Louis Coulon, Francesco Regazzoni, and Mirjana Stojilović.
2020. Are cloud FPGAs really vulnerable to power analysis attacks?. In Design,
Automation & Test in Europe Conference & Exhibition. 1007–1010.

[6] Dennis RE Gnad, Fabian Oboril, and Mehdi B Tahoori. 2017. Voltage drop-based
fault attacks on FPGAs using valid bitstreams. In International Conference on Field
Programmable Logic and Applications. 1–7.

[7] Jonathan Heiner, Benjamin Sellers, Michael Wirthlin, and Jeff Kalb. 2009. FPGA
partial reconfiguration via configuration scrubbing. In International Conference
on Field Programmable Logic and Applications. 99–104.

[8] Adam Jacobs, Grzegorz Cieslewski, Alan George, Ann Gordon-Ross, and Herman
Lam. 2012. Reconfigurable Fault Tolerance: A Comprehensive Framework for
Reliable and Adaptive FPGA-Based Space Computing. ACM Transactions on
Embedded Computing Systems 5, 4 (Dec. 2012), 21:1–21:31.

[9] Chenglu Jin, Vasudev Gohil, Ramesh Karri, and Jeyavijayan Rajendran. 2020.
Security of Cloud FPGAs: A Survey. arxiv arXiv:2005.04867 (2020). http://arxiv.
org/abs/2005.04867

[10] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J Rossbach. 2018. Sharing, Protection, and Compatibility for
Reconfigurable Fabric with AmorphOS. In USENIX Symposium on Operating
Systems Design and Implementation. 107–127.

[11] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. 2018. FPGAhammer:
Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2018, 3 (Aug.
2018), 44–68.

[12] Ricardo Lent. 2021. Towards Cognitive Networking using FPGA-Based Accelera-
tion. IEEE Journal of Radio Frequency Identification 5 (April 2021), 222 – 231.

[13] Xiang Li, Russell Tessier, and Daniel Holcomb. 2022. Precise Fault Injection to En-
able DFIA for Attacking AES in Remote FPGAs. In IEEE International Symposium
on Field-Programmable Custom Computing Machines. IEEE, 1–5.

[14] Yukui Luo, Cheng Gongye, Yunsi Fei, and Xiaolin Xu. 2021. Deepstrike: Remotely-
guided fault injection attacks on DNN accelerator in cloud FPGA. In ACM/IEEE
Design Automation Conference. IEEE, 295–300.

[15] Yukui Luo and Xiaolin Xu. 2020. A Quantitative Defense Framework against
Power Attacks on Multi-tenant FPGA. In ACM/IEEE International Conference on
Computer Aided Design. 1–9.

[16] Hassan Nassar, Hanna AlZughbi, Dennis R. E. Gnad, Lars Bauer, Mehdi B. Tahoori,
and Jörg Henkel. 2021. LoopBreaker: Disabling Interconnects to Mitigate Voltage-
Based Attacks in Multi-Tenant FPGAs. In ACM/IEEE International Conference on
Computer Aided Design. 1–9.

[17] Christof Paar and Jan Pelzl. 2009. Understanding Cryptography: a Textbook
for Students and Practitioners. Number 7. Springer Science & Business Media,
Chapter 7, 173–204.

[18] Matthew Parris, Carthik Sharma, and Ronald Demara. 2011. Progress in Au-
tonomous Fault Recovery of Field Programmable Gate Arrays. Comput. Surveys
43, 4 (Oct. 2011), 31:1–31:30.

[19] George Provelengios, Daniel Holcomb, and Russell Tessier. 2020. Power dis-
tribution attacks in multitenant FPGAs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 28, 12 (2020), 2685–2698.

[20] George Provelengios, Daniel Holcomb, and Russell Tessier. 2021. Mitigating
Voltage Attacks in Multi-Tenant FPGAs. ACM Transactions on Reconfigurable
Systems and Technology (TRETS) 14, 12 (June 2021).

[21] Andrew Schmidt, Bin Huang, Ron Sass, and Matthew French. 2011. Check-
point/Restart and Beyond: Resilient High Performance Computing with FPGAs.
In IEEE International Symposium on Field-Programmable Custom Computing Ma-
chines. 162–169.

[22] Edward Stott, Joshua M Levine, Peter YK Cheung, and Nachiket Kapre. 2014.
Timing fault detection in FPGA-based circuits. In IEEE International Symposium
on Field-Programmable Custom Computing Machines. 96–99.

[23] Yuval Tamir, Marc Tremblay, and David A. Rennels. 1988. The Implementation
and Application of Micro Rollback in Fault-Tolerant VLSI Systems. In Fault-
Tolerant Computing Symposium. 234–239.

[24] Terasic Technologies 2019. DE10-Pro User’s Manual. Terasic Technologies.
[25] Shulin Zeng, Guohao Dai, Kai Zhong, Hanbo Sun, Guangjun Ge, Kaiyuan Guo,

Yu Wang, and Huazhong Yang. 2020. Enabling efficient and flexible FPGA vir-
tualization for deep learning in the cloud. In IEEE International Symposium on
Field-Programmable Custom Computing Machines. 102–110.

[26] Bingyi Zhang, Rajgopal Kannan, and Viktor Prasanna. 2021. BoostGCN: A Frame-
work for Optimizing GCN Inference on FPGA. In IEEE International Symposium
on Field-Programmable Custom Computing Machines. 29–39.

[27] Kenneth M Zick, Meeta Srivastav, Wei Zhang, and Matthew French. 2013. Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs. InACM/SIGDA
International Symposium on Field Programmable Gate Arrays. 101–104.

http://arxiv.org/abs/2005.04867
http://arxiv.org/abs/2005.04867

	Abstract
	1 Introduction
	2 Background and Related work
	3 Details of the recovery system
	3.1 Overview
	3.2 Implementation

	4 Attack and recovery analysis
	4.1 Characterization with a 512-bit adder
	4.2 Fault Recovery of an RSA adder
	4.3 Discussion
	4.4 Comparison to Previous Work

	5 Conclusion
	References

