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Abstract— In many current SoCs, the architectural interface to on-

chip monitors is ad hoc and inefficient.  In this paper, a new 

architectural approach which advocates the use of a separate low-

overhead subsystem for monitors is described. A key aspect of this 

approach is an on-chip interconnect specifically designed for 

monitor data with different priority levels. The efficiency of our 

monitor interconnect is assessed for a multicore system using both 

an interconnect and a system-level simulator. Collected monitor 

information is used by a dedicated processor to control the 

frequency and voltage of individual multicore processors. 

Experimental results show that the new low-overhead subsystem 

facilitates employment of thermal and delay-aware dynamic voltage 

and frequency scaling. 

I. INTRODUCTION  

Contemporary single-chip systems typically exhibit 
stringent processing, communication, and power constraints 
that must be carefully addressed during system design. 
Performance issues are particularly acute for components 
which must provide real-time service and high throughput in 
the presence of uncertainties such as temperature, workload, 
wear-out, and supply noise. Recent high-end processors from 
Intel (Montecito), AMD (Opteron) and IBM (Cell) use 
extensive on-chip monitors for run-time estimates of 
temperature, power, clock jitter, supply noise and performance.  
However, a unified approach to the interconnection of monitors 
and use of monitor information has not yet been developed. 

Specific uses of monitors in terms of system critical soft-
error failures, wear-out detection and security issues require 
fast connections on a global scale.  These connections can be 
supported by a dedicated interconnect that is coupled to the 
main multicore architecture. In order to maximize monitor 
effectiveness, monitor data often needs to be collated from 
across the chip and evaluated in real time as an SoC operates. 
This data can then be used to alter SoC operation in response to 
environmental conditions.  

We view the integration of monitors and the collection and 
processing of monitor information as an important unaddressed 
SoC design issue. As an initial step in the development of a 
complete monitor subsystem for SoCs, a low-overhead on-chip 
interconnect, which is optimized for monitors, has been 
designed. Although simplified compared to other on-chip 
interconnect approaches, our new interconnect technique 
supports irregular routing topologies, priority based data 

transfer and customized monitor interfacing. Collected monitor 
data values are manipulated by one or more processors and the 
results are used to control SoC run-time operation. 

The overhead and performance of the monitor network-on-
chip (MNoC) interconnect for an eight core multiprocessor has 
been measured via hardware synthesis, simulation, and 
multicore architectural simulation. For an eight core system, 
the area and power overhead for the interconnection of 192 
thermal monitors is found to be less than 0.5%. Architectural 
simulations show that multicore performance can be 
significantly improved when MNoC-collected thermal and 
delay data is used to perform dynamic frequency and voltage 
scaling. 

II. MONITORS AND RELATED INTERCONNECTS 

Several recent chips have explored the benefits of 
monitoring based control. In a specific example of monitor data 
use, 90-nm Itanium processors use a series of voltage and 
thermal sensors in conjunction with a controller. This Foxton 
technology [1] allows for dynamic voltage and frequency 
scaling based on sampled monitor data. A similar approach for 
a Hitachi multiprocessor [2] uses thermal and performance 
information to control voltage and bandwidth allocation. All of 
these systems assume small numbers of cores and monitors 
connected in an ad hoc fashion.  

A relatively small number of SoC projects have examined 
the integration of multiple sensors and associated control onto a 
single SoC substrate. Velusamy et al. [3] describe the 
interconnection of an array of thermal monitors to a PowerPC 
with a CoreConnect on-board peripheral bus. Monitor 
information is then used to control system clock frequency. 
Although effective, this bus-based approach is not scalable 
beyond a small number of cores [4] and uses far more 
resources than necessary to implement communication and 
control. The IBM Power6 architecture [5] interconnects 
multiple sensors and actuators via a high-speed serial bus. The 
described interconnect primarily serves as an external interface 
to voltage and thermal control via an I2C bus for a modest 
number of cores. Our approach also builds on ideas previously 
used for SoC debug and test, such as JTAG boundary scan, 
however, debug subsystems do not use collected information to 
influence SoC run-time operation. 



Numerous network-on-chip architectures [6] have been 
proposed for SoCs over the past decade. These interconnects 
generally require a series of router circuits organized in a mesh-
like topology. In contrast to MNoC, most NoC routers are 
optimized for routing bandwidth and consume considerable 
chip resources. Often, individual NoC routers require tens of 
thousands of transistors [6], include datapath widths of 32 to 
256 bits, and buffer tens to hundreds of data values. In contrast, 
our approach attempts to minimize resource count to exactly 
the bandwidth and buffering required for SoC monitoring. 

III. MONITOR NETWORK ON CHIP 

Our monitoring subsystem augments conventional system-
on-a-chip hardware with additional components for monitoring, 
verification, and response. Multiple monitors are added to each 
major component of the SoC. The monitors are linked by a 
monitor network on-chip (MNoC), a heterogeneous 
communication substrate, as seen in Fig. 1. In general, the 
spread among the required bandwidths of different monitors is 
large. Hence, MNoC supports low-overhead routers and 
localized connections like buses and multiplexers. High 
bandwidth monitors are directly connected to routers, while the 
lower bandwidth monitors are connected via multiplexers or a 
bus that connects to the network as shown in the Fig 1.   The 
MNoC is interfaced to a monitor executive processor (MEP). 
The MEP provides a software layer to implement new 
collaborative monitoring algorithms. MNoC has been designed 
to incur minimal area and energy overhead compared to a 
general purpose on- chip interconnect by optimizing its width, 
access control, arbitration, flexibility, and bandwidth to the 
monitor data collection task. Specific interconnect challenges 
include the development of monitor-network and network-
MEP interfaces to accommodate different monitor types and 
the development of interconnection components for irregular 
topologies and mixed-priority traffic.  

On-chip monitors are typically distributed in an 
unorganized fashion, necessitating an irregular interconnect 
topology. An irregular mesh topology of routers is needed for 
MNoC, whose placement is dictated by the distribution of 
monitors. Two types of monitors are supported by MNoC: (1) 

data pull monitors that put data onto the network at regular 
intervals and (2) data push monitors that report data 
occasionally. For example, thermal monitors that report 
temperature periodically can be classified as data pull, while 
error monitors that report data only in the event of an error are 
data push. For data pull monitors, data requests are forwarded 
to the monitors by the associated router interfaces.  Interrupts 
are used to support unexpected events detected at data push 
monitors. MNoC traffic is entirely monitor data that is 
communicated to the MEP and no monitor-monitor 
communication is required. Monitor data in the network is 
classified into two different priority levels. Messages to the 
MEP from data push monitors are usually critical in nature and 
are hence tagged with a higher priority.  Messages from data 
pull monitors are regular priority unless there is an emergency 
event at the monitor. High priority data is routed through the 
network using dedicated resources in the routers. 

Monitor information is transported on the network as 
packets of data. A network interface appends monitor 
information with routing information and converts each packet 
into flits. The packetization module also appends the source 
monitor’s address which is required by the MEP to identify the 
origin of the monitor data. A priority bit is also included in the 
packet to enable the routers to differentiate critical data from 
the regular ones. MNoC flit width is chosen to be the same as 
the width of the physical channel. MNoC implements 
wormhole switching which ensures low latency while 
consuming a minimal amount of buffer space. 

The most commonly used adaptive routing protocols 
involve expensive router implementations [4] and are suitable 
for very high and unpredictable traffic rates. Instead, for low-
overhead MNoC, we use a static distributed routing protocol 
which involves the use of routing tables at individual routers. 
Each routing table is a lookup table that can be indexed using 
the destination address. For every possible destination, the table 
contains information about the output port that the packet needs 
to be routed through. The irregular placement of monitors 
results in an irregular mesh topology leading to concerns 
regarding deadlock. A fault tolerant mesh routing algorithm [7] 
is used to generate deadlock free paths that are stored in the 
routing tables. Since no monitor-to-monitor communication is 
assumed, the overhead incurred with routing tables is minimal. 
This non-adaptive routing protocol allows for a very 
lightweight router implementation because the overhead for 
adaptive route evaluation is eliminated.  Errors in MNoC 
transmission are handled through a combination of per-packet 
CRC values and MEP-based requests for retransmission. 

Monitors in the system can either have dedicated interfaces 
to network routers or can interface to the routers through shared 
buses or multiplexers (Fig. 1). The interfaces need to be generic 
and should allow for the interfacing of any kind of monitor to 
the network. The control logic supports both data push and data 
pull monitors. Also, synchronization issues that result out of 
different monitor and network frequencies need to be 
addressed.  In our architecture, the monitors and the network 
router connect through a master-slave interface, the router end 
being the master and the monitor, a slave. The architecture of 
the monitor-network interface is shown in Fig 2. 
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Figure 1: Detailed view of MNOC for multiple cores 

 



The interface control logic is built to read data at a pre-
determined rate from the connected monitors i.e. there is a 
control state machine at the router interface that generates read 
addresses for each of the connected data pull monitors 
according to a pre-set schedule. Any data push type of monitor 
connected at the interface has a dedicated interrupt line 
connected to the router interface and has a capability to 
generate an interrupt indicating that it needs to be read. In the 
event of an interrupt, the controller breaks away from the 
original sequence to generate a read address for the interrupting 
monitor. Any data read from an interrupting monitor is tagged 
as high priority data. Once the monitor data is read, the 
controller appends it with information about the originating 
monitor and priority value. The data is then written into the 
synchronizing FIFO which is read by the packetization module. 
The packetization module converts the data into flits, forwards 
them to the appropriate channel in the network (regular or 
priority). 

The packetization module also appends monitor data with a 
time stamp from an embedded timer which identifies the time 
at which data was sampled. The maximum value of the timer is 
chosen such that any packet injected in the network reaches the 
MEP before the timer resets twice. This ensures that the MEP 
accurately identifies the time frame in which the data was 
sampled.  For example, if a monitor generated a temperature 
value of 20 degrees at time t = 1ms and the data is received at 
the MEP at time t = 1.5ms, the MEP interprets the current 
temperature value to be 20.03 degrees using an average 
temperature gradient of 0.06 deg/ms [1]. A single timer is 
shared across several interfaces. 

The MEP and the network router connect through a master-
slave interface, the MEP being the master and the router, a 
slave. Monitor data received from either of the channels in the 
router is read by a de-packetization module at the network 
router-MEP interface. A synchronizing FIFO contains separate 
queues for regular and priority data. The MEP software reads 
information from the FIFOs at regular intervals with 
consideration given to priority data. The FIFO addresses 
synchronization issues and is sufficiently sized to ensure that 
no data is dropped. Once data is received, the MEP uses the 
source information to determine the type and location of the 
monitor that sent out the data and takes necessary action by 
affecting system parameters.  

The low bandwidth required by most monitors is exploited 
to minimize MNoC router area. Unlike typical NoC routers, 
MNoC routers provide sufficient bandwidth and latency with 
small eight bit data widths and minimal (e.g. 4) buffer sizes. 
Each router is further optimized by removing unused data ports 
as a result of the irregular mesh topology. The MNoC router is 
built to be highly parameterizable. The optimal buffer sizes and 
widths can be determined based on the required latency and 
bandwidth for different monitoring systems. The choice of 
these parameters is ultimately a trade-off between performance 
(in terms of bandwidth and latency) and overhead (in terms of 
area and power).  

For MNoC, input buffering is used instead of output 
buffering because of the low overhead that input buffering 
offers [8]. Head-of-line blocking, a possible drawback of input 
buffering, is insignificant in the case of MNoC because most 
MNoC traffic is directed towards the MEP.  

Every input channel in the router is multiplexed into two 
separate virtual channels, a priority channel and the regular 
channel. The priority channel is used to exclusively transfer 
critical monitor data. A packet that is injected into a network 
with a high priority (priority field in the packet header is set to 
1) enters the priority channel and travels in the same channel 
until it reaches the destination. This channel is reserved for 
critical data and is not used for regular data transfer. Packets 
remain in the channel determined at packet injection.  

MNoC employs a credit based flow control to regulate data 
traffic and to avoid packet dropping. To facilitate this, every 
router has buffer slot counters that keep track of the number of 
empty buffer slots in the regular and the priority channels on 
the adjacent routers. The availability of a buffer space is 
communicated by adjacent routers using credit messages. Flits 
that enter the MNoC router are buffered in the appropriate 
input channel and subsequently go through three router pipeline 
stages before reaching the next hop: routing table look up, 
switch arbitration, and switch traversal. Once switch access is 
granted by switch arbitration, the flit goes through the final 
pipeline stage where it traverses the crossbar and enters the 
same channel (regular or priority) in the next router. The 
priority channel is given preference in the entire switch 
arbitration stage to ensure lowest possible latency on that 
channel. Among requests from the regular channel, the arbiter 
grants access in a random fashion. 

IV. EXPERIMENTAL APPROACH 

   In order to validate the MNoC approach and evaluate 
trade-offs for various design constraints such as area, 
bandwidth and latency, a series of synthesis and simulation 
experiments have been performed. The Popnet interconnect 
simulator [9] has been significantly modified to estimate 
bandwidth and latency values for the heterogeneous MNoC 
interconnect. The router pipeline and the routing protocol were 
modified along with additional support for expanded interfaces. 
The simulator, in modified form, allows for a complete 
evaluation of various MNoC topologies and components. 

To estimate the overhead of our MNoC approach, we 
developed a synthesizable hardware model of the MNoC router 
and MEP. The MNoC hardware model is parameterizable and 

Figure 2: Monitor –bus – network interface 



allows for evaluation of area for different router widths and 
buffer sizes. The hardware model, which operates at 500 MHz, 
was synthesized using Synopsys Design Compiler using a 
90nm standard cell library [10]. Architectural simulations were 
performed using the SESC architectural simulator [11] to 
quantify the benefits of employing our monitor subsystem at a 
system level.  

In an initial experiment, 24 thermal monitors on each of the 
8 processor cores report temperature values from various 
locations on the chip. The floorplan of each processor core 
used here for thermal modeling is based on the AMD Athlon 
64 processor [12]. The layout of the eight core system is shown 

in Fig 3. There are two MNoC routers per core, each of which 
collects thermal data from 12 thermal monitors using a 
multiplexer. Thus, 192 thermal monitors from eight cores 
connect to 16 routers through 16 multiplexers. The MEP is 
attached to a dedicated router (Fig. 3) at a location central to 
the routers. The resultant topology is an irregular mesh.  A 
dummy router adjacent to the MEP was added to facilitate 
routing. With this 18 router setup, deadlock-free routing [7] 
was used to generate paths from the routers to the MEP. A 
multiplexer interface was used to make connections between 
the monitors and the routers. Thermal monitors for DFS [13] 
can be classified as low bandwidth data pull monitors. Our 
interconnect simulator was used to evaluate the latency of this 
network for different network parameters.  

Fig 4 shows a plot of network latency versus injection rates 
for various buffer sizes for regular (non-priority) traffic. A total 
of 95% of total traffic is assumed to be regular traffic. The 
value on the X axis, cycles between injections, indicates the 
number of clock cycles between two sampling points for the 
thermal monitors. Network latency (the Y axis) indicates the 
average time required (in clock cycles) for data to travel from a 
monitor to the MEP. Fig 4 indicates a significant dependence 
for the regular channel on the input buffer size for sizes less 
than 4. For buffer sizes greater than and equal to 4, limited 
latency reduction is achieved by increasing buffer size. For 
longer delays between injections, the regular channel latency 
becomes insensitive to buffer sizes. We simulated 5% of the 
total traffic to be priority traffic to assess the latency on the 
priority channel. For all cycles per injection rates, network 
latencies between 16 and 21 cycles were found. The result 
indicates that the latency on this channel is more or less 
constant and is ideally suited for low latency critical data 
transfer. There is practically no impact of buffer sizes on the 
latency. Fig 5 shows a plot of network latency versus injection 
rate, for different flit widths. For higher sampling rates, the flit 
width that gives ideal latency increases with increasing cycles 
between injections.  
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Figure 3:  Monitor network on chip layout for thermal monitors on a 8 core processor 

 

 

Regular channel latencies for different buffer sizes and 

flit width = 12

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200

Cycles between injection

N
e

tw
o

rk
 l
a

te
n

c
y

 

(C
lk

 c
y

c
le

s
)

2

3

4

6

8

12

16

100

Buffer 

Buffer size

 
 

Figure 4: Regular channel latencies for different buffer sizes 
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Figure 5: Regular channel latencies for different flit widths 
 



Overall, it can be inferred from the results that for higher 
cycles between injection (lower sampling rates and hence 
lower bandwidths), the latency values are mostly insensitive to 
network parameters like buffer size and flit width. At such low 
sampling rates, close to ideal network latency can be achieved 
with minimal network resources.  

Monitors with higher sampling rates have latencies that are 
highly network dependent. These monitors usually dictate the 
choice of network parameters. Table 1 shows area results for 
the 18 router thermal MNoC system estimated at a 90nm 
technology node.  

In a second experiment, we demonstrate a monitor 
subsystem that satisfies system design constraints while 
providing a performance benefit. We use SESC to simulate 
eight processors and one central MEP, as shown in Fig 3. The 
eight cores each have a private L1 and L2 cache. In comparison 
to a commercial 8 core processor [14], the area overhead of 
MNoC in this configuration is 0.819/378 mm

2
 = 0.21%.The 

power model that is used by SESC for processors is based on 
Wattch. The cache power model is based on CACTI and the 
temperature model for both (called SESCSpot) is based on 
HotSpot [13]. 

SESCSpot calculates the temperature of processor sub-
blocks based on the power trace of the architecture in a post 
processing fashion. For the DFS implementation we integrated 
SESCSpot into the core of the SESC simulator to obtain the 
temperature readings dynamically. This enabled the MEP to 
sample the temperature readings at a pre-determined interval 
and execute the DFS algorithm. In this experiment, the 192 
thermal monitors on the 8 core chip were sampled every 2ms to 
provide a resolution of 0.1 degC. This number was determined 
assuming a maximum temporal temperature gradient of 
60degC/sec [1]. To meet this sampling requirement, an MNoC 
configuration with flit size of 12 bits and an input buffer size of 
4 was used. The resulting MNoC area and power, as obtained 
from Table 1, are 0.819 mm

2
 and 244 mW, respectively. The 

temperature reported by the monitors is collected by MNoC 
and transported to the MEP which uses the data for dynamic 
frequency scaling. 

   Dynamic frequency scaling of a processor system 
improves system performance by operating cores within power 
dissipation and temperature limits. Two trials were performed 
on the 8 core system to demonstrate the benefits of DFS on a 
benchmark application. A floating point Whetstone benchmark 
[15] is used to conduct the experiments for a total of 2 billion 
instructions. 

In one scenario, the system was operated at a constant 
frequency of 1GHz to meet pre-defined power and temperature 
limits and the run time consumed was noted. In this case, since 
the predefined temperature threshold is not exceeded, it was not 
necessary to employ MNoC. In a second scenario, MNoC is 
employed to transport monitor data which is used by a MEP to 
perform DFS. In this case, the operating frequency of the 
system is toggled between 2 GHz and a lower frequency to 
ensure that the specified power and temperature limits are not 
violated. The run time was again noted and the resulting 
performance improvement of 18% for an 8 core system was 
calculated. To evaluate how the performance benefit using 

MNoC scales with the number of cores, experiments were also 
performed for 4, 12 and 16 core systems.  The advantage of 
employing MNoC is consistent as the number of cores is 
increased, as shown in Table 2. 

In a third experiment, the system-level benefits of our 
monitor subsystem on delay-based voltage control were 
determined. Real-time delay monitoring (using critical path 
delay monitors) and control techniques were used to offset 
voltage droops at system run time. The monitoring setup 
involves 8 delay monitors per core [5] which report 12 bits of 
delay data. Monitor data is transported to the MEP through a 9 
router MNoC. The delay monitors require high network 
bandwidth since voltage values can change quickly. In 
response to a voltage droop event, the MEP increases the 
voltage of the core to avoid a low voltage condition. 

In contrast, in a non-MNoC system the supply voltage is 

constant and is set conservatively to a value that accounts for 

the maximum voltage droop. The experiment was conducted 

for 4, 8 and 16 processor cores (9 routers in all cases). Fig 6 

shows the percentage of power savings that MNoC provides in 

comparison to a non-MNoC system. The cycles between 

injections, on the X axis, indicates the number of clock cycles 

between two sampling points for the delay monitors. As seen 

from the results, all three configurations result in power 

savings versus the non MNoC case for specific values of 

TABLE 1: MNOC AREA RESULTS 

Flit 

width 

Buffer 

size 

Total MNoC 

area at 90 

nm  (mm2) 

Flit 

width 

Buffer 

size 

Total MNoC 

area at 90 

nm (mm2) 

12 2 0.700 12 8 1.084 

14 2 0.765 14 8 1.201 

16 2 0.825 16 8 1.314 

18 2 0.890 18 8 1.420 

20 2 0.950 20 8 1.530 

12 4 0.819 12 16 1.571 

14 4 0.894 14 16 1.751 

16 4 0.970 16 16 1.919 

18 4 1.043 18 16 2.094 

20 4 1.116 20 16 2.262 

TABLE 2: RUNTIMES FOR MNOC AND NON-MNOC CASES 

Cores Runtime for 

Freq = 1 GHz 

(sec) 

Runtime for 

Freq = 2 GHz 

(sec) 

Performance 

benefit due to 

MNoC 

4 3.36 2.42 28% 

8 2.75 2.25 18% 

12 2.27 1.52 33% 

16 1.75 1.35 23% 
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Figure 6: Power savings in multi-core processors using MNoC 

sampling rates. As the number of cores increases, the number 

of monitors increases, requiring more bandwidth from the 

network. This trend motivates the need for a scalable medium 

like MNoC versus buses or serial links. Fig 6 shows that 

certain sampling intervals yield a negative result. In these 

cases, the sampling or the network delays are so high that the 

system gains no benefit from run time monitoring. These 

combinations of sampling intervals and MNoC delays can be 

determined during system design. 

Finally, using the above delay monitoring setup, trials were 

conducted to assess how the latency of MNoC scales as the 

number of cores in the system increases. As seen in Fig 7, 

MNoC delay for 128 cores at a given bandwidth is much 

higher than the delay for the 32 core configuration. But the 

delay values of the 128 core system with 4 times the network 

bandwidth are comparable to those of the 32 core 

configuration. This indicates that the network can be scaled to 

larger number of cores by scaling the network bandwidth, 

retaining similar network latencies. 

V. CONCLUSION 

This work presents a scalable and lightweight approach for 

monitor data collection and processing. System level 

performance benefits are obtained by using this monitor data 

to scale processor frequency and voltage values. Experiments 

show that the interconnect can be sized on a per-application 

basis to obtain substantial performance benefits. An area 

overhead of 0.21% was achieved for the monitor interconnect 

when applied to an eight core system. In the future, we plan to 

evaluate the collaborative use of data from multiple monitors 

in controlling multicore behavior. Automating MNoC creation 

is also a promising area that needs to be addressed.  
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Figure 7: MNoC performance with increasing number of cores 


