
A Monitor Interconnect and Support Subsystem for

Multicore Processors

Sailaja Madduri, Ramakrishna Vadlamani, Wayne Burleson and Russell Tessier

Department of Electrical and Computer Engineering

University of Massachusetts

Amherst, MA, United States

Abstract— In many current SoCs, the architectural interface to on-

chip monitors is ad hoc and inefficient. In this paper, a new

architectural approach which advocates the use of a separate low-

overhead subsystem for monitors is described. A key aspect of this

approach is an on-chip interconnect specifically designed for

monitor data with different priority levels. The efficiency of our

monitor interconnect is assessed for a multicore system using both

an interconnect and a system-level simulator. Collected monitor

information is used by a dedicated processor to control the

frequency and voltage of individual multicore processors.

Experimental results show that the new low-overhead subsystem

facilitates employment of thermal and delay-aware dynamic voltage

and frequency scaling.

I. INTRODUCTION

Contemporary single-chip systems typically exhibit
stringent processing, communication, and power constraints
that must be carefully addressed during system design.
Performance issues are particularly acute for components
which must provide real-time service and high throughput in
the presence of uncertainties such as temperature, workload,
wear-out, and supply noise. Recent high-end processors from
Intel (Montecito), AMD (Opteron) and IBM (Cell) use
extensive on-chip monitors for run-time estimates of
temperature, power, clock jitter, supply noise and performance.
However, a unified approach to the interconnection of monitors
and use of monitor information has not yet been developed.

Specific uses of monitors in terms of system critical soft-
error failures, wear-out detection and security issues require
fast connections on a global scale. These connections can be
supported by a dedicated interconnect that is coupled to the
main multicore architecture. In order to maximize monitor
effectiveness, monitor data often needs to be collated from
across the chip and evaluated in real time as an SoC operates.
This data can then be used to alter SoC operation in response to
environmental conditions.

We view the integration of monitors and the collection and
processing of monitor information as an important unaddressed
SoC design issue. As an initial step in the development of a
complete monitor subsystem for SoCs, a low-overhead on-chip
interconnect, which is optimized for monitors, has been
designed. Although simplified compared to other on-chip
interconnect approaches, our new interconnect technique
supports irregular routing topologies, priority based data

transfer and customized monitor interfacing. Collected monitor
data values are manipulated by one or more processors and the
results are used to control SoC run-time operation.

The overhead and performance of the monitor network-on-
chip (MNoC) interconnect for an eight core multiprocessor has
been measured via hardware synthesis, simulation, and
multicore architectural simulation. For an eight core system,
the area and power overhead for the interconnection of 192
thermal monitors is found to be less than 0.5%. Architectural
simulations show that multicore performance can be
significantly improved when MNoC-collected thermal and
delay data is used to perform dynamic frequency and voltage
scaling.

II. MONITORS AND RELATED INTERCONNECTS

Several recent chips have explored the benefits of
monitoring based control. In a specific example of monitor data
use, 90-nm Itanium processors use a series of voltage and
thermal sensors in conjunction with a controller. This Foxton
technology [1] allows for dynamic voltage and frequency
scaling based on sampled monitor data. A similar approach for
a Hitachi multiprocessor [2] uses thermal and performance
information to control voltage and bandwidth allocation. All of
these systems assume small numbers of cores and monitors
connected in an ad hoc fashion.

A relatively small number of SoC projects have examined
the integration of multiple sensors and associated control onto a
single SoC substrate. Velusamy et al. [3] describe the
interconnection of an array of thermal monitors to a PowerPC
with a CoreConnect on-board peripheral bus. Monitor
information is then used to control system clock frequency.
Although effective, this bus-based approach is not scalable
beyond a small number of cores [4] and uses far more
resources than necessary to implement communication and
control. The IBM Power6 architecture [5] interconnects
multiple sensors and actuators via a high-speed serial bus. The
described interconnect primarily serves as an external interface
to voltage and thermal control via an I2C bus for a modest
number of cores. Our approach also builds on ideas previously
used for SoC debug and test, such as JTAG boundary scan,
however, debug subsystems do not use collected information to
influence SoC run-time operation.

Numerous network-on-chip architectures [6] have been
proposed for SoCs over the past decade. These interconnects
generally require a series of router circuits organized in a mesh-
like topology. In contrast to MNoC, most NoC routers are
optimized for routing bandwidth and consume considerable
chip resources. Often, individual NoC routers require tens of
thousands of transistors [6], include datapath widths of 32 to
256 bits, and buffer tens to hundreds of data values. In contrast,
our approach attempts to minimize resource count to exactly
the bandwidth and buffering required for SoC monitoring.

III. MONITOR NETWORK ON CHIP

Our monitoring subsystem augments conventional system-
on-a-chip hardware with additional components for monitoring,
verification, and response. Multiple monitors are added to each
major component of the SoC. The monitors are linked by a
monitor network on-chip (MNoC), a heterogeneous
communication substrate, as seen in Fig. 1. In general, the
spread among the required bandwidths of different monitors is
large. Hence, MNoC supports low-overhead routers and
localized connections like buses and multiplexers. High
bandwidth monitors are directly connected to routers, while the
lower bandwidth monitors are connected via multiplexers or a
bus that connects to the network as shown in the Fig 1. The
MNoC is interfaced to a monitor executive processor (MEP).
The MEP provides a software layer to implement new
collaborative monitoring algorithms. MNoC has been designed
to incur minimal area and energy overhead compared to a
general purpose on- chip interconnect by optimizing its width,
access control, arbitration, flexibility, and bandwidth to the
monitor data collection task. Specific interconnect challenges
include the development of monitor-network and network-
MEP interfaces to accommodate different monitor types and
the development of interconnection components for irregular
topologies and mixed-priority traffic.

On-chip monitors are typically distributed in an
unorganized fashion, necessitating an irregular interconnect
topology. An irregular mesh topology of routers is needed for
MNoC, whose placement is dictated by the distribution of
monitors. Two types of monitors are supported by MNoC: (1)

data pull monitors that put data onto the network at regular
intervals and (2) data push monitors that report data
occasionally. For example, thermal monitors that report
temperature periodically can be classified as data pull, while
error monitors that report data only in the event of an error are
data push. For data pull monitors, data requests are forwarded
to the monitors by the associated router interfaces. Interrupts
are used to support unexpected events detected at data push
monitors. MNoC traffic is entirely monitor data that is
communicated to the MEP and no monitor-monitor
communication is required. Monitor data in the network is
classified into two different priority levels. Messages to the
MEP from data push monitors are usually critical in nature and
are hence tagged with a higher priority. Messages from data
pull monitors are regular priority unless there is an emergency
event at the monitor. High priority data is routed through the
network using dedicated resources in the routers.

Monitor information is transported on the network as
packets of data. A network interface appends monitor
information with routing information and converts each packet
into flits. The packetization module also appends the source
monitor’s address which is required by the MEP to identify the
origin of the monitor data. A priority bit is also included in the
packet to enable the routers to differentiate critical data from
the regular ones. MNoC flit width is chosen to be the same as
the width of the physical channel. MNoC implements
wormhole switching which ensures low latency while
consuming a minimal amount of buffer space.

The most commonly used adaptive routing protocols
involve expensive router implementations [4] and are suitable
for very high and unpredictable traffic rates. Instead, for low-
overhead MNoC, we use a static distributed routing protocol
which involves the use of routing tables at individual routers.
Each routing table is a lookup table that can be indexed using
the destination address. For every possible destination, the table
contains information about the output port that the packet needs
to be routed through. The irregular placement of monitors
results in an irregular mesh topology leading to concerns
regarding deadlock. A fault tolerant mesh routing algorithm [7]
is used to generate deadlock free paths that are stored in the
routing tables. Since no monitor-to-monitor communication is
assumed, the overhead incurred with routing tables is minimal.
This non-adaptive routing protocol allows for a very
lightweight router implementation because the overhead for
adaptive route evaluation is eliminated. Errors in MNoC
transmission are handled through a combination of per-packet
CRC values and MEP-based requests for retransmission.

Monitors in the system can either have dedicated interfaces
to network routers or can interface to the routers through shared
buses or multiplexers (Fig. 1). The interfaces need to be generic
and should allow for the interfacing of any kind of monitor to
the network. The control logic supports both data push and data
pull monitors. Also, synchronization issues that result out of
different monitor and network frequencies need to be
addressed. In our architecture, the monitors and the network
router connect through a master-slave interface, the router end
being the master and the monitor, a slave. The architecture of
the monitor-network interface is shown in Fig 2.

MEP

R R

R

RR

M

M

M

D

M

D

M

T

X-Bar

Port

Control

Interface

MEP – Monitor Executive
Processor

R – Router

M – Monitor

D – Data
T – Timer module

Figure 1: Detailed view of MNOC for multiple cores

The interface control logic is built to read data at a pre-
determined rate from the connected monitors i.e. there is a
control state machine at the router interface that generates read
addresses for each of the connected data pull monitors
according to a pre-set schedule. Any data push type of monitor
connected at the interface has a dedicated interrupt line
connected to the router interface and has a capability to
generate an interrupt indicating that it needs to be read. In the
event of an interrupt, the controller breaks away from the
original sequence to generate a read address for the interrupting
monitor. Any data read from an interrupting monitor is tagged
as high priority data. Once the monitor data is read, the
controller appends it with information about the originating
monitor and priority value. The data is then written into the
synchronizing FIFO which is read by the packetization module.
The packetization module converts the data into flits, forwards
them to the appropriate channel in the network (regular or
priority).

The packetization module also appends monitor data with a
time stamp from an embedded timer which identifies the time
at which data was sampled. The maximum value of the timer is
chosen such that any packet injected in the network reaches the
MEP before the timer resets twice. This ensures that the MEP
accurately identifies the time frame in which the data was
sampled. For example, if a monitor generated a temperature
value of 20 degrees at time t = 1ms and the data is received at
the MEP at time t = 1.5ms, the MEP interprets the current
temperature value to be 20.03 degrees using an average
temperature gradient of 0.06 deg/ms [1]. A single timer is
shared across several interfaces.

The MEP and the network router connect through a master-
slave interface, the MEP being the master and the router, a
slave. Monitor data received from either of the channels in the
router is read by a de-packetization module at the network
router-MEP interface. A synchronizing FIFO contains separate
queues for regular and priority data. The MEP software reads
information from the FIFOs at regular intervals with
consideration given to priority data. The FIFO addresses
synchronization issues and is sufficiently sized to ensure that
no data is dropped. Once data is received, the MEP uses the
source information to determine the type and location of the
monitor that sent out the data and takes necessary action by
affecting system parameters.

The low bandwidth required by most monitors is exploited
to minimize MNoC router area. Unlike typical NoC routers,
MNoC routers provide sufficient bandwidth and latency with
small eight bit data widths and minimal (e.g. 4) buffer sizes.
Each router is further optimized by removing unused data ports
as a result of the irregular mesh topology. The MNoC router is
built to be highly parameterizable. The optimal buffer sizes and
widths can be determined based on the required latency and
bandwidth for different monitoring systems. The choice of
these parameters is ultimately a trade-off between performance
(in terms of bandwidth and latency) and overhead (in terms of
area and power).

For MNoC, input buffering is used instead of output
buffering because of the low overhead that input buffering
offers [8]. Head-of-line blocking, a possible drawback of input
buffering, is insignificant in the case of MNoC because most
MNoC traffic is directed towards the MEP.

Every input channel in the router is multiplexed into two
separate virtual channels, a priority channel and the regular
channel. The priority channel is used to exclusively transfer
critical monitor data. A packet that is injected into a network
with a high priority (priority field in the packet header is set to
1) enters the priority channel and travels in the same channel
until it reaches the destination. This channel is reserved for
critical data and is not used for regular data transfer. Packets
remain in the channel determined at packet injection.

MNoC employs a credit based flow control to regulate data
traffic and to avoid packet dropping. To facilitate this, every
router has buffer slot counters that keep track of the number of
empty buffer slots in the regular and the priority channels on
the adjacent routers. The availability of a buffer space is
communicated by adjacent routers using credit messages. Flits
that enter the MNoC router are buffered in the appropriate
input channel and subsequently go through three router pipeline
stages before reaching the next hop: routing table look up,
switch arbitration, and switch traversal. Once switch access is
granted by switch arbitration, the flit goes through the final
pipeline stage where it traverses the crossbar and enters the
same channel (regular or priority) in the next router. The
priority channel is given preference in the entire switch
arbitration stage to ensure lowest possible latency on that
channel. Among requests from the regular channel, the arbiter
grants access in a random fashion.

IV. EXPERIMENTAL APPROACH

 In order to validate the MNoC approach and evaluate
trade-offs for various design constraints such as area,
bandwidth and latency, a series of synthesis and simulation
experiments have been performed. The Popnet interconnect
simulator [9] has been significantly modified to estimate
bandwidth and latency values for the heterogeneous MNoC
interconnect. The router pipeline and the routing protocol were
modified along with additional support for expanded interfaces.
The simulator, in modified form, allows for a complete
evaluation of various MNoC topologies and components.

To estimate the overhead of our MNoC approach, we
developed a synthesizable hardware model of the MNoC router
and MEP. The MNoC hardware model is parameterizable and

Figure 2: Monitor –bus – network interface

allows for evaluation of area for different router widths and
buffer sizes. The hardware model, which operates at 500 MHz,
was synthesized using Synopsys Design Compiler using a
90nm standard cell library [10]. Architectural simulations were
performed using the SESC architectural simulator [11] to
quantify the benefits of employing our monitor subsystem at a
system level.

In an initial experiment, 24 thermal monitors on each of the
8 processor cores report temperature values from various
locations on the chip. The floorplan of each processor core
used here for thermal modeling is based on the AMD Athlon
64 processor [12]. The layout of the eight core system is shown

in Fig 3. There are two MNoC routers per core, each of which
collects thermal data from 12 thermal monitors using a
multiplexer. Thus, 192 thermal monitors from eight cores
connect to 16 routers through 16 multiplexers. The MEP is
attached to a dedicated router (Fig. 3) at a location central to
the routers. The resultant topology is an irregular mesh. A
dummy router adjacent to the MEP was added to facilitate
routing. With this 18 router setup, deadlock-free routing [7]
was used to generate paths from the routers to the MEP. A
multiplexer interface was used to make connections between
the monitors and the routers. Thermal monitors for DFS [13]
can be classified as low bandwidth data pull monitors. Our
interconnect simulator was used to evaluate the latency of this
network for different network parameters.

Fig 4 shows a plot of network latency versus injection rates
for various buffer sizes for regular (non-priority) traffic. A total
of 95% of total traffic is assumed to be regular traffic. The
value on the X axis, cycles between injections, indicates the
number of clock cycles between two sampling points for the
thermal monitors. Network latency (the Y axis) indicates the
average time required (in clock cycles) for data to travel from a
monitor to the MEP. Fig 4 indicates a significant dependence
for the regular channel on the input buffer size for sizes less
than 4. For buffer sizes greater than and equal to 4, limited
latency reduction is achieved by increasing buffer size. For
longer delays between injections, the regular channel latency
becomes insensitive to buffer sizes. We simulated 5% of the
total traffic to be priority traffic to assess the latency on the
priority channel. For all cycles per injection rates, network
latencies between 16 and 21 cycles were found. The result
indicates that the latency on this channel is more or less
constant and is ideally suited for low latency critical data
transfer. There is practically no impact of buffer sizes on the
latency. Fig 5 shows a plot of network latency versus injection
rate, for different flit widths. For higher sampling rates, the flit
width that gives ideal latency increases with increasing cycles
between injections.

RR

R

RR

RR

RR

R

RR

RRR

R R

Figure 3: Monitor network on chip layout for thermal monitors on a 8 core processor

Regular channel latencies for different buffer sizes and

flit width = 12

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000 1200

Cycles between injection

N
e

tw
o

rk
 l
a

te
n

c
y

(C
lk

 c
y

c
le

s
)

2

3

4

6

8

12

16

100

Buffer

Buffer size

Figure 4: Regular channel latencies for different buffer sizes

Regular channel latencies for different flit

widths for buffer size = 4

0
1000
2000
3000
4000
5000
6000

0 200 400 600 800 1000 1200

Cycles between injection

N
e
tw

o
rk

 l
a
te

n
c
y

 (
C

lk
 c

y
c
le

s
) 11

12

14

16

18

20

Data width

Figure 5: Regular channel latencies for different flit widths

Overall, it can be inferred from the results that for higher
cycles between injection (lower sampling rates and hence
lower bandwidths), the latency values are mostly insensitive to
network parameters like buffer size and flit width. At such low
sampling rates, close to ideal network latency can be achieved
with minimal network resources.

Monitors with higher sampling rates have latencies that are
highly network dependent. These monitors usually dictate the
choice of network parameters. Table 1 shows area results for
the 18 router thermal MNoC system estimated at a 90nm
technology node.

In a second experiment, we demonstrate a monitor
subsystem that satisfies system design constraints while
providing a performance benefit. We use SESC to simulate
eight processors and one central MEP, as shown in Fig 3. The
eight cores each have a private L1 and L2 cache. In comparison
to a commercial 8 core processor [14], the area overhead of
MNoC in this configuration is 0.819/378 mm

2
 = 0.21%.The

power model that is used by SESC for processors is based on
Wattch. The cache power model is based on CACTI and the
temperature model for both (called SESCSpot) is based on
HotSpot [13].

SESCSpot calculates the temperature of processor sub-
blocks based on the power trace of the architecture in a post
processing fashion. For the DFS implementation we integrated
SESCSpot into the core of the SESC simulator to obtain the
temperature readings dynamically. This enabled the MEP to
sample the temperature readings at a pre-determined interval
and execute the DFS algorithm. In this experiment, the 192
thermal monitors on the 8 core chip were sampled every 2ms to
provide a resolution of 0.1 degC. This number was determined
assuming a maximum temporal temperature gradient of
60degC/sec [1]. To meet this sampling requirement, an MNoC
configuration with flit size of 12 bits and an input buffer size of
4 was used. The resulting MNoC area and power, as obtained
from Table 1, are 0.819 mm

2
 and 244 mW, respectively. The

temperature reported by the monitors is collected by MNoC
and transported to the MEP which uses the data for dynamic
frequency scaling.

 Dynamic frequency scaling of a processor system
improves system performance by operating cores within power
dissipation and temperature limits. Two trials were performed
on the 8 core system to demonstrate the benefits of DFS on a
benchmark application. A floating point Whetstone benchmark
[15] is used to conduct the experiments for a total of 2 billion
instructions.

In one scenario, the system was operated at a constant
frequency of 1GHz to meet pre-defined power and temperature
limits and the run time consumed was noted. In this case, since
the predefined temperature threshold is not exceeded, it was not
necessary to employ MNoC. In a second scenario, MNoC is
employed to transport monitor data which is used by a MEP to
perform DFS. In this case, the operating frequency of the
system is toggled between 2 GHz and a lower frequency to
ensure that the specified power and temperature limits are not
violated. The run time was again noted and the resulting
performance improvement of 18% for an 8 core system was
calculated. To evaluate how the performance benefit using

MNoC scales with the number of cores, experiments were also
performed for 4, 12 and 16 core systems. The advantage of
employing MNoC is consistent as the number of cores is
increased, as shown in Table 2.

In a third experiment, the system-level benefits of our
monitor subsystem on delay-based voltage control were
determined. Real-time delay monitoring (using critical path
delay monitors) and control techniques were used to offset
voltage droops at system run time. The monitoring setup
involves 8 delay monitors per core [5] which report 12 bits of
delay data. Monitor data is transported to the MEP through a 9
router MNoC. The delay monitors require high network
bandwidth since voltage values can change quickly. In
response to a voltage droop event, the MEP increases the
voltage of the core to avoid a low voltage condition.

In contrast, in a non-MNoC system the supply voltage is

constant and is set conservatively to a value that accounts for

the maximum voltage droop. The experiment was conducted

for 4, 8 and 16 processor cores (9 routers in all cases). Fig 6

shows the percentage of power savings that MNoC provides in

comparison to a non-MNoC system. The cycles between

injections, on the X axis, indicates the number of clock cycles

between two sampling points for the delay monitors. As seen

from the results, all three configurations result in power

savings versus the non MNoC case for specific values of

TABLE 1: MNOC AREA RESULTS

Flit

width

Buffer

size

Total MNoC

area at 90

nm (mm2)

Flit

width

Buffer

size

Total MNoC

area at 90

nm (mm2)

12 2 0.700 12 8 1.084

14 2 0.765 14 8 1.201

16 2 0.825 16 8 1.314

18 2 0.890 18 8 1.420

20 2 0.950 20 8 1.530

12 4 0.819 12 16 1.571

14 4 0.894 14 16 1.751

16 4 0.970 16 16 1.919

18 4 1.043 18 16 2.094

20 4 1.116 20 16 2.262

TABLE 2: RUNTIMES FOR MNOC AND NON-MNOC CASES

Cores Runtime for

Freq = 1 GHz

(sec)

Runtime for

Freq = 2 GHz

(sec)

Performance

benefit due to

MNoC

4 3.36 2.42 28%

8 2.75 2.25 18%

12 2.27 1.52 33%

16 1.75 1.35 23%

Power savings on multicore processors using MNoC

-15

-10

-5

0

5

10

15

20

3
0

5
0

7
0

9
0

11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

Cycles between sampling of the delay monitors

P
e
rc

e
n

ta
g

e
 p

o
w

e
r

s
a
v
in

g
s

4 cores

8 cores

16 cores

Figure 6: Power savings in multi-core processors using MNoC

sampling rates. As the number of cores increases, the number

of monitors increases, requiring more bandwidth from the

network. This trend motivates the need for a scalable medium

like MNoC versus buses or serial links. Fig 6 shows that

certain sampling intervals yield a negative result. In these

cases, the sampling or the network delays are so high that the

system gains no benefit from run time monitoring. These

combinations of sampling intervals and MNoC delays can be

determined during system design.

Finally, using the above delay monitoring setup, trials were

conducted to assess how the latency of MNoC scales as the

number of cores in the system increases. As seen in Fig 7,

MNoC delay for 128 cores at a given bandwidth is much

higher than the delay for the 32 core configuration. But the

delay values of the 128 core system with 4 times the network

bandwidth are comparable to those of the 32 core

configuration. This indicates that the network can be scaled to

larger number of cores by scaling the network bandwidth,

retaining similar network latencies.

V. CONCLUSION

This work presents a scalable and lightweight approach for

monitor data collection and processing. System level

performance benefits are obtained by using this monitor data

to scale processor frequency and voltage values. Experiments

show that the interconnect can be sized on a per-application

basis to obtain substantial performance benefits. An area

overhead of 0.21% was achieved for the monitor interconnect

when applied to an eight core system. In the future, we plan to

evaluate the collaborative use of data from multiple monitors

in controlling multicore behavior. Automating MNoC creation

is also a promising area that needs to be addressed.

VI. ACKNOWLEDGEMENTS

This work was funded by Semiconductor Research

Corporation under Task 1595.001. The authors would like to

acknowledge the suggestions of our SRC liaisons at Intel and

AMD.

REFERENCES

[1] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W.H.
Parks, S. Naffziger, “Power and Temperature Control on a 90nm
Itanium Family Processor,” IEEE Journal on Solid State Circuits , vol.
41, no 1, pp. 229-237, Jan. 2006.

[2] M. Saen, K. Osada, S. Misaka, T. Yamada, Y. Tsujimoto, Y. Kondoh, T.
Kamei, Y. Yoshida, E. Nagahama, Y. Nitta, T. Ito, T. Kameyama, N.
Irie, “ Embedded SoC Resource Manager to Control Temperature and
Data Bandwidth, ” IEEE International Solid-State Circuits Conference,
pp. 296-604, Feb. 2007.

[3] S. Velusamy, W. Huang, J. Lach, M. R. Stan, K. Skadron, “Monitoring
Temperature in FPGA based SoCs,” IEEE International Conference on
Computer Design, pp. 634-637, Oct. 2005.

[4] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices
of Network-on-Chip,” ACM Computing Surveys, vol. 38, no.1, Mar.
2006

[5] M. S. Floyd, S. Ghiasi, T.W Keller, K. Rajamani, F.L. Rawson, J. C.
Rubio, M. S. Ware, “System Power Management Support in the IBM
Power6 Microprocessor,” IBM Journal of Research and Development,
vol. 51, pp. 733-746, Nov 2007

[6] F. Moraes, N. Calazans, A. Mello, L. Möller, L. Ost, “HERMES: An
infrastructure for low area overhead packet-switching networks on
chip,” Integration: The VLSI Journal, pp. 69-93, Oct. 2004

[7] K. H. Chen and G.-M. Chiu, “Fault-Tolerant Routing Algorithm for
Meshes without Using Virtual Channels,” J. Information Science and
Eng., vol. 14, pp. 765-783, Dec. 1998.

[8] Y. Tamir, G. L. Frazier, "High-performance multiqueue buffers for
VLSI communication switches," International Symposium on Computer
Architecture, pp.343-354, Jun. 1988

[9] L. Shang; L. Peh; N. K. Jha, "Dynamic voltage scaling with links for
power optimization of interconnection networks," International
Symposium on High-Performance Computer Architecture, pp. 91-102,
Feb. 2003

[10] UMC’s 90nm 1P9M Logic/Mixed Mode Low-K SP-HVT process
library, http://www.faraday-tech.com

[11] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K.
Strauss, S. Sarangi, P. Sack, P. Montesinos, "SESC Simulator," Jan.
2005, http://sesc.sourceforge.net.

[12] G. M. Link, N. Vijaykrishnan, "Thermal trends in emerging
technologies," International Symposium on Quality Electronic Design,
Mar. 2006.

[13] K. Skadron , M. R. Stan , K. Sankaranarayanan , W. Huang , S.
Velusamy , D. Tarjan, "Temperature-aware microarchitecture: Modeling
and implementation, " ACM Transactions on Architecture and Code
Optimization, vol. 1 no. 1, pp.94-125, Mar. 2004

[14] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, F. Schumacher, "A
Power-Efficient High-Throughput 32-Thread SPARC Processor," IEEE
Journal of Solid-State Circuits, vol. 42, no. 1, pp.7-16, Jan. 2007

[15] H. J. Curnow, B. A. Wichmann, "A Synthetic Benchmark," Computer
Journal, vol 19, pp. 43-49, Feb. 1976.

MNoC Latency with increasing number

of cores

0

500

1000

1500

2000

2500

3000

400 450 500 550 600 650 700 750

Cycles between injection

N
e

tw
o

rk
 d

e
la

y
 i
n

 n
s

128 Cores

BW=B

64 Cores

BW=B

32 Cores

BW=B

16 Cores

BW=B

128 Cores

BW=4B

64 Cores

BW=4B

32 Cores

BW=4B

16 Cores

BW=4B

Figure 7: MNoC performance with increasing number of cores

