
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 1

Dynamic On-Chip Thermal Sensor Calibration
Using Performance Counters

Shiting (Justin) Lu, Russell Tessier, Senior Member, IEEE, and Wayne Burleson, Fellow, IEEE

Abstract—Numerous sensors are currently deployed in mod-
ern processors to collect thermal information for fine-grained
dynamic thermal management (DTM). To enhance processor
performance and avoid overheating, accurate temperatures must
be obtained from thermal sensors. Due to process variation and
silicon aging, on-chip thermal sensors require periodic calibration
before use in DTM. However, the calibration cost for thermal
sensors can be prohibitively high as the number of on-chip
sensors increases. In this work, a model which is suitable for
on-line calculation is employed to estimate the temperatures of
multiple sensor locations on the silicon die. The estimated sensor
and actual sensor thermal profile show a very high similarity
with correlation coefficient ∼ 0.9 for most tested benchmarks.
Our calibration approach combines potentially inaccurate tem-
perature values obtained from two sources: temperature readings
from thermal sensors and temperature estimations using system
performance counters. A data fusion strategy based on Bayesian
inference, which combines information from these two sources,
is demonstrated along with a temperature estimation approach
using performance counters. The average absolute error of the
corrected sensor temperature readings is < 1.5oC and the
standard deviation of error is less than < 0.5oC for tested
benchmarks.

Index Terms—thermal sensors, performance counters, DTM,
thermal estimation, sensor calibration

I. INTRODUCTION

THERMAL management is a critical problem for mod-
ern microprocessors due to high transistor density. This

characteristic increases power consumption and heat density
in a small silicon area causing performance degradation and
decreased system reliability. As a result, dynamic thermal and
power management strategies are often employed to tackle
run-time thermal and power issues [1]. On-chip thermal sen-
sors deployed in microprocessors are currently used to assist
DTM. For example, there are five thermal sensors per core
implemented in the Power 7 EnergyScale infrastructure [2] and
12 sensors on each CPU core in the Intel Sandy Bridge [3].
Recent trends indicate increased future use to assess thermal
gradients and perform fine-grained thermal management with
more on-chip thermal sensors.

The efficiency and effectiveness of a DTM strategy relies
on accurate thermal sensor measurements. However, on-chip
thermal sensors are sensitive to process variations and can
report temperature values which deviate from actual ones. A

This work was supported by the Semiconductor Research Corporation under
Task 2083.001. S. Lu, R. Tessier and W. Burleson are with the Department of
Electrical and Computer Engineering, University of Massachusetts, Amherst,
MA, 01003, USA e-mail: jlu, tessier, burleson@ecs.umass.edu.

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

popular implementation of an on-chip thermal sensor uses a
ring oscillator whose frequency can be mapped to a temper-
ature value. In some cases, the temperature reading error of
uncalibrated thermal sensors can be substantial (up to 34oC
at 95oC [4]) which adversely impacts DTM strategy. Two
challenges exist in using these sensors: (1) detecting if a
sensor is providing erroneous readings and (2) recalibrating the
sensor, if necessary. Our focus in this work is the second chal-
lenge. Often, thermal sensor calibration involves performing
thermal imaging using an infrared camera while capturing the
physical readings of thermal sensors [5]. As the sensor count
on a silicon die increases, the per-chip calibration cost can
be prohibitively high, leading to on-chip thermal sensor use
without individual sensor calibration. Even if thermal sensors
are initially well-calibrated, their readings gradually drift away
from actual temperature values due to device wear-out. Often,
the degree of aging varies across the chip due to the activity
variation of different subcircuits. Therefore, recalibration on
thermal sensors is needed to regain the required accuracy.
In general, it is not practical to perform in-field calibration
with thermal imaging since end users typically do not have
expensive calibration equipment.

In this paper, we take a different approach to temperature
estimation which is optimized for on-line calibration of ther-
mal sensors. To dynamically account for changing activities
of the processor, collections of performance counter values
are used to estimate the chip thermal profile at run time. A
performance counter selection method is employed to reduce
the intercorrelations between readings and improve estimation
accuracy. Our results show that the correlation coefficient be-
tween estimated and actual thermal profiles is above 0.95 on a
collection of benchmarks. In this paper, estimated temperature
is exclusively used to refer to a temperature obtained from
thermal estimation using performance counters.

Estimated temperature values derived from performance
counter values are used to validate and correct divergent sensor
readings via a multi-sensor collaborative calibration algorithm
(MSCCA). This algorithm can be executed at run time using
a block of consecutive sensor readings. Corrected temperature
values obtained from the algorithm are then used to adjust the
mapping of thermal sensor parameters to temperature read-
ings. A Bayesian technique integrated into MSCCA utilizes
the implicit physical proximity of the estimated temperature
locations (spatial correlation) to correct sensor reading errors.
An increased number of on-chip sensors provides increased
algorithm accuracy since more spatial correlation information
is captured within the estimated temperatures.

To validate our algorithm, architectural and thermal simula-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 2

tors are used to collect performance counter and temperature
values, respectively. Results show that the average absolute
error of thermal sensor readings can be effectively reduced to
≤ 1.5oC for all tested benchmarks and the standard deviation
of the errors in the corrected temperatures is reduced to an
acceptable level (from 3 ∼ 4oC to ≤ 0.5oC). For comparison,
the computational complexity and estimation accuracy of our
new approach is evaluated against a method which is based on
power estimation and Kalman filtering [6]. Our results show
that the new strategy has comparable accuracy (better in many
cases) but is more efficient (at least 50× faster).

II. BACKGROUND

There are several ways to calibrate on-chip thermal sensors
to achieve better measurement accuracy. We divide different
approaches into three main categories: thermal imaging, design
for calibration, and thermal estimation.

A. Thermal Imaging

The most traditional way of calibrating on-chip thermal
sensors measures the thermal profile of a running chip using
thermal imaging technologies and reports the sensor readings
at that time instant [7]. The model parameters can then
be obtained by solving a series of equations or by using
statistical parameter inference [8]. Usually, the calibration
cost associated with this approach is very high since every
chip experiences a different thermal imaging response and the
amount of effort increases with the number of on-chip thermal
sensors. Although the approach could be used once after chip
fabrication, it cannot be used effectively at run time.

B. Design for Calibration

The second calibration technique uses design-for-
calibration. This approach is implemented by integrating
dedicated hardware circuits on chip which monitor the
process variation around the thermal sensors [9]. With the
knowledge of the chip process variation, the errors in thermal
sensor readings can be compensated and model parameters
can be optimized to reflect the physical relationship between
the temperature and physical quantities. Since the process
variation monitoring hardware consumes silicon real estate,
it raises the chip cost when a large number of sensors are
integrated.

C. Thermal Estimation

A third approach uses accurate on-chip thermal estimation
instead of thermal imaging to determine actual temperatures.
This information can then be used for calibration of specific
sensors. In Liu [10] and Cochran and Reda [11], the authors
describe methods to construct thermal estimates for numerous
points in a processor from measurement data from a sparse set
of thermal sensors. In Ranieri et al. [12], the overall thermal
map is recovered from a reduced set of sensors by selecting
principal eigenvectors of the whole-chip temperature vector.
In Zhou et al. [13], an information-theoretic framework is
proposed to find the optimal location for sensor deployment

and full-chip thermal monitoring. Since the thermal sensor
measurements are subject to noise, the amount of error at each
specific sensor can be difficult to determine. As a result, most
recent approaches for sensor calibration use a combination
of sensor readings and other on-chip information to generate
estimates of actual temperature.

Kumar et al. [14] use the performance counters in an Intel
Pentium-4 processor to estimate the overall chip temperature.
For multiple sensor calibration, it is necessary to estimate
the temperature at the micro-architectural level , so an esti-
mation strategy with finer granularity is needed. Lee et al.
[15] proposed a run-time temperature sensing strategy using
performance counters in high-performance processors. In this
strategy, performance counters are used to estimate the power
dissipation for each hardware component and the estimated
power traces are then used to estimate the temperature trace
based on the thermal model implemented in a thermal sim-
ulator. The mapping from power to temperature requires a
complex thermal model which characterizes the thermal RC
network of the given chip.

In two recent papers [6][16], two sources of temperature
information are combined to generate temperature estimates:
(1) noisy sensor readings and (2) localized power consump-
tion which is related to temperature. The technique used to
integrate data from these two data sources is Kalman filtering
(KF). Although power traces can be accurately estimated at
run time [17], a thermal RC model is required to determine
the mapping coefficients required to convert power dissipation
to temperature in the prediction step of KF approaches.
Unfortunately, the derivation of this model is not trivial due to
the complexity of silicon materials [18]. KF-based approaches
have shown the ability to track the temperature profile of a chip
at a high computational cost since KF is performed each time a
temperature estimation is made. In Zhang and Srivistava [19],
the temperature for noisy sensors is estimated using statistics.

Like other approaches in the previous paragraph, our new
calibration method fits into the third category of calibration
approaches. Unlike previous techniques, we directly use infor-
mation from performance counters for temperature estimation
rather than using power consumption as an intermediate value
for conversion between performance counter information and
estimated temperature. This direct approach reduces run time
and eliminates the need to estimate per-functional unit power
consumption. A merging algorithm is used to combine our
temperature estimates and sensor reading data.

This work greatly expands upon the material in our previous
ICCAD’2012 paper [20] which targeted similar goals. In this
paper we track incremental ∆ changes in temperature rather
than absolute temperature, dramatically increasing accuracy.
Also, we consider temperature gradients between sensors
based on earlier estimated temperatures in addition to per-
formance counter values in determining current temperature
estimates for sensors. To validate the effectiveness of the
approach, 15 benchmarks are used to perform temperature ver-
ification and the training process for our model development
is performed using 16 benchmarks, rather than one.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 3

Temperature

Estimation

Temperature Model

Training

On-Chip Thermal

Sensor Recording

Merging Algorithm

Performance

Counters

Temperature

Recordings via

Thermal Imaging

Trained Thermal

Estimation Model

(β parameters)

Performance

Counters

Estimated

Temperature
Sensor Readings

Corrected

Temperature

Initial Temeratures

(for temperature

change estimation)

Design or

Post-Silicon Phase

Run Time Phase

Fig. 1. Our dynamic calibration scheme for on-chip thermal sensors

D. Our Calibration Strategy: Approach Overview

Fig. 1 shows our strategy for dynamic on-chip sensor
calibration. This flow can be broken down into four steps,
one which is performed once during the design or post-silicon
phase and three which are performed repetitively at run time.

1) Temperature model training - In the design or post-
silicon phase, a thermal estimation model is devel-
oped based on accurate temperature recordings through
thermal imaging technology and system statistics from
performance counters. The model training outputs a set
of parameters called βββ parameters. These βββ parameters
define the relationship between performance counter
values and estimated temperatures.

2) Temperature estimation - The βββ parameters are used
in a series of linear equations to convert performance
counter values to temperature estimates. Although use-
ful, temperatures obtained from this model often do not
meet accuracy requirements since performance counters
cannot capture all on-chip thermal details precisely.

3) On-chip thermal sensor recording - Potentially noisy
thermal sensor readings are collected from on-chip ther-
mal sensors.

4) Merging algorithm - To calibrate a thermal sensor,
we combine thermal estimations and sensor readings
using a Bayesian-based fusion algorithm. This MSCCA
algorithm generates corrected temperature values and
identifies how much a thermal sensor should be adjusted
in calibration, if needed.

In the following section, temperature estimation and model
training are considered. Section IV describes our merging
algorithm and the techniques used for on-chip sensor reading.

III. TEMPERATURE ESTIMATION AND MODEL TRAINING
USING PERFORMANCE COUNTERS

In a microprocessor, performance counters monitor run-
time system statistics, such as the load/store rate, branch
prediction miss rate, amount of cache misses, and instructions
per cycle (IPC), among others, for various system management
purposes. Since these statistics contain the activity information
of functional units in the processor, they can be used to

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
−1

−0.5

0

0.5

1

Sensor ID

Brach rate
Load rate
Store rate
Integer rate
Floating Point rate
IPC
ICache miss rate
ICache read miss
DCache miss rate
Dcache read miss

Fig. 2. Correlation between temperature and some system statistics for the
radix benchmark across 24 thermal sensors

estimate the power consumption at a per-structure granular-
ity using linear regression [17] or unit power consumption
[15][21]. Unlike power consumption estimation, functional
unit temperature estimation is more complex due to inter-
component correlation resulting from heat flow across the chip.

It can be shown that the temperatures of functional units are
correlated with values read from on-chip performance coun-
ters. Fig. 2 shows the correlation coefficients of component
temperatures and various system statistics for the SPLASH-2
radix benchmark [22]. Most temperature-statistic pairs show
non-zero correlation coefficients. For example, the floating
point rate shows a negative correlation with integer units (e.g.
the integer scheduler) and a positive correlation with floating
point components (e.g. the floating point scheduler).

To explore the correlation between the application character-
istics and temperature changes over a short time period, system
statistics and a temperature trace were recorded for every
millisecond via simulation using SESC [23] and HotSpot [24].
Fig. 3 illustrates the relation between the system statistics: IPC
(the first row), integer instruction rate (the second row) and
floating point instruction rate (the third row), and temperature
change rates for three functional units: integer scheduler (left
column), floating point scheduler (middle column) and L1
data cache (right column). The performance counter data was
obtained by repeatedly running the equake benchmark from
the SPEC2000 benchmark suite using the SESC simulator. The
temperature trace was generated by HotSpot.

As seen in the figure, higher average IPC (phase A in the
top-left sub-figure) results in a higher temperature change rate
for the integer scheduler at the start of phase A. However,
this change rate is negative for the floating point scheduler at
the same point. The floating point instruction rate is higher in
phase B and the scheduler is more active during this phase.
leading to a floating point scheduler instruction temperature
surge every time the application transitions from phase A to
phase B, although it is short. In this case, the temperature of
the component is impacted by its surroundings due to heat
flow.

The temperature difference (referred to as thermal gradient
in the figure) between the specific component and a neighbor-
ing component is plotted to illustrate this point in Fig. 4. The
thermal gradient in the figure is obtained by taking the max-
imum temperature difference among all neighboring blocks.
In the integer scheduler, for example, the temperature surge

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 4

0 1 2 3sec
0

0.01

0.02

Integer Scheduler

te
m

p
e
ra

tu
re

 c
h
a
n
g
e

0 1 2 3sec
0

0.5

1

0 1 2 3sec
-0.02

0

0.02

Floating Point Scheduler

0 1 2 3sec
0

0.5

1

0 1 2 3sec
1

2

3
x 10

-3 L1 Data Cache

0 1 2 3sec
0

0.5

1

IP
C

0 1 2 3sec
0

0.01

0.02

te
m

p
e
ra

tu
re

 c
h
a
n
g
e

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
-0.02

0

0.02

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
1

2

3
x 10

-3

0 1 2 3sec
0

0.2

0.4

in
te

g
e
r

ra
te

0 1 2 3sec
0

0.01

0.02

te
m

p
e
ra

tu
re

 c
h
a
n
g
e

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
-0.02

0

0.02

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
1

2

3
x 10

-3

0 1 2 3sec
0

0.2

0.4

fp
 r

a
te

0 1 2 3sec
0

0.01

0.02

te
m

p
e
ra

tu
re

 c
h
a
n
g
e

0 1 2 3sec
1

1.5

2

0 1 2 3sec
-0.02

0

0.02

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
1

2

3
x 10

-3

0 1 2 3sec
-0.4

-0.2

0

th
e
rm

a
l g

ra
d
ie

n
t

A B

Fig. 3. Runtime recording of some system statistics and temperature change rates for three function units: integer scheduler (left column), floating point
scheduler (middle column) and L1 data cache (right column) for the equake benchmark. Temperature changes are in oC

0 1 2 3sec
0

0.01

0.02
Integer Scheduler

te
m

pe
ra

tu
re

 c
ha

ng
e

0 1 2 3sec
0

0.5

1

0 1 2 3sec
−0.02

0

0.02
Floating Point Scheduler

0 1 2 3sec
0

0.5

1

0 1 2 3sec
1

2

3
x 10

−3
L1 Data Cache

0 1 2 3sec
0

0.5

1

IP
C

0 1 2 3sec
0

0.01

0.02

te
m

pe
ra

tu
re

 c
ha

ng
e

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
−0.02

0

0.02

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
1

2

3
x 10

−3

0 1 2 3sec
0

0.2

0.4

in
te

ge
r

ra
te

0 1 2 3sec
0

0.01

0.02

te
m

pe
ra

tu
re

 c
ha

ng
e

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
−0.02

0

0.02

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
1

2

3
x 10

−3

0 1 2 3sec
0

0.2

0.4

fp
 r

at
e

0 1 2 3sec
0

0.01

0.02

te
m

pe
ra

tu
re

 c
ha

ng
e

Integer Scheduler

0 1 2 3sec
1

1.5

2

0 1 2 3sec
−0.02

0

0.02
Floating Point Scheduler

0 1 2 3sec
0

0.2

0.4

0 1 2 3sec
1

2

3
x 10

−3
L1 Data Cache

0 1 2 3sec
−0.4

−0.2

0

th
er

m
al

 g
ra

di
en

t

Fig. 4. Runtime recording of thermal gradient and temperature change rates for three function units. Temperature changes are in oC

causes an increase in the thermal gradient which accelerates
heat flow from the integer scheduler to its neighbors. A new
thermal balance is quickly reached after a short time.

A. Temperature Estimation Using Performance Counters

By virtue of a variety of inter-unit thermal complexities,
the temperature at a specific position on the chip is generally
not linearly related to one particular performance counter.
However, we demonstrate that a linear model can be used
to estimate on-chip temperature changes at specific tempera-
ture sensors using multiple performance counters if the time
interval is small. This linear approximation is shown to be
effective empirically in developing an on-chip thermal profile.
These thermal estimates can then be merged (Section IV)
with sensor readings to reduce spatial (across sensors) and
temporal (across time) noise. In the following derivation we
are interested in determining ∆T estimates for specific sensors
over a time interval, rather than absolute T values.

1) Linear Temperature Estimator: In developing a linear
model for a specific thermal sensor i over a time interval,
a row vector (xi) contains recorded performance counter
values for the interval, M (listed in Table I), thermal gradient
information, Gi, and temperature, T i. Values Gi measure the
thermal gradient between other thermal sensors and sensor

TABLE I
PERFORMANCE COUNTERS PROVIDED BY SESC

general rate IPC, integer rate, load rate
store rate, floating point rate

cache Dcache read miss rate, Dcache write miss rate,
Icache miss rate

buffer and queue usage load queue, store queue, ROB, Iwin, TLB
branch BTB, RAS

i at the beginning of the interval. Value T i measures the
temperature of sensor i at the beginning of the interval. Since
the correct temperature before the first interval is unknown,
the thermal gradients and T i can be approximated by using
thermal sensor readings at the start of calibration. For other
intervals, the temperature estimation from the previous interval
is used. The combination of M, Gi, and T i forms xi:

xi = [M,Gi, T i] (1)

For example, for the integer scheduler (unit 8), G8 includes
all temperature differences between the integer scheduler
and other components at the beginning of the measurement
interval. Here, the superscripts of T indicate the hardware
components in the floorplan (Fig. 10 in Section V). The
thermal gradient vector for the integer unit is given by (2).
There are 24 architectural components in the studied processor,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 5

so G8 contains 23 elements which are temperature differences
between the components and the integer scheduler, except
itself. The performance counter vector M can be represented
by (3), where u is the number of performance counters used
in the model.

G8 =[T 1−T 8, ..., T 7−T 8, T 9−T 8, ..., T 24−T 8] (2)

M = [P 1, P 2, ..., Pu] (3)

The T i value in (1) is used to take static power (which
is dependent on temperature) into account. Therefore, the
sampled vector at a particular time step is given by (4) for the
integer scheduler. It is apparent that both hardware activities
(as measured by performance counters) and thermal gradients
impact temperature change during the sampling interval.

x8 =[P 1, ..., Pu,T 1−T 8, ..., T 7−T 8, T 9−T 8, ..., T 24−T 8, T 8] (4)

Performance counter values represent changes in the respective
event counters during the sampling interval. Only events
happening in a specific interval are evaluated for the corre-
sponding performance counter monitors. Using the above x
vector, it is possible to estimate the temperature change of a
particular component which contains the thermal sensor during
the sampling interval using a linear equation. For example, the
equation for thermal sensor i is:

∆T i = xi · βββi (5)

and for the sensor in the integer scheduler:

∆T 8 = x8 · βββ8 (6)

Here, βββ8 is a column vector whose elements are coefficients of
the linear model. The coefficient vector βββ8 can be determined
through model training which will be discussed in the next
subsection. Each sensor i is trained separately to obtain
its own βββ coefficient vector. The linear model only needs
multiplications and additions to calculate the results, so the
time cost is low and calculations can be done in real time.

B. Linear Model Training

As mentioned earlier in this section, the first step in de-
veloping a relationship between performance counter values
and estimated temperatures (e.g. βββ vectors) involves train-
ing. The accuracy of the coefficient vector βiβiβi impacts the
model accuracy for sensor i. In this training step, accurate
known temperatures for the sensors must be available to
develop the relationships. As mentioned in Section II, these
relationships can be determined via architectural and thermal
simulation during design once physical characteristics of the
chip have been determined or during post-fabrication testing
using thermal imaging. In post-fabrication testing, it is possible
to feed real workloads to the system and read performance
counter registers. At the same time temperature values can
be captured through infrared imaging of the running system.
Unlike per-chip calibration, it is only necessary to perform
data capturing on a small amount of sample chips to get the
general information of a particular chip series. We assume

that the specific information of an individual chip caused by
process variation is reflected in the thermal sensors.

In the following training analysis, we assume that accurate
temperatures and x values consisting of M and G are available
for all sensors. The most straightforward way to train the linear
model to determine βββ vectors in (5) is to use an ordinary least
square method (OLS) [20]. The coefficient vector obtained
through OLS is given by (7).

βββi
ols = (XiTXi)−1XiTyi (7)

Here, Xi is a matrix consisting of row vectors xi calculated
over a series of N sampling intervals. Each row of Xi

represents xi for one sample interval. yi is a column vector
comprised of accurate actual temperature changes for sensor i
which occur during the respective training intervals. Although
OLS is capable of training the linear model, its somewhat
simplistic formulation does not consider the intercorrelation
of performance counters, limiting accuracy.

A more advanced, iterative mathematical approach can be
used to determine βββ values. As an alternative to OLS, we
use automatic relevance determination (ARD), which was
developed by MacKay [25] and Neal [26]. The coefficient
vector βββi for sensor i can be represented by the following
expressions (8) and (9).

βββi = δ−2SXiT yi (8)

S = (A + δ−2XiTXi)
−1

(9)

In (9), A = diag(α1, ..., αM), which is a diagonal matrix.
Each αj in A represents the relevance of an input vector
variable to the result such that:

αj =
1− αjSjj

βi
j

2

(10)

δ2 =

∑N
n=1(yin − xin · βi

n)2

N −
∑M

j=1(1− αjSjj)
(11)

Since (8) and (9) depend on (10) and (11) and vice versa,
multiple iterations are needed to achieve convergence of the
βi unknowns. These iterations calculate αj in diagonal matrix
A and δ. In the above equations, Sjj are elements of S. yn
is the nth element of yi and xn is the nth row vector of
Xi. N is the number of training samples and M is the length
of vector xi and the dimension of the matrix SSS. Values for
αj and δ2 are determined by alternating evaluation of the
above four equations until convergence. From our experiments,
around four iterations are performed until these parameters
reach convergence.

C. Evaluation of Model Training Accuracy Using Thermal
Estimation

To evaluate the accuracy of the linear model, Tables II and
III show the estimation error for one time interval. In this
case, (5) is evaluated for one time interval, using known T
values to determine G gradients and measured performance
counter values P. Errors between the actual ∆T and ∆T
values determined with (5) are then calculated. Table II gives

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 6

TABLE II
AVERAGE ESTIMATION ERROR FOR EACH SENSOR OVER ALL BENCHMARKS

Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12

Avg. abs. error (oC) 0.0003 0.0002 0.0003 0.0002 0.0002 0.0002 0.0002 0.0035 0.0003 0.0002 0.0002 0.0014

Std. abs. error (oC) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0045 0.0002 0.0002 0.0002 0.0013

Avg. change (oC) 0.0011 0.0010 0.0078 0.0081 0.0069 0.0010 0.0022 0.0838 0.0288 0.0222 0.0046 0.0274

Std. change (oC) 0.0007 0.0005 0.0037 0.0043 0.0047 0.0007 0.0016 0.0272 0.0122 0.0096 0.0035 0.0090

Sensor ID 13 14 15 16 17 18 19 20 21 22 23 24

Avg.abs. error (oC) 0.0002 0.0003 0.0002 0.0004 0.0003 0.0003 0.0016 0.0072 0.0003 0.0015 0.0014 0.0005

Std. abs.error (oC) 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0008 0.0049 0.0003 0.0010 0.0009 0.0003

Avg. change (oC) 0.0166 0.0133 0.0032 0.0094 0.0139 0.0140 0.0102 0.0437 0.0139 0.0126 0.0120 0.0001

Std. change (oC) 0.0088 0.0088 0.0024 0.0058 0.0078 0.0076 0.0056 0.0119 0.0060 0.0049 0.0044 0.0001

TABLE III
AVERAGE ESTIMATION ERROR FOR EACH BENCHMARK OVER ALL SENSORS

benchmark mcf vortex swim art apsi radiosity ocean radix
Avg. abs. error (oC) 0.0017 0.0005 0.0008 0.0019 0.0006 0.0006 0.0011 0.0032
Std. abs. error (oC) 0.0022 0.0003 0.0009 0.0004 0.0006 0.0007 0.0009 0.0010
Avg. change (oC) 0.0082 0.0117 0.0365 0.0338 0.0048 0.0086 0.0409 0.0078
Std. change (oC) 0.0002 0.0116 0.0058 0.0002 0.0004 0.0045 0.0123 0.0060

benchmark parser twolf vpr ammp applu barnes fft water-spatial
Avg.abs. error (oC) 0.0004 0.0002 0.0003 0.0005 0.0005 0.0007 0.0008 0.0004
Std. abs. error (oC) 0.0007 0.0001 0.0004 0.0006 0.0010 0.0003 0.0010 0.0004
Avg. change (oC) 0.0113 0.0036 0.0068 0.0047 0.0178 0.0046 0.0195 0.0181
Std. change (oC) 0.0036 0.0031 0.0046 0.0006 0.0178 0.0022 0.0112 0.0172

the average absolute error and error standard deviation for
each sensor for a single interval using the β values deter-
mined through training. The error is averaged over all 16
test benchmarks (benchmarks described in more detail in
Section V). Using information from this table it is possible to
evaluate the trained models for all sensors. Sensor 8 (integer
scheduler) and sensor 20 (FP scheduler) report relatively high
error and error variation compared with other sensors due
to their high activity. The error can potentially be reduced
further with a smaller time step, but this approach increases
the computational cost correspondingly. Table III gives the
average absolute error and the associated standard deviation
for each benchmark. The error is averaged over all sensors
for each benchmark. From this table, we can evaluate how the
trained models work for all benchmarks. In general, average
absolute error and standard deviation are low in the tables.
During experimentation we found that the trained model was
most effective for benchmarks which have similar execution
characteristics to the benchmark training set. However, the use
of a broad class of benchmarks for training helps minimize
error across a larger number of benchmarks.

D. Thermal Estimation Results
The SPLASH-2 and SPEC2000 benchmark suites were

used to validate the effectiveness of our linear model. Mixed
samples from a subset of benchmarks were used to train
the linear model (find βββ values) and the trained model was
tested for estimation on the rest of the benchmarks. Detailed
simulator setup information is provided in Section V.

1) Estimated Thermal Profile: Fig. 5 shows the ther-
mal profile across all sensors at four time instances of the

0 1 2 3 4 5 6
40

50

60

70

80

90

time (second)
(a)

te
m

pe
ra

tu
re

 (
 o C

)

sensor 20 actual
sensor 20 estimation
sensor 8 actual
sensor 8 estimation
sensor 12 actual
sensor 12 estimation

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

time (second)
(b)

co
rr

el
at

io
n

co
ef

fic
ie

nt

vortex
swim
art
apsi
ocean
radix
twolf
ammp

Fig. 6. (a) Temperature estimation over 6 seconds for sensor 8 (integer
scheduler), 20 (floating point scheduler) and 12 (ALU). The data is col-
lected through simulation by running applu on the AMD floorplan. (b) The
correlation between estimated and actual temperature profiles for various
benchmarks.

SPLASH-2 ocean benchmark. Experiments with other bench-
marks created similar graphs. At the first time point, the
estimated profile is inaccurate due to the lack of knowledge of
initial temperatures. In succeeding time points, the estimated
temperature profile more closely matches the actual profile. At
the 3rd second, a close temperature profile match is achieved.
It should be noted that while an absolute temperature match is
not achieved, a relative match across the sensors is provided.
In Section IV, this systematic drift is offset by adding constant
values to temperatures estimated from sensor readings.

2) Temporal Evolution of Temperature Estimation: Fig.
6(a) shows how the estimated temperature progresses over
time for three sensors (integer scheduler, ALU and floating
point scheduler). Other sensors show similar trends. Since the
initial temperatures are randomly chosen around 55oC for all

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 7

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

65

70
Time 0 sec

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

0 5 10 15 20 25
40

45

50

55

60

65

70

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

65

70

75
Time 1 sec

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

0 5 10 15 20 25
40

45

50

55

60

65

70

75

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

65

70
Time 2 sec

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

0 5 10 15 20 25
40

45

50

55

60

65

70

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

65

70
Time 3 sec

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

0 5 10 15 20 25
40

45

50

55

60

65

70

estimate

actual

Fig. 5. The estimated and actual processor temperature profile at four time instances for the SPLASH-2 ocean benchmark. The estimated thermal profile
exhibits a similar shape as the actual profile but with an offset. Each of the 24 thermal sensors in the processor are represented on the horizontal axis for the
time instance. The numbered components of AMD processor can be found in the floorplan of Fig. 10. The estimates track the actual temperature with a fixed
offset per sensor. This offset w can be determined (Section IV-B) and compensated.

mcf vortex swim art apsi radiosityocean radix parser twolf vpr ammp applu barnes fftwater−spatial
0

0.005

0.01

0.015

0.02

av
g

ab
s

er
ro

r
(

o C
)

5 principle components

10 principle components

14 principle components

Fig. 7. Prediction accuracy comparison for different numbers of principal
components used in the model.

sensors, the estimation mainly reflects heat diffusion during
the first 3 seconds. Over time, the temperatures of these three
components are corrected to match their approximate relative
values (the floating point scheduler is the hottest and ALU
is the coolest). Fig. 6(b) shows the correlation coefficient
between these two values over time.

To evaluate accuracy, the effect of limiting the number of
performance counters used to generate thermal estimates is
also considered. Table IV indicates the average absolute error
over all sensors and benchmarks for different numbers of
performance counters used to generate estimates. Fourteen of
the counters provide little benefit in terms of absolute error.

TABLE IV
AVERAGE ABSOLUTE ERROR OF TEMPERATURE ESTIMATION FOR ALL

SENSORS AND BENCHMARKS IF THE NUMBER OF PERFORMANCE
COUNTERS IS LIMITED TO SPECIFIC QUANTITIES

No. counters Abs. error (oC)
5 0.5000
10 0.0164
15 0.0031
20 0.0009
34 0.0009

E. Principal Components of Performance Counter Vectors

In Section III-A it was shown that combinations of perfor-
mance counter changes and thermal gradients can be combined
to estimate temperature changes. However, it has previously
been determined [27] that performance counter values are cor-
related, potentially leading to model instability. For example,
a branch miss prediction may lead to a pipeline flush which
impacts IPC. To explore the impact of this issue, experiments
were performed to replace the P i values in (3) and (4) with
uncorrelated principal components [28].

Principal component analysis (PCA) transforms an input
vector (in this case u performance counter values) into a new
vector set by multiplying the input values with a matrix of the
eigenvectors derived from the set, as shown in (12).

P ′1×u = P1×u ∗ C (12)

P1×u is the original vector of u performance counter values
collected from the processor and C is a coefficient matrix
of eigenvectors determined during model training. P ′1×u is
the principal component vector. In many cases, depending
on the eigenvalues of the original data set, some of the
P ′1×u set may be ignored, leading to a reduced dimension
vector P ′1×v . Rather than inserting P1×u performance counters
into the linear model in (5), the reduced dimension principal
component estimates are inserted instead. Since variables in
P ′1×v are orthogonal with each other, the multicollinearity
problem is eliminated.

Experimentation showed that the largest 14 principal com-
ponent estimates correspond to non-zero eigenvalues, but the
remaining 20 have eigenvalues close to zero. In general,
to maintain maximum accuracy, the number of principal
components (e.g. the dimension of v in P ′1×v) used in the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 8

0 1000 2000 3000 4000 5000 6000
0.26

0.27

0.28

0.29

0.3

0.31

fan speed (rpm)

β(
s)

β points
cubic fitting line

Fig. 8. One β model using cubic fitting for integer module (block 8 in Fig.
10)

model should include the number of non-zero eigenvalues, in
this case 14. Fig. 7 shows the thermal estimation error for
different numbers of principal components used in the model.
As expected, accuracy is improved as the number of principal
components is increased from 5 to 14. Principal component
count increases beyond this value do not improve accuracy.
To assess the benefits of PCA, the experiments described in
Section III-C were performed using the fourteen PCA values
in place of the thirty-four P i values as part of the xi vector
in (5) after model retraining. In all our experiments, the
estimated temperature results were nearly identical, indicating
the negligible effect of performance counter correlation. As
a result, the rest of our reported results use P i values in (5)
rather than PCA values.

F. Dynamic Model for Changing Cooling Conditions

In contemporary computer systems, a variety of cooling
technologies (e.g. fans, liquid) are used to efficiently remove
heat from the microprocessor and protect it from overheating.
Often, the amount of cooling (e.g. fan speed, fluid flow
speed) is dynamically adjusted based on a processor’s thermal
situation. As a result, the β parameters determined through
training in Section III-A are only valid for a specific cooling
amount. In systems with multiple cooling levels, effectively
(5) for thermal sensor i can be restated as:

∆T i = xi · βββ(s)
i (13)

where β(s) values have been determined using the training
method described in Section III-B for a specific cooling
amount (e.g. fan speed). In this case, β(s) training (Section
III-B) is performed at each cooling amount, s. In performing
calibration, the appropriate set of β(s) values can be used based
on the current cooling amount. The drawback of this method
is that it increases storage cost incurred by storing multiple
model parameters.

Although this multiple training approach can be effectively
used for multiple, discrete cooling amounts, it does not address
the issue of a large number of possible cooling amounts. The
model to dynamically adapt βββ(s) for an s which was not
previously trained can be achieved using curve fitting. Fig.
8 shows known β parameters determined through training for
integer scheduler as blue stars. The example shown in Fig.
8 exhibits a cubic fit. By building βββ(s) models, only a few
βββ parameters for specific s cooling amounts must be stored,
saving storage space.

IV. MULTI-SENSOR COLLABORATIVE
CALIBRATION ALGORITHMS (MSCCA)

Resource-limited thermal sensors, such as ring oscillators,
often are affected by noise due to process variation and gradual
device wear-out. As a result, their readings may drift away
from accurate values. In this section we show that sensor
readings can be combined with estimates derived using the
performance counter approach from the last section to generate
more accurate corrected temperature readings. Although it is
expected that sensor readings will track corrected readings
for long periods of time, if the reading for a specific sensor
significantly differs from its corrected readings for a number
of samples, the sensor can be recalibrated. In this section, to
determine accurate temperature values, estimated temperature
values obtained in Section III and readings taken from sensors
are merged using a Bayesian inference based algorithm. The
corrected temperatures can then be used for thermal calibra-
tion.

A. Problem Formulation

Bayes’ theorem presents the relationship between a known
(priori) probability distribution and a posterior probability
distribution; it is widely used for parameter inference. The
unknown parameter distribution is represented by p(θ), which
represents the prior knowledge of θ and the distribution of
random variable x for a given θ is p(x|θ). The distribution of
θ after an observation can be calculated using the following
formula.

p(θ|x) =
p(x|θ)p(θ)
p(x)

(14)

For our sensor calibration problem, the actual temperatures
of sensors are unknown attributes which are estimated by
Bayesian inference. The following definitions are used for the
formulation of the sensor calibration problem.

t and p(t) : the random vector of the actual temperatures
and its probability distribution;

r and p(r) : the random vector of the thermal sensor
readings and its probability distribution;

e and p(e) : the random vector of the estimated temperatures
and its probability distribution;

Σr: the covariance matrix of the random vector r;
Σe: the covariance matrix of the random vector e;
p(r|t): the probability distribution of the sensor readings

given the actual temperatures (sensor noise distribution);
p(t|r): the probability distribution of the actual tempera-

tures given the sensor readings (statistical inference after an
observation);

The probability distribution of the actual temperature t
is given by the following formula. Note that t and r are
multivariate random variables.

p(t|r) =
p(r|t)p(t)

p(r)
(15)

In the above equation, the priori knowledge of the actual
temperature distribution is p(t), which can be obtained via
thermal estimation discussed in Section III. So, the priori
knowledge is p(e). The posteriori inference of an actual
temperature after an observation is p(t|r).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 9

Since the temperature change rate is less than 0.1oC per
millisecond [16], we assume that the actual temperature keeps
constant during a 1 millisecond period. For today’s high
performance processors, this corresponds to several million
clock cycles and enough sensor and performance counter
readings can be obtained to perform the calibration algorithm.
The corrected temperature is defined as the expected value of
the conditional random vector t|r which is calculated by the
following equation.

µµµt = E(t|r) =

∫
t× p(t|r)dt (16)

The covariance matrix of the corrected temperature is given
as:

Σt = E[(t−µµµt)(t−µµµt)
′] (17)

The probability distribution can be characterized by collecting
a time series of sensor readings.

Because there are many factors, such as supply voltage,
process variation and ambient temperature fluctuation which
impact the sensor readings, the noise of a thermal sensor
follows a Gaussian distribution, i.e. r|t ∼ N (t, Σr). In the
Gaussian case, (16) and (17) have closed form representations
as follows [29].

µµµt = µµµe + Σe(Σe + Σr)
−1(r−µµµe) (18)

Σt = Σe −Σe(Σe + Σr)
−1Σ′e (19)

Thus, the expected actual temperature given r, (µt), and
its covariance (Σt) can be determined directly from sensor
readings and estimated temperature values from performance
counters.

B. MSCCA Algorithm

The goal of the MSCCA algorithm is to determine the
corrected temperature (µt) and covariance (Σt) for each
temperature sensor once per l samples. As seen in Algorithm
1, during each of l samples, temperature sensor readings r
and performance counter values are read. For the sample, the
sensor readings from all temperature sensors form a row in an
R matrix (line 8). Additionally, the performance counter values
are converted to estimated temperature changes for each sensor
using (5) (line 5). These temperature changes are added to the
estimated temperatures from the previous sample (line 6) and
the results for each sensor is stored in an E matrix (line 7).

After processing l samples, corrected temperature values for
each temperature sensor are determined (line 14) using (18)
and (19). Vectors r and µe used in the corrected temperature
calculation are determined from the columnwise mean of the
E and R matrices (lines 11 and 12). As noted in Section
III and shown in Fig. 5, the use of performance counters to
estimate temperature shows a strong relative match, although
an absolute offset for the actual temperature is often present.
To address this issue, a per-sensor offset value w is added to
each r reading. Although we found that w values are constant
for each sensor across time and across benchmarks, the values
are recalculated in the algorithm for consistency.

TABLE V
OPERATIONS REQUIRED BY MSCCA AND KALMAN FILTERING FOR p

SETS OF SAMPLE READINGS FOR 24 THERMAL SENSORS

Oper- Estim- MSCCA Approach KF Approach
ation ation corr. total corr. total
scalar 34p×24 p

l
(444l − 48) p

l
(1404l − 48) 0 816p

add.
scalar 34p×24 p

l
(300l + 48) p

l
(1260l + 48) 0 816p

mult.
mat. 0 p

l
p
l

2p 2p
add.
mat. 0 p

l
p
l

10p 10p
mult.
mat. 0 p

l
p
l

3p 3p
-vect.
mult.
mat. 0 p

l
p
l

p p
inv.
vector 0 p

l
p
l

3p 3p
add.

In our experimentation, calculation was performed over p
total samples with l samples per invocation. A total of p

l
invocations are used for the p sample set. As shown in Fig. 1,
temperature change estimation requires an initial temperature
profile of the silicon die which may not be available at run-
time. For initialization of the estimation approach, it is possible
to assign an arbitrary temperature to each thermal sensor or
to use thermal sensor readings as initial temperatures.

Algorithm 1 Multi-Sensor Collaborative Calibration Algo-
rithm – MSCCA

1: Initialize www ← 000.
2: Initialize temperature profile
3: while Invocation count ≤ p

l do
4: for i = 0; i < l; i++ do
5: Estimate ∆ temperatures determined from perfor-

mance counters using (5)
6: Add ∆ temperatures to previous corrected tempera-

tures and get updated temperature profile.
7: Store the updated temperatures as a row in E matrix.
8: Store sensor readings as a row in R matrix.
9: end for

10: Adjust R matrix by adding offset www to each row.
11: The vector r is the columnwise mean of R.
12: The vector µµµe is the columnwise mean of E.
13: Calculate the covariance matrices Σr and Σe.
14: Perform Bayesian inference using Equations (18) and

(19), and get the corrected temperature µµµt.
15: www ← µµµt - r.
16: end while

C. Computational Cost Evaluation

This section analyzes the computational complexity of the
MSCCA approach and compares it with the complexity of
using Kalman filtering to generate corrected temperatures
for thermal sensors. Although a full discussion of the KF
algorithm for temperature estimation can be found in [18],
we provide a brief overview of the required operations here.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 10

The KF approach requires two estimation steps to convert
performance counter values to estimated temperature. First,
the power consumption of individual functional units is de-
termined using a linear set of equations which have been
determined via linear regression [17]. Per-functional unit
power values are then converted to estimated temperature
via a second set of linear equations [18] whose derivation
require the difficult approximation of thermal resistance and
capacitance for on-chip functional units. To develop corrected
temperature values from estimates and sensor readings, KF
then uses cross correlation with previously-determined noise
values to merge the estimates and readings together. Unlike our
approach, where corrected temperatures are generated every
l samples, KF requires corrected temperature evaluation for
every sample, a significant time penalty. Thus, our approach
has two significant practical benefits versus KF:
• Estimated temperatures are determined directly from per-

formance counter values rather than requiring power as
an intermediate value. The elimination of power as a
transition metric also eliminates the need for complicated
thermal resistance and capacitance calculation.

• MSCCA requires many fewer operations and can be
performed less frequently reducing run time.

.
The computational cost for MSCCA and KF approaches

(not considering model training which takes place only once
at design time) can be broken down into two parts: temperature
(or power) estimation and temperature correction. The compu-
tational cost of the power estimation for KF and temperature
estimation for MSCCA is the time required to calculate a
linear combination of scaled performance counter values. As
a result, the estimation complexity is O(np), where n is the
number of performance counters and p is the number of sample
sets. The estimation column in Table V shows the number
of operations needed to perform this estimation (thermal for
MSCCA and power for KF). There are n = 34 performance
counters included in our linear regression model, so we specify
complexity in terms of this value.

The MSCCA approach stores samples and performs
Bayesian estimation once per l time steps. Table V shows the
number of operations performed for p sets of readings. For
the MSCCA, l time instances (sets) of readings per invocation
are used. As noted in the previous subsection, calibration can
be simultaneously performed for multiple consecutive sensor
readings for each sensor in one invocation. In our implementa-
tion, there are m=24 thermal sensors, so the matrix dimensions
of Σr and Σe are 24×24. If the matrix operations are converted
to scalar operations, there are about 150, 000p additions and
150, 000p multiplications required for the KF method. In our
method, the numbers of additions and multiplications are about
p
l (1404l + 14, 000) and p

l (1260l + 14, 000).
In contrast, KF-based algorithms predict and update the

temperature for each set of sample readings, resulting in
more matrix operations. In Table V, the 34p scalar operations
for KF represent the operations to convert power estimates
to temperature estimates for a single sensor. The remaining
operations represent merging computations for temperature
estimates and temperature sensor readings.

D. Memory Cost Evaluation

Since samples must be stored in matrices for a period
of time before they are processed, MSCCA does require
more memory usage than the KF-based approach. In general,
the KF approach does not require storage for the power
estimates and sensor reading samples. At each time step,
the thermal sensor samples (sensor readings) and temperature
estimates determined from power estimations are used to
update temperatures, and then these samples are thrown away.
The MSCCA approach must store thermal sensor samples R
and temperature estimates E for l samples in memory until the
next MSCCA evaluation. As a result, the memory complexity
for the KF approach is O(1) and for MSCCA is O(ml). In our
experiments, l is several hundred and m = 24 sensors are used.
So the memory storage of samples is around several kilobytes.

E. Implementation Issues

The use of thermal calibration raises concerns about over-
burdening the hardware and operating system of the target
processor. However, the nature of our calibration approach
and recent trends in on-chip monitoring for microprocessors
lessen this concern. In general, thermal sensor calibration is
expected to be performed once every few seconds, rather
than milliseconds. In Section VI, it is shown that algorithm
execution time is on the order of tens of milliseconds for
evaluation that is performed every ten seconds. This overhead
limits the operating system and processor-level power and
temperature impact of the algorithm itself.

Independent of this overhead limit, recent trends indicate
that microprocessors increasingly include dedicated circuitry
to perform monitoring and monitor data processing which is
separate from the main OS/processor compute platform. For
example, IBM EnergyScale [2] uses temperature and critical
path monitors along with a microcontroller for sensor data
processing. Intel’s Active Management Technology provides
a separate on-chip communications channel and controller
to monitor device operation and control system responses
at the operating system level. Often, these monitoring and
monitor data processing infrastructures can be quite small
compared to the main processing infrastructure (e.g. 0.2%
of overall processor area [30]), limiting system performance
impact. These effects can be weighed against the benefits of a
more accurate DTM approach due to improved thermal sensor
calibration.

V. INFRASTRUCTURE AND EXPERIMENTAL APPROACH

In this work, a simulation-based method is employed for
data collection, model construction and verification. Our dy-
namic sensor calibration strategies are verified with the data
from simulation. In this section, we describe the two simula-
tors used by this work and other experimental infrastructure.

A. Architectural Simulator

We use the SESC simulator [23] as the infrastructure for
collecting system statistics. SESC is a cycle-accurate simulator

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 11

HotSpot SESC Simulator

Golden

Temperature
System Statistics

Sensor Readings
Estimated

Temperature

Corrected

Temperature

Spatial&Temporal

Noise

Thermal Estimation

 Model

Merging Algorithm

Fig. 9. Sensor data and thermal estimation merging scheme. Sensor readings
are artificially generated shown in the left flow; Estimated temperature from
performance counter are obtained by the right flow.

Fig. 10. Floorplan of the Athlon 64 processor [31]

which models a full out-of-order pipeline with branch predic-
tion, caches, buses, and other components of a modern pro-
cessor. It can also report power traces of system components
which are used for thermal simulation. The simulator was
modified to support the on-the-fly dumping of performance
counter recordings which are synchronized with power traces.

The SESC simulator provides abundant system statistics for
architectural analysis. Table I lists a subset of these statistics.
Some simulation-related metrics, e.g. simulation speed, are
not used in our strategy since it would not be available to
a typical many-core user at run-time. The selection of perfor-
mance counters is critical for achieving a good temperature
estimation. Performance counters that give little correlation
with temperature for most functional units are excluded from
the estimation. The performance counter selection procedure
involves a select-and-test iteration during the model training
period, i.e. train the model using a set of selected performance
counters and perform a cross-benchmark test (different bench-
marks are used for training and testing) on the trained model.

During linear model training for β parameters and for
model verification, SESC is used to record the power trace
for applications. This information is used by HotSpot [24],
a thermal simulator, to determine actual temperatures that
can be used for training or for comparisons versus thermal
estimates to verify our approach (Section V-B). However, since
only dynamic power consumption is reported by the simulator
and static leakage power accounts for a non-negligible part
of total power dissipation for submicron technology nodes
(about 40% for our chosen node of 45 nm), we add a static

power estimate to the SESC power estimate for each functional
unit. First, a dynamic power trace of all function units for a
specific application is generated. A percentage of processor
dynamic power (40% based on the prediction for 45 nm) is
used to estimate static power and a portion of this power is
added to the dynamic power trace for each functional unit
(proportional to area). To account for the effects of temperature
on static power, the power trace is fed to HotSpot and thermal
simulation is performed. The static power for each functional
unit is then adjusted using thermal dependency linearization
[32]. A combination of the adjusted static power and the
dynamic power is then used for model training and verification
using HotSpot. We have found that the effects of temperature-
dependent static power are small over the temperature change
range considered.

B. Thermal Simulator

The HotSpot simulation tool, which takes power traces from
SESC, target processor geometry and material parameters as
inputs, is used to generate accurate ”golden” temperatures.
As mentioned in the previous subsection, it is assumed that
the HotSpot generated temperature values are the actual
temperatures considering the sophisticated thermal diffusion
model implemented by HotSpot (Fig. 9). An AMD Athlon64
processor is used to assess our approach. The floorplan of
AMD Athlon64 processor is shown in Fig. 10. The processor
includes 24 functional blocks, each of which is labeled in the
figure. Each block contains a thermal sensor. According the
processor specification of AMD Athlon 64 fabricated under
130 nm SOI technology, the reported die size is 193 mm2

[33]. After technology scaling, the area of the processor is
estimated to be 24 mm2 in 45 nm technology. The frequency
of the processor is configured at 1 GHz in simulation and the
overall initial temperature of the processor is set to 50oC.

C. Spatial and Temporal Noise

Variations in sensor accuracy across temperature sensors on
the die (spatial noise) is mainly caused by process variation
which is relatively static, so we consider spatial noise to
be constant for short time periods (several hours). Unlike
spatial noise, variations in a specific sensor’s accuracy over
time (temporal noise) is caused by environmental effects like
voltage and ambient temperature fluctuation, so its value varies
for each temperature sample.

VI. RESULTS

For training and verification of our new calibration approach
and for comparison to KF, we use the applications listed
in Table VI from the SPEC2000 and SPLASH-2 benchmark
suites. SPEC2000 is an industry-standardized CPU-intensive
benchmark suite which include both integer and floating point
applications. To diversify the test benchmarks, we mixed
SPEC2000 and SPLASH-2 in the same test sets. These bench-
marks were randomly divided into four sets: Set I, Set II,
Set III and Set IV. Our thermal estimation model (β values)
was trained using benchmark sets I and II. Our models and
algorithms are verified with the remaining sets.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 12

TABLE VI
BENCHMARKS USED IN EXPERIMENTAL EVALUATION

Suite Name Set I Set II Set III Set IV

SPEC2000 CINT bzip2, crafty, gzip gap, gcc mcf vortex parser, twolf, vpr
SPEC2000 CFP equake, mgrid mesa, sixtrack, wupwise swim, art, apsi ammp, applu

SPLASH2 volrend, cholesky, raytrace lu, water-nsquared, fmm radiosity, ocean, radix barnes, fft, water-spatial

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

Time 0 sec

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

65

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

Time 1 sec

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

Time 2 sec

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
40

45

50

55

60

65

Sensor ID

te
m

pe
ra

tu
re

 (
 o C

)

Time 3 sec

MSCCA Actual Sensor reading KF approach

Fig. 11. The estimated and actual processor temperature profile at four time instances. Each of the 24 thermal sensors in the processor (one per functional
component) are represented on the horizontal axis for the time instance. The numbered components of AMD processor can be found in the floorplan of Fig.
10. The data was collected through simulation by running bzip2 on SESC. Other benchmarks show similar convergence rates and temperature results.

0 1 2 3 4 5 6
50

60

70

80

time (second)

te
m

pe
ra

tu
re

 (
 o C

)

Integer scheduler

0 1 2 3 4 5 6
40

50

60

time (second)

te
m

pe
ra

tu
re

 (
 o C

)

L1 data cache

0 1 2 3 4 5 6
40

50

60

70

time (second)

te
m

pe
ra

tu
re

 (
 o C

)

Floating point scheduler

Corrected temperature
using MSCCA Actual temperature

Sensor reading with
spatial and temporal noises

Sensor reading only with
spatial inaccuracy

Fig. 12. Temperature tracking over 6 seconds for thermal sensor 8 (integer scheduler), 15 (L1 data cache) and 20 (floating point scheduler) in Fig. 10 running
the twolf benchmark.

0 0.5 1 1.5 2
50

60

70

80

time (second)
(a)

te
m

pe
ra

tu
re

 (
 o C

)

0 0.5 1 1.5 2
50

60

70

80

time (second)
(b)

te
m

pe
ra

tu
re

 (
 o C

)

0 0.5 1 1.5 2
50

60

70

80

time (second)
(c)

te
m

pe
ra

tu
re

 (
 o C

)

Corrected

Actual

Sns reading

Fig. 13. (a) Temperature tracking with 800 rpm fan speed. (b) Temperature tracking with 2800 rpm fan speed. (c) Temperature tracking with 4800 rpm fan
speed. All three experiments use the benchmark volrend.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 13

A. Effectiveness Verification

In a first series of experiments, the thermal profiles for
the AMD Athlon 64 were determined using Algorithm 1.
For these experiments, the standard deviation of temporal
and spatial noises were both set to 4oC and 6000 total time
instances of readings were processed. MSCCA uses l=100
time instances per invocation. In Fig. 11, we demonstrate
the thermal profile of the AMD Athlon 64 processor for
the bzip2 benchmark. The horizontal axis represents thermal
sensors for each functional block in Fig. 10. In the figure,
the actual temperature, sensor readings (only spatial noise
is shown for clarity but the experiment is performed with
both spatial and temporal noises), corrected temperature from
the KF-based implementation, and corrected temperature from
MSCCA using thermal estimates from performance counters
are plotted. It is apparent that both methods effectively reduce
the sensor reading errors: the sum of the square errors of all
sensors for the corrected readings is much smaller than that
of sensor readings.

Although corrected temperatures initially differ from actual
temperatures due to incorrect initial estimates of temperature,
the corrected temperatures determined by MSCCA quickly
converge. In both the MSCCA and KF cases, the thermal
profile is recovered after synthesizing two data sources (the
estimated temperature and sensor readings in the MSCCA
case, the statistical characteristics of the power dissipation
and sensor readings in the KF case). The MSCCA case has
the benefit of faster calculation (contrasted in Section VI-E)
and a much simpler model training process (no power-to-
temperature model needed).

B. Temperature Tracking Using MSCCA

Fig. 12 shows the temperature tracking results for three ther-
mal sensors: Sensor 8 (integer scheduler), Sensor 15 (L1 data
cache) and Sensor 20 (floating point scheduler). The results
from other sensors are similar. For each sensor, four curves are
plotted in the figure: the actual temperature, MSCCA corrected
temperature, noisy sensor readings and noisy sensor reading
with temporal noise pruned out. Since we assume that the
spatial noise does not change in a short time period, the green
curve has a constant offset from red curve. The simulation
lasts for 6 seconds and the initial temperatures for all sensors
are randomly generated.

Although the actual initial temperatures for the three sensors
are not 50oC, MSCCA estimation results were generated using
this initial value. Estimated temperature values converge to the
actual temperature over time. The figure indicates that sensors
8 and 20 show good calibration accuracy since the estimation
curves are closer to the actual curves than the sensor reading
curves.

Fig. 13 shows temperature tracking results with different
fan speeds, 800, 2800 and 4800 rpm respectively. A different
set of βββ parameters are used for each fan speed, as discussed
in Section III-F. The thermal model can effectively track the
actual temperature values for all fan speed values, as expected.

mcf vortex swim art apsi radiosity ocean radix twolf vpr ammp applu barnes fft water−spatial
0

2

4

6

8

10

(a)

m
ea

n
ab

s.
 e

rr
or

 (
 o C

)

sensor readings MSCCA[20] MSCCA KF

mcf vortex swim art apsi radiosity ocean radix twolf vpr ammp applu barnes fft water−spatial
0

1

2

3

4

5

(b)

st
d.

 d
ev

. (
 o C

)

sensor readings MSCCA[20] MSCCA KF

Fig. 14. (a) The average absolute error for sensor readings, temperatures
generated with MSCCA, and with KF (b) The standard deviation of errors for
sensor readings, temperatures generated with MSCCA, and KF approaches.

TABLE VII
THE STANDARD DEVIATION OF THE ERROR FOR THE CORRECTED

TEMPERATURES OVER 10,000 TIME INSTANCES FOR INCREASING SENSOR
ERROR

Time instances Std dev of sensor error oC
per invocation l 2 4 6 8
100 0.1059 0.1575 0.2047 0.2798
200 0.1137 0.1663 0.2159 0.2935
300 0.1203 0.1711 0.2241 0.3040
400 0.1276 0.1732 0.2284 0.3093
500 0.1311 0.1819 0.2372 0.3187

C. Estimation Error Comparison

The experiments in the previous subsection qualitatively
show the effectiveness of dynamic sensor calibration using
data fusion. In this section, the error of the MSCCA approach
is quantitatively evaluated. Fig. 14 shows the average absolute
error and the standard deviation of the errors for original
sensor readings, MSCCA in [20], MSCCA in this paper, and
the KF approach. In [20], absolute T rather than ∆T values
were determined using (5). The MSCCA [20] results in Fig.
14 were determined using the same training set as the new
MSCCA algorithm. The spatial noise added to sensor readings
is Gaussian with standard deviation 6oC and the temporal
noise is Gaussian with 4oC standard deviation.

In Fig. 14(a), the average absolute error is reduced by
5oC (from 6oC to 1.2oC) with respect to the original sensor
readings. In Fig. 14(b), the standard deviation of the error is
reduced by a factor of 10 (from 3oC to 0.2oC) from the
original sensor readings with limited computational effort.

D. Impact of Sensor Reading Noise

The standard deviation of the errors of the corrected tem-
perature increases as the noise of the sensor readings becomes
larger. The experiments in Section VI-C were repeated, this
time with varying amounts of noise in the sensor readings.
Experiments of 10,000 time instances each were performed.
To better evaluate the effect of noise, one set of 10,000
random noise values was determined for each noise amount
(e.g. each column in Table VII). These values were added to
read values and the results are used for comparison across
configurations. The table shows the standard deviations of
corrected temperatures for sensor readings with four different

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2014 14

sensor noise levels. As predicted, the less accurate the sensor
readings are, the larger error seen in the corrected temperature.

E. Run Time Comparison

Table VIII shows the total run time including both tem-
perature estimation and correction for both MSCCA and KF
approaches. The total number of samples is 10K, collected
in 10 seconds. The total run time per sampling interval for
MSCCA is <0.004 sec for MSCCA and about 0.2 sec for
the KF-based approach. As seen in the table, the run time
of MSCCA decreases as the number of time instances per
MSCCA invocation increases and it remains constant for
the KF approach since corrected temperature calculation is
performed for each sample.

TABLE VIII
RUN TIME COMPARISON (IN SECONDS) BETWEEN MSCCA AND KF

APPROACHES FOR 10000 TIME INSTANCES

Instances/invocation 100 200 400 500 1000

MSCCA run time 0.0387 0.0301 0.0242 0.0228 0.0169
KF run time 1.9076 1.912 1.9289 1.9133 1.8946

VII. CONCLUSION

In this research, an on-line model is presented to estimate
temperatures of multiple sensor locations on the silicon die
using information from performance counters. By merging
noisy sensor readings and these estimated temperatures using
our new MSCCA algorithm, corrected temperature readings
for thermal sensors are achieved. Our strategy is evaluated
using SPLASH-2 and SPEC2000 benchmarks suites. Results
show that the strategy can effectively recalibrate sensor read-
ings in response to inaccuracies caused by process variation
and environmental noise. The average absolute error of the
corrected sensor temperature readings is < 1.5oC and the
standard deviation of error is less than < 0.5oC for tested
benchmarks. Our overall estimation and correction run time
is significantly reduced versus Kalman filtering technique (at
least 50× faster) to make our strategy favorable for real time
implementation. Future work includes the development of an
improved approach to integrate temperature-dependent leakage
into our temperature sensor calibration approach.

REFERENCES

[1] D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” in International Symposium on High
Performance Computer Architecture, Jan. 2001, pp. 171 –182.

[2] M. Floyd, et al., “Adaptive energy-management features of the IBM
POWER7 chip,” IBM Journal of Research and Development, vol. 55,
no. 3, pp. 8:1–8:18, 2011.

[3] E. Rotem, et al., “Power management architecture of the 2nd generation
Intel core microarchitecture, formerly codenamed Sandy Bridge,” in Hot
Chips, August 2011.

[4] S. Remarsu and S. Kundu, “On process variation tolerant low cost
thermal sensor design in 32nm CMOS technology,” in ACM Great Lakes
Symposium on VLSI, May 2009, pp. 487–492.

[5] H. Hamann, et al., “Hotspot-limited microprocessors: Direct temperature
and power distribution measurements,” IEEE Journal of Solid-State
Circuits, vol. 42, no. 1, pp. 56–65, Jan. 2007.

[6] Y. Zhang and A. Srivastava, “Adaptive and autonomous thermal track-
ing for high performance computing systems,” in ACM/IEEE Design
Automation Conference, Jun. 2010, pp. 68 –73.

[7] C. Lian, et al., “Development of a flexible chip infrared (IR) thermal
imaging system for product qualification,” in Semiconductor Thermal
Measurement and Management Symposium, 2012, pp. 337–343.

[8] S. Reda, “Thermal and power characterization of real computing de-
vices,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 1, no. 2, pp. 76 –87, June 2011.

[9] B. Datta and W. Burleson, “Calibration of on-chip thermal sensors using
process monitoring circuits,” in International Symposium on Quality
Electronic Design, March 2010, pp. 461 –467.

[10] F. Liu, “A general framework for spatial correlation modeling in VLSI
design,” in IEEE/ACM Design Automation Conference, Jun. 2007.

[11] R. Cochran and S. Reda, “Spectral techniques for high-resolution
thermal characterization with limited sensor data,” in ACM/IEEE Design
Automation Conference, July 2009, pp. 478–483.

[12] J. Ranieri, et al., “Eigenmaps: Algorithms for optimal thermal maps
extraction and sensor placement on multicore processors,” in IEEE/ACM
Design Automation Conference, 2012, pp. 636–641.

[13] H. Zhou, et al., “An information-theoretic framework for optimal temper-
ature sensor allocation and full-chip thermal monitoring,” in IEEE/ACM
Design Automation Conference, 2012, pp. 642–647.

[14] A. Kumar, et al., “System-level dynamic thermal management for high-
performance microprocessors,” IEEE Trans. on CAD, vol. 27, no. 1, pp.
96 –108, Jan. 2008.

[15] K.-J. Lee and K. Skadron, “Using performance counters for runtime
temperature sensing in high-performance processors,” in IEEE Int’l
Parallel and Distributed Processing Symp., April 2005, p. 232.

[16] S. Sharifi and T. Rosing, “Accurate direct and indirect on-chip temper-
ature sensing for efficient dynamic thermal management,” IEEE Trans.
on CAD, vol. 29, no. 10, pp. 1586–1599, Oct. 2010.

[17] M. Powell, et al., “CAMP: A technique to estimate per-structure power
at run-time using a few simple parameters,” in IEEE Int’l Symp. on High
Performance Computer Arch., Feb. 2009, pp. 289–300.

[18] Y. Zhang and A. Srivastava, “Accurate temperature estimation using
noisy thermal sensors for Gaussian and non-Gaussian cases,” IEEE
Transactions on VLSI, vol. 19, no. 9, pp. 1617 –1626, Sept. 2011.

[19] ——, “Accurate temperature estimation using noisy thermal sensors,” in
ACM/IEEE Design Automation Conference, Jul. 2009, pp. 472 –477.

[20] S. Lu, R. Tessier, and W. Burleson, “Collaborative calibration of on-chip
thermal sensors using performance counters,” in Proc. of the IEEE/ACM
Int’l Conf. on CAD, Nov. 2012, pp. 15–22.

[21] W. Wu, L. Jin, J. Yang, P. Liu, and S.-D. Tan, “A systematic method
for functional unit power estimation in microprocessors,” in ACM/IEEE
Design Automation Conference, Jul. 2006, pp. 554 –557.

[22] S. Woo, at al., “The SPLASH-2 programs: characterization and method-
ological considerations,” in Proc. Int’l Symp. on Computer Arch., 1995.

[23] Jose Renau, et al., “SESC simulator,” January 2005,
http://sesc.sourceforge.net.

[24] “Hotspot,” http://lava.cs.virginia.edu/HotSpot/.
[25] D. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4, no. 3, pp.

415–447, May 1992.
[26] R. M. Neal, Bayesian Learning for Neural Networks. Secaucus, NJ,

USA: Springer-Verlag New York, Inc., 1996.
[27] R. Cochran and S. Reda, “Thermal prediction and adaptive control

through workload phase detection,” ACM Trans. Des. Autom. Electron.
Syst., vol. 18, no. 1, pp. 7:1–7:19, Jan. 2013.

[28] R. Johnson and D. Wichern, Applied Multivariate Statistical Analysis.
Prentice Hall, 2007.

[29] E. Elnahrawy and B. Nath, “Cleaning and querying noisy sensors,” in
Int’l Conf. on Wireless Sensor Networks and Apps., Sep. 2003.

[30] J. Zhao, et al., “A dedicated monitoring infrastructure for multicore
processors,” IEEE Transcations on VLSI, vol. 19, no. 6, pp. 1011–1022,
Jun. 2011.

[31] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau, “Power model
validation through thermal measurements,” in International Symposium
on Computer Architecture, Jun. 2007, pp. 302–311.

[32] Y. Liu, R. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in
Design, Automation and Test in Europe, 2007.

[33] “Athlon 64 Clawhammer,” http://www.cpu-world.com/.

