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ABSTRACT
Thermal sensors are currently deployed in processors to col-
lect thermal information for dynamic thermal management
(DTM). The calibration cost for thermal sensors can be pro-
hibitively high as the number of on-chip sensors increases.
We propose an on-line multi-sensor calibration method which
combines potentially inaccurate temperature values obtained
from two sources: temperature readings from thermal sen-
sors and temperature estimations using system performance
counters. A data fusion strategy based on Bayesian infer-
ence, which combines information from these two sources, is
demonstrated along with a temperature estimation approach
using performance counters. The approaches are verified via
simulation for an AMD Athlon 64 processor with 24 on-chip
temperature sensors scaled to a 45nm technology node. Our
results show that the standard deviation of temperature sen-
sor measurement errors can be reduced from 3 ∼ 4 oC to ≤ 1
oC using the proposed method. Additionally, our MATLAB
implementation shows that the new approach runs at least
67x faster than competing approaches based on Kalman fil-
tering making it highly appropriate for run-time use.

1. INTRODUCTION
Thermal management is a critical problem for modern pro-
cessors due to high transistor density. This characteristic
increases power consumption and heat density in a small
silicon area causing performance degradation and decreased
system reliability. As a result, dynamic thermal and power
management strategies are often employed to tackle run time
thermal and power issues [2][7]. On-chip thermal sensors de-
ployed in processors are currently used to assist DTM and
recent trends indicate increased future use to assess thermal
gradients.

The efficiency and effectiveness of a DTM strategy relies on
accurate thermal sensor temperature measurements. Two
challenges exist in using these sensors: (1) detecting if a
sensor is providing erroneous readings and (2) recalibrating
the sensor, if necessary. Our focus in this work is the sec-
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ond challenge. Often, thermal sensor calibration involves
performing thermal imaging using an infrared camera while
capturing the physical readings of thermal sensors [6]. As
the sensor count on a silicon die increases, the per-chip cal-
ibration cost can be prohibitively high, leading to on-chip
thermal sensor use without individual sensor calibration.
The temperature reading error of these uncalibrated thermal
sensors can be substantial (up to 34 oC at 95 oC [13]) which
adversely impacts DTM strategy. Even if thermal sensors
are initially well-calibrated, their readings gradually drift
away from actual temperature values due to device wear-out
and recalibration is needed to regain the required accuracy.
In general, it is not practical to perform in-field calibration
with thermal imaging since end users typically do not have
expensive calibration equipment.

The first contribution of this paper involves fast on-chip tem-
perature estimation at run time using system performance
counters. A linear model is built to estimate the local tem-
perature at a specific location on the chip by including infor-
mation gathered from system performance counters. In this
paper, the term estimated temperature is exclusively used
to refer to a temperature obtained from thermal estimation
using performance counters. Experimental results from a
collection of benchmarks show that our model can estimate
the relative temperature differences across sensors with very
good accuracy (a correlation coefficient between the actual
and estimated thermal profile ≥ 0.9 ). Unlike other tech-
niques that use performance counters to assist in tempera-
ture estimation [15][18], our approach does not require the
use of power traces derived from performance counter infor-
mation, simplifying our approach.

Our second contribution is a multi-sensor collaborative cali-
bration algorithm (MSCCA) which combines estimated tem-
perature profiles and sensor readings from multiple sensors
to obtain more accurate temperature values for individual
sensors. Corrected temperature values obtained from the
MSCCA algorithm are used for thermal sensor calibration.
The Bayesian inference technique integrated into MSCCA
utilizes the implicit spatial correlation of estimated temper-
atures to correct sensor reading errors. An increased number
of on-chip sensors provides increased MSCCA accuracy since
more spatial correlation information is captured within the
estimated temperatures.

To validate our algorithm, architectural and thermal sim-
ulators are used to collect performance counter and tem-



perature values, respectively. Results show that the mean
error of thermal sensor readings can be effectively reduced to
≤ 1 oC and the standard deviation of the errors in the cor-
rected temperatures is reduced to an acceptable level (from
3 ∼ 4 oC to ≤ 1 oC). For comparison, the computational
complexity and estimation accuracy of our new approach is
evaluated against another method which is based on power
estimation and Kalman filtering [18]. Our results show that
the new calibration strategy has comparable accuracy but is
more efficient (at least 67x faster).

This paper is organized as follows. Background and related
work on sensor calibration and thermal estimation are dis-
cussed in Section 2. The thermal estimation scheme using
performance counters is presented in Section 3. Section 4
describes the proposed algorithm for combining thermal es-
timation and sensor readings. Section 5 describes the exper-
imental approach for verifying the effectiveness of thermal
estimation and calibration. Experimental results are pre-
sented in Section 6. Section 7 concludes the paper.

2. BACKGROUND
On-chip thermal sensors determine temperature by measur-
ing related physical quantities, e.g. frequency and voltage,
and converting them to temperature values. The calibra-
tion of thermal sensors finds parameters for the mapping of
physical quantities to temperature [12]. Three main calibra-
tion techniques exist. The first and most traditional way
of calibrating on-chip thermal sensors measures the thermal
profile of a running chip using thermal imaging technologies
and reports the sensor readings at that time instant. The
model parameters can then be obtained by solving a series of
equations or by using statistical parameter inference. Usu-
ally, the calibration cost associated with this approach is
very high since every chip experiences a different thermal
imaging response and the amount of effort increases with
the number of on-chip thermal sensors.

The second calibration technique uses design-for-calibration.
This approach is implemented by integrating dedicated hard-
ware circuits on chip which monitor the process variation
around the thermal sensors [4]. With the knowledge of the
chip process variation, the errors in thermal sensor readings
can be compensated and model parameters can be optimized
to reflect the physical relationship between the temperature
and physical quantities. Since the process variation mon-
itoring hardware consumes silicon real estate, it raises the
chip cost when a large number of sensors are integrated.

A third calibration approach uses accurate on-chip thermal
estimation instead of thermal imaging to determine actual
temperatures. In Liu [9] and Cochran and Reda [3], the
authors describe methods to construct spatial correlation
models from measurement data which can then be used to
recover the full chip temperature profile. Since the measure-
ments are subject to noise, the specific amount of error at
each sensor can be difficult to determine. As a result, most
recent approaches for sensor calibration use a combination
of sensor readings and other on-chip information to calibrate
sensors.

Kumar, et al. [7] use the performance counters in an In-
tel Pentium-4 processor to estimate the overall chip tem-

perature. For multiple sensor calibration, it is necessary
to estimate the temperature at the micro-architectural level
due to thermal gradients within the silicon die, so an es-
timation strategy with finer granularity is needed. Lee, et
al. [8] proposed a run-time temperature sensing strategy
using performance counters in high-performance processors.
In this strategy, performance counters are used to estimate
the power dissipation for each hardware component and the
estimated power traces are then used to estimate the tem-
perature trace based on the thermal model implemented in
a thermal simulator. The mapping from power to tempera-
ture requires a complex thermal model which characterizes
the thermal RC network of the given chip. In two recent
papers [15][18], two sources of temperature information are
combined: (1) noisy sensor readings and (2) localized power
consumption which can be related to temperature. The tech-
nique used to integrate data from these two data sources is
Kalman filtering (KF). Although power traces can be ac-
curately estimated at run time [11], a thermal RC model
is required to determine the mapping coefficients required
to convert power dissipation to temperature in the predic-
tion step of KF approaches. Unfortunately, the derivation
of this model is not trivial due to the complexity of silicon
materials. KF based approaches have shown the ability to
track the temperature profile of a chip at a high computa-
tional cost since KF is performed each time a temperature
estimation is made.

Like the other approaches mentioned in the previous para-
graph, the calibration method developed for this paper fits
into the third category of calibration approaches. Unlike
previous techniques, we directly use information from per-
formance counters for temperature estimation rather than
using power consumption as an intermediate value for con-
version between performance counter information and tem-
perature.

Although the collaborative calibration of a number of sen-
sors on a silicon die using performance information from
multiple sensors is a new challenge, similar problems have
been studied in the wireless sensor network community for
years. For example, a Bayesian inference method was em-
ployed to reduce the noise of sensor data [5]. The approach
combines a priori knowledge of the expected reading, the
noise characteristics of the sensors, and an observed noisy
reading to obtain a more accurate reading estimate. White-
house, et al. [16] formulated the calibration of a large sensor
network into a parameter estimation problem. They de-
termined that micro-calibration (the calibration of sensors
one-by-one) is sometimes problematic due to the lack of a
calibration interface and unobservable environments. Thus,
the need for macro-calibrations (collaborative calibrations)
which utilize the correlation among sensors arises.

3. THERMAL ESTIMATION USING PER-
FORMANCE COUNTERS

In a microprocessor, performance counters monitor run time
system statistics, such as the load/store rate, branch predic-
tion miss rate, amount of cache misses, and instructions per
cycle (IPC), among others, for various system management
purposes. Since these statistics contain the activity informa-
tion of functional units in the processor, they can be used to
estimate the power consumption at a per-structure granu-



Table 1: Correlation between integer scheduler temperature and performance counters for velosity

IPC Branch Rate Load Rate Store Rate L1I Miss Rate L1D Miss Rate ROB FP
0.755 -0.721 -0.390 -0.279 -0.057 -0.610 0.279 -0.302

Instr.# Iwin Int Rate Replay Rate BPred Hit Rate LD Forward MemAcc STQ
0.994 0.397 0.601 -0.382 0.198 0.925 -0.926 -0.668

larity using linear regression [11] or unit power consumption
[8][17]. Unlike power consumption estimation, functional
unit temperature estimation is more complex due to inter-
component correlation resulting from heat flow across the
chip. Consequently, the units surrounding an active unit
could have relatively high temperature even though they
are in inactive states. The area difference between func-
tional units further complicates the problem because two
units may have different temperatures even they have the
same power consumption.

By virtue of these complexities, the temperature at a specific
position on the chip is generally not linearly related to one
particular performance counter, so it is not possible to con-
struct a thermal map using a few independent performance
counters. Table 1 shows the correlation coefficients between
the temperature at the center of the integer scheduler and a
subset of system performance counters determined by run-
ning the velosity benchmark on the SESC simulator [14].
Here, performance counters values and temperatures are
generated from the architectural simulator SESC and ther-
mal simulator HotSpot [1], respectively. From the table, it
is apparent that most of coefficients are around 0.5 away
from the values of 1 or -1, which represent a linear corre-
lation. However, performance counters are correlated with
each other. A sampling of counter pair correlations is shown
in Table 2.

Table 2: Correlation between performance counters

IPC/ld IPC/st ld/st FP/Int DMiss/ld ROB/IPC
-0.776 -0.305 0.561 -0.873 0.809 -0.691

The non-linear impact of performance counter correlation on
temperature can be illustrated via a simple example (Note:
the real relationships generally are more complex). Consider
two performance counters, x and y, that are quadratically
related, as shown in Equation (1).

y = α1x+ α2x
2 (1)

Also, the temperature, T , has a closed form representation
based on these two variables given by the following equation.

T = γ1x+ γ2x
2 + y (2)

By replacing x2 in Equation (2) with a reordered version of
Equation (1), the following linear representation is obtained,
where A and B are determined by Equation (4).

T = Ax+By (3)

A = γ1 − α1γ2/α2 and B = 1 + γ2/α2 (4)

Effectively, since α and γ are constant, temperature can be
approximated with a linear representation. Although this
example is trivial compared to actual on-chip thermal anal-
ysis, it provides a basis for our model derivation in the next

section assuming a sufficient amount of performance coun-
ters are available to be used to provide accuracy.

3.1 Linear Model for Temperature Estimation
A linear model can be built using values from system per-
formance counters located in various locations in the pro-
cessor to estimate the temperature of a specific unit in the
processor, as shown in the following example for an integer
scheduler (T IS). In the following equation, Mij is the value
of performance counter j at time instance i. T IS

i is the es-
timated temperature at time instance i using these counter
values. The coefficients, βIS

j , are determined in the model
training phase which will be discussed in Section 3.3.

T IS
i = βIS

0 + βIS
1 Mi1 + βIS

2 Mi2...+ βIS
k Min (5)

The above equation can be rewritten in matrix form, as
shown in Equation (6), to represent thermal estimation for
multiple locations. At time instance i, Ti is an m×1 column
temperature vector and Mi is a n × 1 column performance
counter vector. βββ is an m× n coefficients matrix.

Ti = βββ ×Mi (6)

The estimated temperatures can be calculated quickly, in
real time because only scalar multiplications and additions
are involved in Equation (5).

3.2 Performance Counter Selection Criteria
The selection of performance counters is critical for achiev-
ing a good temperature estimation. Performance counters
that give little correlation with temperature for most func-
tional units are excluded from the estimation. Empirically,
an independent relation is identified for a correlation co-
efficient of less than 0.2. One issue with the model that
arises from throwing away irrelevant performance counters
is model stability. A model that is suitable for some bench-
marks does not work for other benchmarks, i.e. estimated
temperatures differ greatly from the actual temperatures.
This instability problem could be resolved by excluding some
performance counters from the model although they may
have good correlation with temperatures for some bench-
marks. A reasonable rule of thumb is that performance
counters with extremely large βj coefficients make the model
unstable.

The performance counter selection procedure involves a select-
and-test iteration during the model training period, i.e. train
the model using a set of selected performance counters and
perform a cross-benchmark test (different benchmarks are
used for training and testing) on the trained model.

3.3 Model Training
The model parameters in βββ are important factors which im-
pact the model accuracy. As mentioned previously, βββ is
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Figure 1: The estimated and actual processor temperature profile at one time instance for four SPLASH2
benchmarks. Each of the 24 thermal sensors in the processor are represented on the horizontal axis for
the time instance. More details about the AMD Athlon processor model used for this experimentation are
located in Section 5.

obtained in model training, which occurs either during de-
vice design or after fabrication once the physical character-
istics of the chip have been determined. In the design phase,
the performance counter values are obtained from architec-
tural simulators and temperature values are simultaneously
generated by performing thermal simulation. The accuracy
of the model trained by this method could be limited by
the effectiveness of the simulators since they cannot simu-
late every detail of a real system. In the post-fabrication
phase, it is possible to feed workloads to the system and
read performance counter registers. At the same time tem-
perature values can be captured through infrared imaging of
the running system. Unlike per-chip calibration, it is only
necessary to perform data capturing on a small amount of
sample chips to get the general information of a particular
chip series. We assume that the specific information of an
individual chip caused by process variation is reflected in the
thermal sensors.

In the training phase, sensor temperatures and performance
counter values are recorded at each time instance for a series
of time instances. Values β̂kj are preliminary model param-
eters undergoing training. The temperature error of module
k at time instance i is

eki =

n∑
j=0

(β̂kjMij − Ti) (7)

A least squares regression method minimizes the sum of

squares of errors for l time instances:

S =

l∑
i=1

(eki )2 (8)

Equation (9) shows a multi-variable least squares estimator
for βββ.

β̂ββ =
(
M′M

)−1
M′T (9)

Here, each column of M is a time series of a particular per-
formance counter and each column of T is a time series of
temperature at a particular location. M′ is the transposi-

tion of M. Once β̂ββ is calculated, it can be stored in the
programmable registers or re-programmable ROM region of
the system.

3.4 Validation of Linear Thermal Estimation
Model

To validate the linear model for temperature estimation,
SESC and HotSpot are used to obtain performance counter
and temperature values, respectively, for an AMD Athlon
64 processor. Temperature values obtained via HotSpot are
assumed to be the actual temperatures in this case. The
simulator setup is described in more detail in Section 5.
Since HotSpot reports the average temperature of a func-
tional unit instead of the temperature at a particular lo-
cation, we assume that the sensors are located at the cen-
ter of each functional unit. Although this assumption may
not reflect all possible functional unit sensor distributions,
the experimental setup still verifies the effectiveness of our
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Figure 2: The correlation between estimated and
actual temperature profiles

method because the reported temperature reflects local tem-
perature changes and no physical constraints are required for
the model.

The SPLASH2 benchmark suite is used to validate the ef-
fectiveness of our linear model. The velosity benchmark is
used to train the linear model (find βββ) values and the trained
model is tested for temperature estimation on other bench-
marks. Figure 1 shows the estimated and actual tempera-
ture profile for several benchmarks at a representative time
instance. In the subfigures, each point on the x axis repre-
sents a thermal sensor value in the processor and there are
24 total sensors integrated on the chip. Sensor 8 and sensor
19 correspond to the integer scheduler and load/store unit,
respectively, and they have relatively high temperatures due
to high activity. Sensor 24 is in the L2 cache of the proces-
sor and its temperature is low because of its large area and
relatively low activity.

The estimated temperature profile and the actual temper-
ature profile have very similar shapes in the graphs, so the
relative relationship among sensors are estimated correctly.
Graphs at other time points are similar. Figure 2 shows
the correlation between the estimated and actual tempera-
ture profile curves for the benchmarks over a series of 3,000
time points. For all benchmarks, the correlation coefficient
is larger than 0.9 which indicates a good linear relationship
between the two curves. However, the estimated and actual
curves are offset in terms of the absolute temperature value,
as shown in Figure 1. Factors such as static power consump-
tion impact the temperature and cannot be estimated with
good accuracy by performance counters. In next section,
this systematic drift is offset by adding constant values to
temperatures determined from sensor readings.

4. MULTI-SENSOR COLLABORATIVE
CALIBRATION ALGORITHM (MSCCA)

Resource-limited thermal sensors, such as ring oscillators, of-
ten are affected by noise due to process variation and gradual
device wear-out. In this section, estimated temperature val-
ues obtained in Section 3 and readings taken from sensors
are combined using a Bayesian inference based algorithm.
The corrected temperatures can then be used for thermal
calibration. A comparison of the computational complexity

of our method and the KF based method is also presented.

4.1 Problem Formulation
Bayes’ theorem presents the relationship between a known
(priori) probability distribution and a posterior probabil-
ity distribution; it is widely used for parameter inference.
The unknown parameter distribution is represented by p(θ),
which represents the prior knowledge of θ and the distri-
bution of random variable x for a given θ is p(x|θ). The
distribution of θ after an observation can be calculated us-
ing the following formula.

p(θ|x) =
p(x|θ)p(θ)
p(x)

(10)

For our sensor calibration problem, the actual temperatures
of sensors are unknown attributes which are estimated by
Bayesian inference. The following definitions are used for
the formulation of the sensor calibration problem.

t and p(t) : the random vector of the actual temperatures
and its probability distribution;
r and p(r) : the random vector of the thermal sensor read-
ings and its probability distribution;
e and p(e) : the random vector of the estimated tempera-
tures and its probability distribution;
Σr: the covariance matrix of the random vector r;
Σe: the covariance matrix of the random vector e;
p(r|t): the probability distribution of the sensor readings
given the actual temperatures (sensor noise distribution);
p(t|r): the probability distribution of the actual tempera-
tures given the sensor readings (statistical inference after an
observation);

The probability distribution of the actual temperature t is
given by the following formula. Note that t and r are mul-
tivariate random variables.

p(t|r) =
p(r|t)p(t)

p(r)
(11)

In the above equation, the priori knowledge of the actual
temperature distribution is p(t), which can be obtained via
thermal estimation discussed in the Section 3. So, the priori
knowledge is p(e). The posteriori inference of an actual
temperature after an observation is p(t|r).

Since the temperature change rate is less than 0.1 oC per
millisecond [15], we assume that the actual temperature
keeps constant during a 1 millisecond period. For today’s
high performance processors, this corresponds to several mil-
lion clock cycles and enough sensor and performance counter
readings can be obtained to perform the calibration algo-
rithm. The corrected temperature is defined as the expected
value of the conditional random vector t|r which is calcu-
lated by the following equation.

µµµt = E(t|r) =

∫
t× p(t|r)dt (12)

The covariance matrix of the corrected temperature is given
as:

Σt = E[(t−µµµt)(t−µµµt)
′] (13)

The probability distribution can be characterized by col-
lecting a time series of sensor readings. Because there are



many factors, such as supply voltage, process variation and
ambient temperature fluctuation which impact the sensor
readings, the noise of a thermal sensor follows a Gaussian
distribution, i.e. r|t ∼ N (t, Σr). In the Gaussian case,
Equations (12) and (13) have a closed form representation
as follows [5].

µµµt = µµµe + Σe(Σe + Σr)
−1(r−µµµe) (14)

Σt = Σe −Σr(Σe + Σr)
−1Σ′e (15)

4.2 Algorithm Description
The Bayesian inference of the actual temperature is used to
perform calibration on m thermal sensors once per every p
readings (time instances). The steps described in Section
4.1 are performed multiple times per calibration period to
refine intermediate results to a final value. In the follow-
ing description, each algorithm invocation is performed on
readings from l consecutive time instances. A total of p

l
invocations are performed per calibration. The calibration
offset for sensor i, wi, is defined as the difference between
the corrected temperature and sensor reading at a specific
time point. The w vector contains all wi values. The R
matrix (l × m) is initialized with raw sensor data in each
invocation and each column represents a time series of read-
ings from one sensor. The E matrix (l×m) is initialized with
raw estimated temperatures in each invocation and each col-
umn represents a time series of estimation for one sensor.
Step 5 updates the sensors’ readings by adding the w off-
sets from the previous invocation and Step 6 adjusts the
estimated temperatures since these temperatures have sys-
tematic error, as mentioned in Section 3.4. The value c is
the mean value of all elements in R. Overall, algorithm 1
shows the multi-sensor collaborative calibration algorithm
using Bayesian inference over multiple invocations until all
p readings for m sensors have been processed.

Algorithm 1 Multi-Sensor Collaborative Calibration Algo-
rithm – MSCCA
1: Initialize www ← 000.
2: while Invocation count ≤ p

l
do

3: Store sensor readings in R matrix for next l time in-
stances.

4: Store estimated temperatures determined from ap-
proach in Section 3 in E matrix.

5: Adjust R matrix by adding offset www to each row.
6: Adjust E matrix by subtracting a constant value c.
7: The vector r is the columnwise mean of R.
8: The vector µµµe is the columnwise mean of E.
9: Calculate the covariance matrices Σr and Σe.

10: Perform Bayesian inference using Equations (14) and
(15), and get the corrected temperature µµµt.

11: www ← µµµt - r.
12: end while

4.3 Computational Complexity Evaluation
This section analyzes the computational complexity of the
MSCCA and compares it with the complexity of KF based
approaches. Table 3 shows the number of operations per-
formed by the two approaches for p sets of readings. For the
MSCCA approach, l time instances (sets) of readings per in-
vocation are used. As noted in the previous subsection, cal-
ibration can be simultaneously performed for multiple con-
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Figure 3: Floorplan of the Athlon 64 processor [10]

secutive sensor readings for each sensor in one MSCCA invo-
cation. In contrast, KF based algorithms predict and update
the temperature for each set of sample readings, resulting in
more matrix operations. In our implementation, there are
m = 24 thermal sensors, so the matrix dimensions of Σr and
Σe are 24 × 24. If the matrix operations are converted to
scalar operations, there are about 140, 000p additions and
140, 000p multiplications required for the KF method. In
our method, the numbers of additions and multiplications
are about p

l
(444l + 14, 000) and p

l
(300l + 14, 000). Both al-

gorithms run in O(p) time complexity. Since samples must
be stored in matrices for a period of time before they are
processed, MSCCA does require more memory usage than
the KF based approach.

Table 3: Operations required by MSCCA and
Kalman filtering for p sets of sample readings for
24 sensors

Operation MSCCA KF scheme
scalar addition p

l
(444l − 48) 0

scalar multiplication p
l
(300l + 48) 0

matrix addition p
l

2p
matrix multiplication p

l
10p

matrix-vector multiplication p
l

3p
matrix inversion p

l
p

vector addition p
l

3p

5. EXPERIMENTAL APPROACH
The proposed calibration strategy is verified via simulation
for an AMD Athlon 64 processor. The floorplan of AMD
Athlon 64 processor is shown in Figure 3. The processor in-
cludes 24 functional blocks, which are labeled in the figure.
After technology scaling, the area of this processor is esti-
mated to be 3.6mm2 in 45nm technology. The frequency of
the processor is configured at 1GHz and the overall initial
temperature of the processor is set to 50oC.

The SESC simulator integrated with HotSpot is used to
generate performance counter and temperature values. The
SESC simulator simultaneously generates system statistics
and power traces every 0.1 millisecond for each benchmark,
and the floorplan of the processor and generated power trace
are fed into HotSpot to generate temperature traces. We as-
sume that the HotSpot generated temperature values are the



actual temperatures considering the sophisticated thermal
model implemented by HotSpot, and random noise is added
to these actual temperatures to get the simulated thermal
sensors readings. The standard deviation of random temper-
ature noises is set from 1oC ∼ 8oC. We assume no specific
type of on-chip thermal sensor implementation.

The MSCCA algorithm described in Section 4 was imple-
mented in MATLAB. From our generated data, the temper-
ature change rate is less than 0.01oC/ms. We took 100 ∼
1000 consecutive time instances as the algorithm inputs so
that the actual temperature change in one invocation is lim-
ited in 1oC. For comparison, we also implemented the tem-
perature characterization algorithm based on KF [18]. The
power profile statistics which are used in KF were captured
using the power trace generated by SESC. A linear regres-
sion method was used to obtain thermal resistance and ca-
pacitance parameters based on the differential equation for
heat diffusion.

6. RESULTS
Results were obtained using applications from the SPLASH2
benchmark suite executed with the SESC simulator. The
thermal estimation model described in Section 3 was trained
using the radiosity workload and the remainder of the bench-
marks were used to verify our MSCCA algorithm. Although
SPLASH2 supports multi-threaded simulation for multi-core
systems, all benchmarks are configured to run in a single
processor in our experiments.

6.1 Effectiveness Verification
In a first series of experiments, the thermal profiles of four
SPLASH2 benchmarks for the AMD Athlon 64 are deter-
mined. For these experiments, the standard deviation of
noise is set to 4 oC and p=2000 total time instances of read-
ings are processed. MSCCA uses l=100 time instances per
invocation. In Figure 4, we demonstrate the thermal profile
of the AMD Athlon 64 processor for the lu benchmark af-
ter the 2000th time instance. The horizontal axis represents
thermal sensors for each functional block in Figure 3. In
the figure, the actual temperature, sensor readings, and cor-
rected temperature from the KF based implementation and
from MSCCA are plotted. Both constant spatial noise due
to process variations and temporal noise (shown in the plot
of the sensor readings) are taken into account in our simula-
tion. The first observation is that both methods effectively
reduce the sensor reading errors: the sum of the square er-
rors of all sensors for the corrected readings is much smaller
than that of sensor readings. The second observation is that
the thermal profile is recovered after synthesizing two data
sources (the estimated temperature and sensor readings in
our case, the statistical characteristics of the power dissipa-
tion and sensor readings in the KF case).

Figure 5 shows the standard deviations of the temperature
errors for six benchmarks over 2000 time instances (100 time
instances per invocation for MSCCA). There are four tem-
perature calculation types plotted in the figure. The error
deviations are significantly reduced after performing our al-
gorithm and KF for all benchmarks. Our method and the
KF based method have comparable accuracy results. In
some cases the error deviation of our algorithm is smaller
than that of KF based approach. In other cases, the KF
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Figure 4: The thermal profile of the processor for
one time instance of the lu benchmark. Each point
on the horizontal axis represents a single sensor lo-
cated in a block in Figure 3.
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Figure 5: Standard deviation of the temperature
error for SPLASH2 benchmarks

based method outperforms our method. Overall, the error
deviations are reduced to ≤ 1oC for all benchmarks over the
2000 time instances.

6.2 Run Time Comparison
The run time of the MSCCA and KF approaches were mea-
sured in MATLAB. The run time results are presented in
Table 4. In this table, we consider the total running time
for both approaches over p=10,000 readings (time instances)
for each sensor. As mentioned in Section 4.3, the inner loop
of MSCCA can be invoked once per l time instances, while
KF is invoked for each time instance. The first row of the
table indicates the total number of time instances for each
invocation in the MSCCA algorithm, and there are 10,000
time instances in total for each case. For example, if it pro-
cesses l=200 time samples of values stored in R and E ma-
trices per invocation, the algorithm is invoked 50 times for
10,000 time instances. From the table, MSCCA takes 0.0283
seconds to finish 50 invocations (10,000 total time instances
per sensor) while the KF approach requires approximately
67x more time. The run time ratio increases as the number
of time samples processed per MSCCA invocation increases.

6.3 Impact of Sensor Reading Errors
The standard deviation of the errors of the corrected tem-
perature increases as the noise of sensor readings become
larger. The experiments in the previous subsection were
repeated, this time with varying amounts of noise in the
sensor readings. Experiments of 10,000 time instances each
were performed. Table 5 shows the standard deviations of



Table 4: Run time comparison (in seconds) be-
tween MSCCA and KF approaches for 10000 time
instances

Time instances per invocation 200 400 1000
MSCCA run time 0.0283 0.0223 0.0161
KF run time 1.9146 1.9049 1.8033
Run time ratio 67 85 112

Table 5: The standard deviation of the error for the
corrected temperatures over 10,000 time instances
for increasing sensor error

Time instances Std dev of sensor error oC
per invocation 2 4 6 8
200 0.327 0.358 0.412 0.453
400 0.318 0.380 0.408 0.384
600 0.271 0.360 0.353 0.406
800 0.346 0.362 0.393 0.422
1000 0.342 0.367 0.366 0.411

corrected temperatures for sensor readings with four differ-
ent sensor noise levels. As predicted, the less accurate the
sensor readings are, the larger error seen in the corrected
temperature.

7. CONCLUSION
In this paper, two contributions regarding the real-time cal-
ibration of thermal sensors are provided. First, we describe
an approach to directly use information from performance
counters to estimate temperature for specific on-chip func-
tional units without using intermediate power estimation.
The technique uses a collection of parameters that can be
determined at design time or after chip fabrication via model
training with a collection of application benchmarks. Sec-
ond, we present an algorithm (MSCCA) based on Bayesian
inference to combine these estimated temperatures and tem-
perature readings sampled from sensors into corrected read-
ings. The effectiveness of the proposed algorithm is val-
idated and the results show that the error and its stan-
dard deviation are reduced to ≤ 1oC. This value is con-
sistent with current state-of-the-art Kalman filtering based
approaches which take much longer to calculate.
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