
Reinforcement Learning For Thermal-Aware Many-Core
Task Allocation

Shiting (Justin) Lu, Russell Tessier, and Wayne Burleson
University of Massachusetts

Department of Electrical and Computer Engineering
Amherst, MA, USA

{jlu, tessier, burleson}@ecs.umass.edu

ABSTRACT
To maintain reliable operation, task allocation for many-
core processors must consider the heat interaction of pro-
cessor cores and network-on-chip routers in performing task
assignment. Our approach employs reinforcement learning,
a machine learning algorithm that performs task allocation
based on current core and router temperatures and a predic-
tion of which assignment will minimize maximum tempera-
ture in the future. The algorithm updates prediction models
after each allocation based on feedback regarding the accu-
racy of previous predictions. Our new algorithm is verified
via detailed many-core simulation which includes on-chip
routing. Our results show that the proposed technique is
fast (scheduling performed in < 1 ms) and can efficiently
reduce peak temperature by up to 8oC in a 49-core proces-
sor (4.3oC on average) versus a competing task allocation
approach for a series of SPLASH-2 benchmarks.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Miscellaneous

General Terms
Performance, Design, Reliability

Keywords
Thermal aware, task allocation, reinforcement learning

1. INTRODUCTION
The thermal behavior of many-cores has grown to become

a major performance and fault tolerance concern. High
power density impacts circuit reliability and chip lifetime
and can lead to the frequent initiation of remediation tech-
niques such as DVFS. Although chip cooling technologies
are frequently deployed, system-level thermal management
techniques are necessary to prevent thermal emergencies and
maintain high processor performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
GLSVLSI’15, May 20–22, 2015, Pittsburgh, PA, USA.
Copyright c© 2015 ACM 978-1-4503-3474-7/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742060.2742078.

Data intensive applications implemented on many-cores
benefit from low latency and high bandwidth on-chip com-
munication. The heat dissipated by the routers not only af-
fects router temperature, but also the temperature of neigh-
boring cores. Effective task scheduling for thermal man-
agement considers power dissipated in all many-core com-
ponents, including NoC routers. In this paper, a new task
allocation scheme based on machine learning is described
which considers both processor core and NoC router tem-
peratures. The allocation scheme aims to reduce the peak
temperature of the chip, a leading cause of device failure. In
performing task assignment, the allocator uses current chip
temperature information and stochastic predictions about
how each possible task assignment is likely to affect maxi-
mum many-core temperature in the future. During the next
allocation interval, the accuracy of the previous prediction
is checked and the model used to make the prediction is up-
dated. As allocation proceeds, the accuracy of the model
converges. This reinforcement learning is adaptive and scal-
able and it results in rapid convergence within about 200
task allocations.

Our work is supported by careful thermal analysis of typ-
ical many-cores and their reaction to task allocation. It is
observed that many-cores running the same workloads but
with different allocations can have a hot spot temperature
difference of up to 8oC due to heat interactions with neigh-
boring cores. Experiments show that our approach can re-
duce peak temperature by 4.3oC on average for a many-core
which is moderately loaded versus a previous approach [1].

2. BACKGROUND
Approaches to reduce many-core overheating have been

developed using a variety of techniques including remedia-
tion (e.g. DVFS), thermal-aware floorplans, and run-time
task allocation. Issues impacting thermal-aware task allo-
cation for core- and network-level management are summa-
rized below.

Thermal Constraint Optimization: For multi-core
systems, thermal-aware task allocation assigns tasks to cores
to optimize thermal conditions. Different task distributions
can result in substantially varied thermal chip profiles [2],
so task allocation must consider the spatial thermal correla-
tion of cores, caches, NoC routers and other processor com-
ponents. A number of popular many-core allocation tech-
niques [2] [3] use objective functions to minimize maximum
temperature subject to constraints to meet physical design
limits. Since it is computationally expensive in such systems
to model the thermal behavior of all system components, in



general, existing allocators do not consider many-core router
temperatures or the thermal impact of earlier allocation de-
cisions while performing task assignment.

In Yu et al. [2], a thermal-aware allocation technique was
developed that focused on maximizing computation through-
put and meeting the peak temperature requirement for 3D
architectures. Similarly, K-means clustering was used to
perform multi-core task scheduling in Yeo et al. [4] with
a goal of temperature reduction. In Coskun et al. [3], the
authors formulated multi-core task scheduling statically as
an integer linear programing problem by taking tempera-
ture into account. Hanumaiah et al. [5] provided an on-
line thread migration technique focused on thermal balanc-
ing. Our approach differs from these previous approaches
by learning from and adapting to thermal dynamics rather
than relying on static thermal models. Our technique im-
plicitly includes the thermal impact of circuit components
and also considers the impact of thermal interface materials
and cooling conditions, among other factors.

Adaptive Random: To evaluate the effectiveness of our
new approach in Section 5, we compare against a widely-
used thermal-aware allocation algorithm. The heuristic adap-
tive random algorithm selects the coolest core for task allo-
cation [1] under a set of calculated probabilities. Potential
allocations to cores are assigned weights based not only on
the current temperatures, but also on their thermal history.
These weights measuring thermal history are adjusted in real
time as the cores execute a dynamic workload. Stochastic
assignment is employed to allocate a new task to a core based
on its current temperature, thermal history, and the thermal
conditions of neighboring cores. The storage of thermal his-
tories incurs memory cost. The temperatures for each core
are stored for a period of time (1∼10K samples per core) to
capture the thermal characteristics for specific workloads.

Thermal Impact of Network-on-Chip: Hot spots can
occur in routers when heavy data traffic is present. If the
system is dedicated to a specific application, static task
mapping on NoC systems can achieve thermal balance over
the on-chip network [6]. In a general-purpose system, tasks
are dynamically mapped to cores, so heat generated by the
NoC should be carefully managed by routing packets in a
thermally-aware fashion [7]. However, these approaches do
have limitations: (a) the thermal impact of processor cores
is underestimated or ignored and (b) application-specific de-
signs are employed, so they have limited generality.

Machine learning for thermal and power manage-
ment: Ge and Qiu [8] proposed a temperature reduction
technique based on reinforcement learning for media appli-
cations. The agent learns the workload and dynamically ad-
justs frequency to control thermal violations. Similar tech-
niques were applied in a power management context [9] [10].
Chen et al. [11] proposed workload allocation based on re-
inforcement learning to reduce the peak temperature in a
data center. The approach avoids local heating by assigning
workloads in a spatially dispersed fashion.

3. THERMAL AWARE TASK ALLOCATION
USING REINFORCEMENT LEARNING

This section introduces a task allocation approach based
on reinforcement learning (RL). After performing an alloca-
tion, the approach “learns” how well its core selection was
during the previous allocation, and updates decision-making

models accordingly. This technique effectively rewards good
allocation choices. Thus, the two main contributions are
(1) the use of rewards in determining task allocation and
(2) the inclusion of localized NoC router temperatures in
making allocation decisions for neighboring cores.

3.1 Thermal-Aware Task Allocation Overview
At a high level, the steps taking place during each task al-

location can be described as follows: (1) Temperature read-
ings are collected from temperature sensors located in each
processor core; (2) The maximum temperature Tmax among
all sensors is recorded; (3) The temperature values are used
to determine the best assignment of a task to an idle proces-
sor core based on a temperature-based utility function; (4)
The model used to formulate the utility function is updated.

The utility function effectively determines which assign-
ment is likely to affect the maximum temperature of the
chip the least. This effect is determined by considering the
processor core’s instantaneous temperature and the temper-
ature of the attached router and surrounding cores. The
formulation of the utility function and its model is based on
RL.

3.2 Reinforcement Learning
In RL [12], an agent (the task allocator in our case) ex-

plores an environment by taking actions and observing the
resultant reward. The reward of a particular action (assign-
ing a task to a specific core) reflects the metric to be op-
timized (maximum temperature). For our system, as task
allocations are performed, the model used to make assign-
ments is refined in a learning process. The task allocator
gradually refines the model based on temperatures measured
a time period after an allocation is performed. Effectively,
the allocator learns how to respond to a specific environmen-
tal condition (e.g. temperatures measured from temperature
sensors) based on the results of previous assignments when
cores and routers had a similar temperature profile. For-
mally, reinforcement learning consists of the following
• A set of environment states: S, in this case tempera-

ture readings from sensors;
• A set of available actions on the current state : A, task

assignments to specific cores;
• A rule to evaluate the reward for taking the action at

a specific state: R;
• The goal is to find a policy π : S → A, i.e. what action

(assignment) should be taken at the current environ-
mental (temperature) state.

A utility function can be developed to allow for the desired
mapping. Our Q learning approach provides a reinforcement
learning formulation for task allocation. A utility value is
defined to find a policy π for Q learning as follows.

Q(s, a) = E

[
∞∑
i=0

(γirt+i|st = s, at = a)

]
(1)

The utility Q(s, a) indicates the expected temperature re-
wards, r, (both present, i = 0, and future) which can be
obtained by performing task assignment action a for tem-
perature vector state s at time step t. Predicted future re-
wards are discounted via a discount factor γ. The optimal
policy takes action which maximizes the utility Q. During
each task assignment at time t + 1, utility Q for tempera-
ture vector s and assignment a in (1) can be approximated



Learning Agent:π 
(Task Allocator)

Environment: s
(Thermal Profile)

Reward: r
(Temperature Margin)

Action: a
(Task Dispatch)

Figure 1: RL cycle for thermal-aware task allocation

as follows [12]:

Qt+1(st+1, a)=Qt(st, a)+α(rt(s, a)︸ ︷︷ ︸
current
reward

+γmax
a′

Qt(st+1, a
′)︸ ︷︷ ︸

future reward

−Qt(st, a))

(2)
In (2), α is the learning rate, which helps control the con-
vergence of the algorithm. The new utility includes a com-
bination of the previous utility, the current reward, and a
discounted version of the future reward (Qt values for other
processors a′). This iterative equation is known to converge
to an optimal point [12]. Fig. 1 shows the iterative rein-
forcement learning process. Each cycle represents one task
allocation. In our implementation, the task allocator serves
as the learning agent and the environmental state is the chip
thermal profile which is read from on-chip temperature sen-
sors. Task allocation decisions impact the thermal condition
of the whole chip. After each task allocation, the allocator
collects system thermal information to assess the reward of
the last allocation action and to select a core for the next
task. The details on how to apply Q and update the model
used to determine it are discussed subsequently.

3.3 Definitions
On-chip thermal sensors are often deployed in processors

to assist thermal management [13]. In our approach, a set
of thermal sensor readings from m temperature sensors are
used to represent the thermal state of the silicon. To apply
RL in thermal-aware task allocation, the environment state
is a temperature vector,

s =
[
s1, s2, s3, ..., sm

]
. (3)

Each temperature value in the vector is a temperature read-
ing from one of m different on-chip thermal sensors deployed
in different locations on the chip. In a many-core, the task
allocator is implemented in a dedicated core which typically
performs other system-level management functions. This
core dispatches new tasks to other available, working cores.
So a task allocation selects a specific, idle core for a task
execution. If processor cores are indexed from 1 to n, the
possible actions are defined as:

A = {1, 2, 3, ..., n−1, n} (4)

where A represents all possible assignments to processors.
An assignment to a specific processor is an action a.

The construction of the reward function is a key step in
effectively performing RL-based allocation. Since the max-
imum temperature adversely impacts the performance and
reliability of a many-core, reduction of this value is the goal.
Generally, a many-core will have a pre-set emergency thresh-
old temperature Tem which serves as a temperature bound-

ary. System remediation (e.g. voltage scaling, task migra-
tion) is needed if a maximum temperature passes this point.
We define the reward of an action as the difference between
the emergency temperature and the current peak tempera-
ture Tmax:

r = Tem − Tmax (5)

The higher the reward, the bigger the temperature margin.

3.4 Utility Function Approximation
In our approach, a processor which has a high utility Q

value is more likely to receive a task assignment. If the
number of possible temperatures for a core and associated
router is relatively small, the utility function Q(s, a) in (2)
can be represented as a lookup table using temperature vec-
tor s and target processor core a as inputs. In other words,
for every input temperature vector s, a Q value which has
been previously determined and refined for a core a can be
identified and used to make the current allocation decision.
This approach leads to two issues: (1) Q values must be
learned over time and stored in the lookup table and (2)
temperature readings can span a large range of continuous
values that would have to be discretized. As the state space
of temperatures becomes large, using a lookup table for Q
learning becomes intractable due to memory limitations and
the difficulty of updating it in a timely fashion. There-
fore, a continuous function is needed to map state-action
(temperature-target processor) pairs to Q values.

Due to the high complexity of (2), it is not realistic to find
a closed form representation for the Q function. However,
the function can be approximated by the linear combination
of a series of basis functions, φi(s).

Q(s, a) =

k∑
i=0

θai × φi(s) (6a)

a = 1, 2, ..., n (6b)

Here, θai are k weight parameters for core a that are refined
after each allocation to the core (k is defined in the next
section). Each task assignment to a core (e.g. an action)
corresponds to a set of weight parameters θai for core a.
Following the updating of Q values at time t+ 1, weight pa-
rameters (θai ) for the processor selected during the previous
allocation t are updated according to the gradient descent
technique [14]. Here a′ includes all cores except a.

θai (t+ 1) = θai (t) +α(rt+γmax
a′

Q(st+1, a
′)−Q(st, a))φi(st)

(7)

3.5 Basis Function
The basis function for Q value function approximation is

a radial basis function (RBF), defined as follows:

φi(s) =
1√

2πσ2
e−||c−s||

2/2σ2

(8)

c =
[
c1, c2, c3, ..., cm

]
(9)

The formulation includes constant parameters σ2, a scalar,
and m-element vector c. The elements of c− s provide con-
text regarding the temperature difference between sensor
readings s and typical temperature measurements c. We
assume that the usual working temperature range of a chip
is [330, 360] Kelvin. Temperature centers are specified in



Algorithm 1 RL-based Task Allocation Algorithm

1: Initialize weight parameters θai ← 0;
2: Read temperature values s from temperature sensors;
3: Apply a random task allocation;
4: for each task allocation episode do
5: Get current temperature values st+1;
6: Calculate reward function for the last action based on

(5);
7: For state st+1, calculate utility value, Q(st+1, a), for

all processors a;
8: Find maximum Q value from the above step and

update the selected processor for the task: a ←
maxa′ Q(st, a

′);
9: Update weight parameters for θai according to (7);

10: Apply action a with probability p or an alternative
action with probability 1− p;

11: end for

this range. The value of each of the elements in c is defined
as one of v temperature centers within this range:

c1, c2, ..., cm ∈ {340, 350} (10)

The above example shows v = 2 centers. Since each of the
values in the c vector can take on any of the v values, there
are k = vm combinations for the c vector. Thus, vm basis
functions are available to approximate one Q function for
each processor a. Since there are n total processors (possible
allocation actions), the total number of parameters is n∗vm.
Note that v is generally quite small (2 or 3).

3.6 RL-based Task Allocation Algorithm
In a many-core system, the task dispatcher is responsible

for monitoring thermal state and assigning tasks to cores.
Algorithm 1 describes the task allocation procedure per-
formed by the dispatcher. Initially, the θai weight param-
eters of the Q function (6a) are initialized to zero. Steps
5-10 are performed for each task allocation. An allocation
can be invoked when a new task arrives or an overheating
situation is detected and a task must be migrated. The re-
ward is calculated for the last allocation action at Step 6
and current thermal states are obtained by collecting tem-
peratures from thermal sensors at Step 5. Steps 7 and 8
determine the task assignment to an idle core (action a)
which leads to the maximum Q. Information is updated
once the appropriate allocation action is determined. Our
technique is stochastic, i.e. the determined action is taken
with probability p = 0.9, a value determined empirically.
Other assignments for a specific allocation are applied with
equal probability of 1−p

n−1
. Using this approach, potentially

good actions are not excluded and the environment is ex-
tensively explored.

4. EXPERIMENTAL APPROACH
Power, temperature and performance simulation was used

to verify the effectiveness of our new task allocation scheme
and to perform comparisons to adaptive random task alloca-
tion. In this section, detailed descriptions of the simulation
platform, task models and the simulator flow are presented.

Many-core Floorplan: A mesh topology was used to
build many-core systems for verification. Both routers and
processor cores in 45 nm technology were evaluated. McPAT

Table 1: Core Config.

L1-I 16KB
L1-D 16KB
L2 256KB
ITLB 16 entries
DTLB 16 entries

Table 2: Router Config.

port number 5
frequency 2.0 Ghz
VC per port 8
flit size 144 bits
buffer length 24 flits

Stochastic Task 
Generation

Random 
Communication 

Pairing

Task Allocator

Thermal Simulation
(Hotspot)

PowerTrace 
Generation

(Sniper,McPAT & DSENT)

Floorplan Generation
(HotFloorplan)

Offline Online

Thermal State & 
Reward

Mapped Power Trace

Figure 2: Simulation flow for thermal-aware task allocation
experimentation

[15] was used to estimate the area and power consumption
for the ten architectural component in the processor based
on the parameters in Table 1. DSENT [16] was used to
estimate the area and power for the router based on the
configuration in Table 2 and estimated router usage based
on traffic flow in the floorplan. HotFloorPlan was used to
generate the floorplan. It was fed with core and router area
information to generate the floorplan for a single core. The
many-core floorplan was obtained by replicating single-core
building blocks.

Benchmark Workload: Twelve benchmarks from the
SPLASH-21 suite were used to test our platform. Each allo-
cated task consists of an instantiation of one of the bench-
marks. Communication between tasks was randomly as-
signed. To determine dynamic temperature values during
many-core execution, power values for all processor core
components and associated routers were determined. The
power traces of the SPLASH-2 benchmarks were captured
using the McPAT-integrated Sniper simulator [17]. HotSpot2

was used to convert power values into temperature values.
We use an M/M/c queuing model to mimic the task ar-
rival and task execution duration in the many-core system.
In this model, task arrival is modeled as a Poisson process
whose inter-arrival time is exponentially distributed; the ex-
ecution time of tasks is also exponentially distributed. The
number of cores in the system is n. The task arrival rate
is defined as λ and the service rate is defined as µ. The
system utilization, ρ, is given by ρ = λ

nµ
. Effectively, nρ

defines the steady-state number of processor cores which is
used to service tasks.

Simulation Flow: The simulation flow is shown in Fig.
2. As a first step, the power traces for each benchmark for
a single-core floorplan are generated. Router power con-
sumption under different loads is also calculated. The task
allocator is implemented in conjunction with HotSpot which
reports simulated chip temperatures. The task allocator re-
trieves temperature points which represent the s vector in

1http://liuyix.org/splash2-benchmark
2http://lava.cs.virginia.edu/HotSpot



0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

task allocation episodes

θ

 

 

θ
1
 θ

2
θ

3
θ

4

Figure 3: Convergence of θi values for a 25-core processor

        1        2        3        4        5         6

        7        8        9       10      11      12

      13      14      15       16      17      18

      19      20      21       22      23      24

      25      26      27       28      29      30

      31      32      33       34      35      36

Figure 4: A thermal map snapshot for a 36-core system

(3). When a new task is generated for allocation, its commu-
nication is paired with other tasks. The appropriate power
trace for the task is identified and mapped onto the floor-
plan. The HotSpot simulator reads the mapped power trace
and performs thermal simulation. The maximum tempera-
ture is then reported to the allocator for reward calculation.

5. RESULTS
Our approach has been validated via simulation using 16-

core, 25-core, 36-core and 49-core systems. To implement
the reinforcement learning technique, the learning rate is set
to α = 0.8 and the discount rate is set to γ = 0.8 (Section
3.2). These parameters were determined empirically.

5.1 Effectiveness Validation
The convergence of our reinforcement learning model was

evaluated over a series of task allocations. In the experiment,
task allocations of randomly-selected SPLASH-2 benchmarks
were performed to all 25 processor cores. A selection of θi
values is shown in Fig. 3. Initially, θi values are all zeros and
they begin to converge after 200 ∼ 300 allocation episodes.
Other θi values showed similar behavior.

Fig. 4 shows a thermal snapshot of a 36-core processor
at the seven minute time point. Q values are calculated
for all possible allocation choices at this time point. Fig.
5 shows the magnitude of Q values for corresponding cores
indexed in Fig. 4. As seen in the figure, the non-zero Q
value for action 22 is lowest among all actions because the
heat stress for core 22 is significant. An allocation to core 22
will negatively impact the chip peak temperature. Actions
3, 18, 29 and 35 have relatively high Q values. From the
chip thermal map, it is seen that cores 3, 18, 29 and 35
are relatively cool and their neighboring cores are also in

1 2 3 4 5 6 7 8 9 10 1112 13 1415 16 1718 1920 21 2223 24 2526 27 2829 30 3132 33 3435 36
0
1
2
3
4
5
6
7
8

core number

Q
 v

al
ue

Figure 5: Q values for different actions at the thermal state
given in Fig. 4.

a favorable thermal condition. We also notice that cores 1
and 31 are cool, but their Q values are not as high as the
previous four cores. These two cores are in the corner of the
chip and the thermal conductivity of air is much lower than
silicon. The allocator effectively learns this information over
time via reinforcement.

5.2 Peak Temperature Reduction
The peak temperature can be effectively reduced versus

previous approaches through the use of the proposed allo-
cation technique. A series of experiments are conducted to
observe the peak temperature of the chip in comparison with
the adaptive random approach [1] over five minute execution
runs. This allocator assigns tasks to one of the coolest avail-
able cores based on probabilities determined from core tem-
perature histories. In our implementation of the adaptive
random approach, we also included the impact of router tem-
peratures on allocation to allow for a fair comparison ver-
sus reinforcement learning. Table 3 shows the average peak
temperature over time for different core counts and system
utilization ratios for the two approaches. For a low system
utilization (ρ), adaptive random and reinforcement learning
have almost the same performance in terms of peak tempera-
ture. In this case, chip temperature is impacted more by the
workload intensity inside specific cores and less by the dis-
tribution of tasks. Our technique performs better when the
system is moderately loaded (about half used). For example,
compared to adaptive random, our approach reduces peak
temperature by 8.1oC in a 49-core system (4.3oC across all
many-core configurations for ρ = 0.4 and 0.6). Fig. 6 shows
the differences in the peak temperatures over time between
the two approaches for 16-, 25-, and 36-core systems. Com-
parisons between reinforcement learning and adaptive ran-
dom indicate that the former approach is more effective.

The time cost of the reinforcement learning allocator was
evaluated for different numbers of sensors, m, and two sets
of temperature centers, v. Table 4 shows the average com-
putational time for one task allocation. The temperature
centers used in (8) are selected from two sets, {340, 350}
and {335, 345, 355}, respectively. For most cases, the com-
putational time of task allocation is < 1 ms . Since the
task allocation is only invoked when there is an incoming
task or a thermal emergency, the frequency of allocation is
typically on the order of seconds. Therefore, the percentage
time cost of allocation with respect to the allocation interval
is negligible. Although the adaptive random technique also
has very low overhead time cost (<< 1 ms) for each task
allocation, it must track temperature sensor readings over
time (one sample per 100 ms) regardless of task allocation
rate. As a result, the technique becomes less favorable in a
system which has a low task arrival rate.



Table 3: Peak temperature comparison between reinforcement learning (ours) and adaptive random [1]. The value ρ indicates
the average number of cores used during execution. A random sampling of SPLASH-2 benchmarks were used as tasks.

System Utilization
ρ = 0.1 ρ = 0.4 ρ = 0.6 ρ = 0.8

core number ours [1] ours [1] ours [1] ours [1]
(oC) (oC) ∆oC (oC) (oC) ∆oC (oC) (oC) ∆oC (oC) (oC) ∆oC

16 73.2 74.1 0.9 81.5 86.4 4.9 86.8 88.5 1.7 93.8 93.5 -0.3
25 74.6 74.3 -0.3 83.1 86.7 3.6 87.5 90.8 3.3 95.1 96.0 0.9
36 72.8 73.2 0.4 83.8 88.3 4.5 87.3 91.1 3.8 96.4 96.1 -0.3
49 70.5 71.4 0.9 78.0 86.1 8.1 86.2 90.8 4.6 93.1 93.8 0.7

0 1 2 3
78

80

82

84

86

88

time (min)

pe
ak

 te
m

pe
ra

tu
re

 (o C
)

 

 
AR RL

(a) 16 cores

0 1 2 3
76
78
80
82
84
86
88
90

time (min)

pe
ak

 te
m

pe
ra

tu
re

 (o C
)

 

 
AR RL

(b) 25 cores

0 1 2 3
80
82
84
86
88
90
92
94

time (min)

pe
ak

 te
m

pe
ra

tu
re

 ( 
o C

)

 

 
AR RL

(c) 36 cores

Figure 6: Peak temperature comparison over time for ρ = 0.4 for reinforcement learning (RL) and adaptive random (AR)

Table 4: Time cost For RL task allocation (ms)

Temperature Sensor Numbers
Center Set 5 6 7 8 9

{340, 350} 0.014 0.024 0.043 0.081 0.150
{335, 345, 355} 0.074 0.216 0.635 1.927 6.210

6. CONCLUSIONS
A reinforcement learning based task allocation strategy is

presented to address localized overheating in many-core sys-
tems. RL quality metrics are used to make optimized allo-
cation decisions based on the accuracy of previous allocation
choices. The experiments show that the proposed technique
is capable of capturing the complex on-chip thermal envi-
ronment induced by dynamic workload distribution. Our
results show that the proposed technique is fast (scheduling
performed in <1 ms) and can efficiently reduce peak temper-
ature by 4.3oC on average in moderately-loaded many-core
processors for a collection of SPLASH-2 benchmarks.

7. REFERENCES
[1] A. K. Coskun, T. S. Rosing, and K. Whisnant,

“Temperature aware task scheduling in MPSoCs,” in Proc.
DATE, Mar. 2007, pp. 1659–1664.

[2] C. H. Yu, C.-L. Lung, Y.-L. Ho, R.-S. Hsu, D.-M. Kwai,
and S.-C. Chang, “Thermal-aware on-line scheduler for 3-D
many-core processor throughput optimization,” IEEE
TCAD, vol. 33, no. 5, May 2014.

[3] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Static
and dynamic temperature-aware scheduling for
multiprocessor SoCs,” IEEE TVLSI, vol. 16, no. 9, pp.
1127–1140, Sep. 2008.

[4] I. Yeo and E. J. Kim, “Temperature-aware scheduler based
on thermal behavior grouping in multicore systems,” in
Proc. DATE, May 2009, pp. 946–951.

[5] V. Hanumaiah, S. Vrudhula, and K. Chatha, “Performance
optimal online DVFS and task migration techniques for

thermally constrained multi-core processors,” IEEE TCAD,
vol. 30, no. 11, pp. 1677–1690, Nov. 2011.

[6] W. Hung et al., “Thermal-aware IP virtualization and
placement for networks-on-chip architecture,” in Proc
ICCD, Oct. 2004, pp. 430–437.

[7] Z. Qian and C.-Y. Tsui, “A thermal-aware application
specific routing algorithm for network-on-chip design,” in
Proc. ASP-DAC, 2011.

[8] Y. Ge and Q. Qiu, “Dynamic thermal management for
multimedia applications using machine learning,” in Proc.
DAC, June 2011, pp. 95–100.

[9] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic
learning for thermal-aware power budgeting in many-core
architectures,” in Proc. CODES+ISSS, Oct 2011.

[10] G.-Y. Pan, J.-Y. Jou, and B.-C. Lai, “Scalable power
management using multilevel reinforcement learning for
multiprocessors,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 19, no. 4, pp. 33:1–33:23, Aug. 2014.

[11] H. Chen and etc, “Spatially-aware optimization of energy
consumption in consolidated data center systems,” in
ASME 2011 Pac. Rim Tech. Conf. and Exhibition on
Packaging and Integration of Elec. and Phot. Sys.

[12] A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[13] E. Rotem et al., “Power management architecture of the
2nd generation Intel core microarchitecture, formerly
codenamed Sandy Bridge,” in Hot Chips, August 2011.

[14] L. Baird and A. W. Moore, “Gradient descent for general
reinforcement learning,” Adv. in Neural Information Proc.
Sys., pp. 968–974, 1999.

[15] L. Sheng et al., “McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures,” in Proc. IEEE/ACM Micro, 2009.

[16] C. Sun et al., “DSENT - a tool connecting emerging
photonics with electronics for opto-electronic
networks-on-chip modeling,” in Proc. IEEE/ACM Int’l
Symp. on NoC, 2012, pp. 201–210.

[17] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and accurate
parallel multi-core simulations,” in Int’l Conf. for High
Perf. Comput., Network., Stor. and Analysis, 2011.


