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Abstract—Recent research has shown that the integration of a
custom-silicon network-on-chip (NoC) into an FPGA fabric can
significantly help on-chip communication bandwidth. Although
not appropriate for all communication, FPGA hard NoCs provide
a scalable infrastructure that will increase in importance as
FPGA sizes increase. To date, most FPGA hard NoC implemen-
tation has focused on packet-switched routing which requires
dynamic run-time decision making to transfer data from source
to destination. In this paper we explore expanding hard NoC
routers to support both packet-switched and prescheduled time-
multiplexed communication. By limiting the use of energy-hungry
routing buffers, time-multiplexed routing allows for throughput-
predictable data transport with reduced energy consumption
versus packet-switching for a variety of traffic patterns. The area
overhead required to convert a packet-switched router to a hybrid
packet-switched/time-multiplexed version is minimal (about 9%).
In this research, we show significant NoC energy improvement
(about 33%) while maintaining or improving packet latency
values versus packet switching for select data traffic patterns.

I. INTRODUCTION

As the size of FPGAs and their use in high-bandwidth
applications increase, there is a growing need for high-speed
on-chip data transfer. NoC hardware created from custom
silicon (hard NoCs) [1] has been shown to support high-
throughput applications. The fast switching flexibility of these
resources allow for wide data transfer at clock rates of greater
than 1 GHz, which are well beyond what can be achieved
with circuits implemented in a traditional FPGA fabric. The
small area consumed by hard NoCs (between 1-2% of overall
area) relative to the remainder of the FPGA fabric makes
them particularly attractive for a variety of applications with
unpredictable data transfer patterns (e.g. Internet switch).

Most recent work on hard FPGA NoCs has focused on
packet-switched NoCs where routing decisions are made at the
grain size of a packet. Source-to-destination packet routing is
controlled by a packet header that contains routing information
and the routing algorithm used by each router. These run-time
dynamic decisions call for an allocation of routing resources
as needed. If traffic is unpredictable, buffering is provided in
the network router to allow fair access to contested routing
resources. Extensive experimentation has shown that this con-
figuration allows for high throughput and, in restricted cases,
predictable packet latency. Given the wide array of FPGA uses
for packet-switched networks and their low overhead, hard
NoCs are strong candidates for future FPGA integration.

In many cases, on-chip data communication between por-
tions of FPGA designs is predictable at design compile time.
These data streams often have known bandwidth rates and
communication patterns that exist throughout design execu-
tion. In these cases, hard NoC communication resources can
be preallocated at compile time to guarantee both bandwidth
and low latency for a sizable number of data streams. The
remaining bandwidth can be used for less-predictable packet-
switched routing. Our time-division multiplexed (TDM) addi-
tion to hard NoC routers not only provides an effective mech-
anism for dealing with continuous data streams, but it also can
save significant dynamic energy and support multicast routing.
Since routing patterns are predictable, repetitive accesses to
energy consuming data buffers in NoC routers are eliminated,
reducing overall dynamic energy consumption.

In this paper, we provide a design for a hybrid hard NoC that
is customized for use in FPGAs. This NoC supports packet-
switched-only routing, TDM-only routing, or a simultaneous
combination of the two routing approaches. A routing algo-
rithm is used to preallocate persistent stream bandwidth to the
NoCs during design compilation. Communication is broken
into a series of time slots that can be used in each router for
either packet-switched or time-multiplexed communication.
Although hybrid routers have been developed in the context of
multi-core NoCs (primarily to isolate high-bandwidth memory
channels) [2], little work has been done on adapting the
approach to FPGA NoCs that require fewer hardware resources
and exhibit a number of important restrictions. In this work, we
show that the amount of additional hardware required to build
a hybrid NoC router is about 9% versus a previous packet-
switched-only version without affecting router performance.

II. BACKGROUND

A. Related Work

As packet-switched NoC router architecture has matured
over the past decade, the basic elements of a packet-switched
router have become standardized [3]. These routers consider
the transfer of packets of information from a source core to
a destination core as a series of flow-control digits (flits).
When a flit arrives at a router input port it is buffered
and subsequently forwarded to an output port based on a
previously-determined allocation mechanism. A packet may
be assigned to one of several input virtual channels (VCs).
Typical components of a router include input buffers to store
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flits, a VC allocator to determine the output virtual channel
for an incoming flit, a switch allocator that identifies which
input buffers connect to specific outputs on a clock cycle,
and the switch (typically a crossbar) that makes the physical
connections. Each connection is determined by a packet header
flit that indicates the packet destination. This information, in
concert with a router’s routing policy determines router input-
to-output connections. A typical routing policy is dimension-
ordered routing (DoR) in which packets are routed horizontally
first and then vertically (or vice versa). If one VC input buffer
becomes blocked due to congestion, flits in the other VC(s)
may continue forward.

One approach to developing an FPGA NoC is to fashion
one from soft FPGA logic and memory blocks [4] [5]. While
this approach is flexible and allows customization on a per-
application basis, soft NoC routers are up to 23× larger in
terms of area and 6× slower than their hard NoC counterparts
[6]. This overhead has motivated the study of hard FPGA
NoCs [1] [7] [8]. In particular, Abdelfattah et al. [1] [8]
provide a complete view of the embedding of a hard packet-
switched router in an FPGA, soft IP core interfacing, limita-
tions, and overheads. However, these works do not consider
the use of prescheduled time-multiplexed routing using router
components or data multicasting.

Although hybrid hard NoCs for FPGAs have not previously
been explored, other research projects have evaluated aspects
of the problem in different contexts. A hard NoC version of
a strictly time-multiplexed network appeared in Francis and
Moore [9]. In Kapre [5], an FPGA soft NoC was evaluated
that can be used for either time-multiplexed or packet-switched
routing, although not at the same time. The hybrid router does
not support multi-fanout routes. Finally, an effort to combine
a standard packet-switched router with time-multiplexing cir-
cuitry for a multi-core microprocessor was described in Yin et
al. [2]. This work differs from our implementation in several
important aspects. First, FPGA NoC routers are much simpler
than their fixed-function multi-core counterparts, motivating
more aggressive NoC optimization. Second, FPGA circuits
tend to have persistent time-multiplexed communication pat-
terns rather than the time-varying patterns of multiprocessor
communication.

B. Characteristics of FPGA Hard NoCs

For this work, we enhance an existing, well-documented
hard FPGA NoC router [1] [6] to support hybrid traffic. Simple
FPGA hard NoCs typically incorporate a minimum of virtual
channels per port (e.g. 2) and output buffering is limited
to a pipeline register per virtual channel. Switch and output
virtual channel allocation logic is generally simple enough to
be completed in a single clock cycle. This simplicity limits
latency through the router to two clock cycles of approximately
1 GHz in 45 nm technology.

Since, unlike microprocessors, soft FPGA IP cores typically
cannot reorder packets, the virtual channel (e.g. 0 or 1) used by
all flits in a packet must remain the same for each router along
the source-destination path [1]. This consistency ensures that

all flits for a packet remain in order throughout its journey. The
ordering restriction also implies that packets must be routed
using predictable routing patterns, such as DoR, so that the
path taken by all flits in a packet is the same and deterministic.
Finally, FPGA NoCs are best suited to transfer streams of data
long distance on the FPGA die (e.g. one-third of the device
or greater) due to the overhead required to inject data into the
NoC and extract it. Communication between neighboring soft
FPGA IP cores can be easily handled using the segmented
wiring and flip flops found in the FPGA fabric.

C. Limitations of Packet-Switched FPGA-based Hard NoCs

Previous work [10] has shown that packet-switched FPGA
hard NoCs are very effective for bursty traffic, especially
if data sources and destinations vary over time in an un-
predictable fashion (e.g. a network switch implementation).
However, these NoCs have limitations which can impede
performance and increase dynamic power consumption for
certain traffic patterns.

Flit congestion for some traffic patterns. The FPGA
NoC need for deterministic packet transport paths (as opposed
to adaptive routing used by many microprocessor NoCs)
can lead to significant flit congestion since the deterministic
patterns supported by the NoC may overlap. For example,
Bitar et al. [10] showed that FPGA hard NoCs using DoR
generally perform poorly for communication patterns in which
communicating cores are on the chip boundaries. Although
several solutions were proposed [10], they either did not
ensure in-order packet arrival or require significant additional
router hardware (e.g. routing tables with source/destination
information within each router).

Broadcasting and multicasting. The implementation of
broadcasting and multicasting packets from a single source to
multiple destinations has not been addressed for hard FPGA
NoCs. Previous approaches for packet-switched many-core
NoCs require a special lookup table within each NoC router to
support multicasting [11]. Additionally, the approach is limited
to DoR routing. In our implementation for TDM multicasting,
no additional hardware in the router is needed beyond the
modest extensions needed for TDM.

Router buffer energy. Since congestion can be unpre-
dictable, packet-switched NoCs include buffering to help store
intermediate flits. Reading and writing this buffer requires
significant dynamic energy. Since time-multiplexing alleviates
congestion at compile time, buffering is not needed and buffer
accesses can be avoided. After introducing our architecture, we
describe how our implementation can address each of these
concerns within the context of on-chip communication that
can be predicted at compile-time.

D. Characteristics of Time-Multiplexed Networks

In addition to the benefits noted in the previous section, the
use of FPGA NoC resources in a prescheduled TDM fashion
places restrictions on FPGA soft cores and inter-core com-
munication. As a result, we argue that a hybrid router which



supports both packet-switched and TDM routing is suitable.
Characteristics of TDM networks include the following.

Precompiled bandwidth allocation. Time-multiplexed
communication works best when the source-destination pairs
and required bandwidth of inter-core communication are
known at compile time and do not change substantially during
design execution. TDM pipelines data at the maximum clock
frequency of the network so no in-network buffering is needed.

Source and destination core data rates. TDM data trans-
fer limits the source-core NoC data insertion rate to be, at
most, the rate specified at compile time. Likewise, destination
cores must consume or buffer data outside the NoC at the
predetermined source data generation rate or transmitted data
will be lost. If a source inserts data at a slower than expected
rate, some NoC bandwidth could be wasted. In our hybrid
NoC implementation, router time slots that have been allocated
for time-multiplexed communication but do not have time-
multiplexed data available can be used to transfer packet-
switched data instead.

Context memory. A limitation of time-multiplexed com-
munication is the need for a context memory that specifies
the router configuration on a cycle-by-cycle basis [12]. When
hybrid or TDM-only routing is used, the context memory
consumes dynamic power whether a data transfer takes place
or not.

III. HYBRID NOC IMPLEMENTATION

Our implementation of a hard hybrid NoC for FPGAs aug-
ments a two pipeline-stage packet-switched router and soft IP
core interface that have been optimized for embedding within
an FPGA [1] with a minimum of additional resources to sup-
port time-multiplexed routing. For any router or interface, if
time-multiplexed routing is not needed, power is not applied to
the isolated TDM resources and their effect on packet-switched
routing is negligible. All time-multiplexed communication is
scheduled at compile-time. Once configured, additional time-
multiplexed bandwidth cannot be allocated at run-time.

A. Hybrid Router Operation

An overview of our router architecture appears in Figure
1. The context memory provides a cyclical schedule for time-
multiplexed routing. The context memory contains one entry
per time slot. The source for each TDM destination in a time
slot is encoded in the memory. The encoding allows a single
source flit to fan out to multiple destination ports in the same
cycle. Input and output ports that are not used by TDM in
a slot can be used for packet-switched routing. This sharing
can occur if a slot is not allocated to TDM at all or if it is
allocated to TDM but a valid TDM flit does not appear at
the appropriate input port on the previous clock cycle. For
example, in the figure for the first time slot, the north (N) and
south (S) destination ports are reserved for TDM while the
remaining ports can service packet-switched traffic. A counter
is used to cycle through the slots in a repetitive fashion. For
time-multiplexed routing, flits at the input ports bypass the
input buffers (VC1, VC2) and are stored in the bypass registers
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(Figure 2). A multiplexer is used to select crossbar input data
from either the input buffers or the bypass register.

The operation of the router for packet switching involves
the use of per-packet VC assignment and per-flit crossbar
arbitration. When the header of a new packet arrives at an input
port it is assigned to its designated VC. If a crossbar input
or output is not used by TDM during a communication slot,
switch allocation is performed to determine which input VC
connects to which unused output port. TDM communication
always takes priority over packet-switched communication.
Our packet-switched switch and output port allocation tech-
niques follow previous work [6].

Our pipelined hybrid router uses two pipeline stages and
lookahead routing. In the following discussion, the processing
of a single input port to output port path is described, although
processing for all five input ports takes place simultaneously.
At the start of the first pipeline-stage cycle, a data flit may be
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located at the input register of each input port. During the first
router cycle, the current entry in the context memory is fetched
to determine which TDM input/output connections for the flits
will be made in the next cycle. Round-robin switch allocation
is simultaneously performed for packet-switched connections.
Packet-switched flits are written into their respective VC
buffers and TDM flits are written to bypass registers. If an
expected TDM data value is invalid (as indicated by the flit’s
valid bit), the results of packet-switched crossbar allocation are
used for the input-to-output port connection for the unused
TDM output port on the next cycle. Otherwise, the packet-
switched assignment is masked to allow for a TDM transfer to
the designated port on the subsequent cycle. Each flit contains
a bit which designates it as either a TDM or packet-switched
flit. During the second pipeline cycle, data sweeps across
the crossbar into the appropriate output register(s). Packet-
switched flits are sourced from the input buffers while TDM
flits come from the bypass registers.

B. Hybrid Core Ports

The use of hybrid routing requires adaptation of both the
router and ports to FPGA soft IP cores (termed FabricPorts in
[1]). This adaptation is complicated by several factors:

• The NoC is assumed to run at a different clock frequency
than the cores. As a result, the ports must provide both
synchronization and buffering.

• Since TDM data must be consumed within a fixed period,
cores which transmit (receive) both TDM and packet-
switched data require multiple write (read) lanes to (from)
the adjacent NoC router. For example, if both TDM and
packet-switched data are read from the NoC, separate
lanes (one for each data type) per port are needed so that
TDM data is readily available to the core on schedule.

• Control logic is needed in both read and write ports to
coordinate flit transfer to the appropriate read or write
lane depending on the flit type (TDM/packet-switched)
and TDM time slot.
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For our hybrid architecture, we augment packet-switched
core ports to support TDM transfer while considering the
issues noted above. In this data read example, the top lane
in Figure 3 is used for packet-switched data and the bottom
lane is used for TDM traffic. Either lane could be used for
either type of traffic. If only one type is needed, the unused
lane can be deactivated. Each lane provides a FIFO for inter-
clock-domain synchronization. Buffering is provided at each
interface to collect multiple flits prior to transfer to the FPGA
core. A key aspect to the port is the context memory. Similar
to the router context memory, a per-cycle indication of flit
destination (e.g. 0 = packet-switched, 1 = TDM) is provided
in the memory. For reading, on predetermined cycles valid
flits are forwarded from the NoC to the TDM lane. On other
cycles, valid flits are forwarded to the packet-switched lane.
The size of the port context memory in number of entries is
the same as the context memory for the routers. For the TDM
lane, a core must read data from the lane at the same rate
as it is read from the NoC to prevent data overwrite since
backpressure control signals are not used. A Ready in signal
is provided to the lane by the core indicating that valid data
has been consumed from the NoC.

Similar to the hybrid read core port, one lane each is
allocated for TDM and packet-switched traffic in the write
port (Figure 4). The core writes a wide data value to the write
buffer which is then forwarded to the FIFO synchronizer one
flit at a time. The context memory is used to indicate which
lane should forward a flit on a specific schedule clock cycle.
TDM flits are given priority over packet-switched flits during
designated cycles in the context memory.

C. Routing Algorithm

To preschedule TDM communication during design compi-
lation, a routing algorithm has been developed which selects
both source to destination router paths and context memory
schedule time slots. A key aspect in the success of TDM
routing is distributing TDM slots throughout the routing fabric.



1 The number of slots in the context memory is imax.
Specific schedule time slots range from 0 to imax − 1.
The delay through a router is d time slots;

2 for sstart = 0, sstart < imax, sstart++ do
3 Set start time slot s = sstart;
4 Empty queue, Q;
5 Clear visited routers in all time slots;
6 if time slot s available in router, rsource, attached to

source node then
7 Push rsource and s into Q and mark as visited;
8 end
9 else

10 Continue;
11 end
12 while destination D not reached and available

feasible path do
13 Pop router r and its time slot from top of Q;
14 If r = D, record cost C, and then end loop;
15 Identify neighbors of r on the shortest path to D;
16 Push router neighbors and time slot (s+ d) mod

imax onto Q in order of cost if not visited and
available in time slot (s+ d) mod imax;

17 Mark router neighbors as visited;
18 end
19 end
20 Select successful path with lowest cost C;

Algorithm 1: Per-flit routing algorithm

If a context memory in a router becomes overfilled with
TDM slots, packet-switched bandwidth through the router
may become limited, creating a packet-switched bottleneck.
Thus, our TDM routing attempts to locate shortest paths while
balancing TDM slot usage in the routers.

Our TDM routing algorithm considers streams of data
from a source core to a destination core that has a specific
bandwidth. To achieve the required bandwidth, one or more
flits must be transferred per context memory cycle (e.g.
one complete pass through all context memory slots). This
schedule then repeats to guarantee the required bandwidth
for the stream. In the following, we consider the scheduled
transfer of multiple flits for the stream. Each flit may traverse
different routes, although since each follows a shortest path
from source to destination and there is no NoC buffering,
stream data is assured to arrive in order.

Before routing, streams are ordered by number of destina-
tions, bandwidth requirements, and distance, in that order. For
each flit in a stream in Algorithm 1, all possible shortest paths
and starting time slots at the source core port are considered.
Once a flit is injected into the NoC, consecutive time slots
must be used for the route as the flit progresses towards the
destination since no NoC buffering is allowed. The routing
algorithm uses a queue to consider the next routers to add to
the path. The cost C of using the router is inversely determined
by the number of TDM slots that are already in use in the

1 Empty Q;
2 Select the next-closest destination, Di, to the

previously-routed path;
3 Identify all routers in the previously-routed path along a

shortest path to Di. For each router, identify its used
TDM time slot for the route. Order routers by their
closeness to Di;

4 Push router and associated time slot in previously routed
path which is closest to Di into Q;

5 Perform steps starting at line 12 in Algorithm 1;
6 If route is unsuccessful, retry steps 4 and 5 with

next-closest router to Di;
7 Select overall lowest cost route;

Algorithm 2: Extension for per-flit multicast routing

Topology 64-node, 8 × 8 2D mesh
Technology 45 nm at 1.1V, 1.0 GHz
Routing X-Y routing
Channel width 128 bits (16 bytes)
Packet size 4 flits
Context memory 8 entries
Virtual channels 2/port
Buffer size per VC 10 flits in depth

TABLE I
ROUTER PARAMETERS

context memory schedule. Once the routes for all flits in one
stream are determined, the next stream is routed.

Algorithm 1 for single destination routes is extended to
route multicast data in Algorithm 2. Routing is first performed
to the destination which is closest. Multicast routing progresses
for each destination Di after the first destination is reached.

IV. EXPERIMENTAL APPROACH

A. Hybrid NoC and Core Port Physical Modeling

The parameters used for all experiments (unless otherwise
noted) are shown in Table I. A detailed evaluation environment
was used to determine accurate area and energy consumption
values for the hybrid router and core ports. A widely-used
open-source packet-switched router [3] was adapted for our
experimentation. The register-transfer level (RTL) code for
this open-source router was modified to include our TDM
additions. The design was synthesized in 45 nm technology
using the NanGate Open Cell library1 and the Synopsys
Design Compiler vE-2010.12-SP5-2. The gate level netlist of
the hybrid router circuitry was exercised to generate realis-
tic circuit toggle rates. To determine per-component power,
flits were repetitively inserted into all router input ports and
forwarded to the output ports for 10,000 clock cycles. Timing
simulation was performed using Modelsim to generate a toggle
VCD file. This file was then input into the Synopsys Power
Compiler to assess dynamic power consumption of the router
components. The dynamic power evaluation was performed
for both TDM and packet-switched routing operation.

1http://www.nangate.com/?page id=22



Packet-switched Hybrid
Input buffers 91,944 92,275
Input buf. control 8,344 11,710
Allocator/arbitrator 4,516 4,445
Crossbar 2,912 2,977
Output module 7,061 7,318
TDM circuit - 6,328
Total 114,777 125,053

TABLE II
ROUTER AREA (µm2) AT 45 NM FOR PACKET-SWITCHED-ONLY AND

HYBRID FPGA HARD NOC ROUTERS

Inter-router dynamic interconnect power per wire was de-
termined by multiplying the 45 nm wire capacitance by V 2

DD

= (1.1V )2 and scaling it by the activity factor of wires de-
termined during simulation. To assess the power consumption
of write and read core ports, transmit (TX) and receive (RX)
ports were written in RTL Verilog, synthesized, and evaluated
for dynamic energy using an approach which is similar to the
one described above for routers.

B. Network Simulation Tools

To evaluate the performance of the hybrid FPGA NoC for
a variety of traffic patterns, Booksim 2.0 [13] was used to
assess packet latency and NoC dynamic power. The cycle-
accurate simulator has built-in utilities to measure packet and
flit latency, among other metrics. The simulator was modified
to allow for hybrid TDM/packet-switched routing. Each router
component and the inter-router wires were assigned dynamic
energy consumption values determined via the post-synthesis
simulation described in Section IV-A. These values were
scaled by flit-level toggle rates determined during the Booksim
simulations. The network was warmed up with enough packets
to reach a stable state prior to results recording.

V. RESULTS

In our first experiment, we evaluate the area and power over-
head of our TDM additions to an FPGA hard packet-switched
router. The area in µm2 of router components is shown in
Table II. In this implementation, the TDM circuitry, including
context memory and associated control logic, increases the
router footprint by about 9%. Most of this area is consumed by
the bypass registers and expanded multiplexers needed for the
five input ports (about 4,500 µm2 out of the 6,328 µm2 TDM
overhead). The 8×20 context memory and associated control
requires 1,225 µm2 of area. The area values per lane for the
receive and transmit core ports are 18,151 µm2 and 15,405
µm2 for RX and TX, respectively without TDM circuitry. The
8×2 slot tables and associated control circuitry to allow for
multiple RX and TX lanes are quite small (about 284 µm2).

The dynamic power reduction of using the hybrid router
exclusively in TDM versus packet-switched (PS) mode is
substantial. Table III illustrates the dynamic power in the
router consumed for each case if only one input and one output
port are used. In this case, the other four input buffers are clock
gated. Input buffer read-write access consumes nearly half of
the router power. If all five input and output ports are used

Packet-switched TDM
Single input buffer 9.10 -
Bypass register - 2.37
Single input module ctrl. 2.76 0.60
Single input reg. 1.60 1.60
Allocator/arbitrator 0.40 0.23
Crossbar 0.45 0.46
Inactive input regs 4.80 6.12
TDM circuitry 1.60 1.60
Single output reg. 1.74 1.96
Total 22.45 14.94

TABLE III
AVERAGE ROUTER POWER (MW) USING THE HYBRID ROUTER AT 1 GHZ

FOR A SINGLE INPUT PORT TO SINGLE OUTPUT PORT DATA STREAM

simultaneously, the disparity becomes greater (78.6 mW for
PS versus 36.4 mW for TDM). A total of 45.5 of the 78.6
mW for PS is consumed in the input buffers. In hybrid mode,
the TDM circuitry (primarily consisting of context memory
accesses) continually consumes power even if packet-switched
transfers are performed. This overhead could be removed if the
hybrid router is used strictly in packet-switched mode. Note
that the input registers continue to consume dynamic power
even if valid data is not transferred on a cycle since the valid
bit must be checked to verify data status. The per-lane dynamic
power consumption of the RX and TX core ports are 16.8 mW
and 11.5 mW, respectively. Added TDM control circuitry in
the core port consumes about 0.3 mW.

A. Assessment of Hybrid Routing

In a series of experiments using our modified version of
Booksim, three inter-core communication patterns for packet-
switched and hybrid-switched routing were considered [13].
The patterns include 1) transpose (messages from (x, y) are
sent to (y, x)), 2) bit-reverse (messages from the node labelled
x are sent to the node whose label is bit-reversed(x), and 3)
tornado (messages from (x, y) are sent to (x + k

2 − 1 mod
k, y + k

2 − 1 mod k) where k is the dimension of x and y.
Latency values are directly reported by Booksim. Dynamic
power was determined by Booksim by scaling the router, core
port, and wiring dynamic energy determined via gate-level
circuit simulation by activity.

In an initial Booksim experiment, we consider latency and
dynamic power under different packet insertion rates2 using
the hybrid router if all traffic is forwarded using either packet-
switched or TDM routing. Figure 5 shows that for transpose
and bit-reverse traffic patterns, TDM reduces latency. These
patterns stress the DoR strategy used by packet switching,
while TDM can use a broad range of routes determined at
compile time to connect sources and destinations. The tornado
pattern is less favorable to TDM since communication is
evenly distributed across links and is well-suited to DoR.
Figure 6 shows that as data throughput increases, the disparity
between packet-switched and TDM NoC+core port power also
increases. The dynamic power savings of TDM is primarily

2For comparative purposes we consider a TDM ”packet” to be four flits,
the same size as a packet-switched packet.
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Fig. 6. Average NoC and core port dynamic power for transpose, bit-reverse,
and tornado routing patterns using only packet-switched or TDM routing.

due to the elimination of input buffer accesses in the router.
It should be noted that for these experiments only one lane
per RX and TX core port was needed since all traffic is either
packet-switched or TDM. The second lane was clock gated.

In a second set of experiments, packet-switched and TDM
routing were combined in the same simulation for the trans-
pose pattern under total packet insertion rates of 0.03, 0.04,
and 0.05 packets/node/cycle. Figure 7 shows PS and TDM
latency as the total insertion rate stays constant but the TDM
insertion rate increases from 0 to 0.05. In most cases, the TDM
latency is less than PS, except for the 0.03 total insertion rate.
Here, PS latency is lower since additional latency is present
in the TDM TX core port. A flit may be ready to be sent
immediately but must wait several cycles for its TDM slot
to appear in the context memory. In contrast, a PS flit could
be sent immediately. For higher PS insertion rates, increased
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Fig. 7. Average NoC latency for different amounts of TDM traffic for
transpose under fixed overall packet insertion ratios of 0.03, 0.04, and 0.05
packets/node/cycle. Note that PS traffic decreases as TDM traffic increases.
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Fig. 8. Average NoC power for different amounts of TDM traffic for
transpose under fixed overall packet insertion ratios of 0.03, 0.04, and 0.05.

PS congestion has a greater effect than the TDM TX delay.
Figure 8 shows that the overall NoC+core port dynamic power
decreases as the fraction of TDM traffic increases.

B. Comparisons to Packet-Switched Multicast

As mentioned in Section II-C, TDM routing inherently
supports multicasting since a row in the context memory
can indicate the same input port for multiple output ports.
Although multicasting can be integrated in a packet-switched
router, an additional CAM which indicates the output ports
for each input is needed [11]. To assess this overhead, we
used CACTI 4.13 to estimate the size and dynamic power
consumption of a 8×9 CAM. These values were determined
to be 625 µm2 and 2.7 mW, respectively4. In contrast, TDM

3http://www.hpl.hp.com/research/cacti/
4The values for the whole packet switched router from Tables II and III

are 114,777 µm2 and 22.45 mW, respectively.
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Fig. 9. Average packet latency for increasing amounts of four-destination
multicast traffic. Packet-switched multicast requires the use of a separate
packet for each destination

requires no additional multicast circuitry.
Figure 9 illustrates the benefits of TDM multicasting for

various levels of multicast traffic. Multicast traffic for PS is
transmitted as multiple copies of individual source-destination
traffic. In the experiment, multicast packets are sent to four
different destinations at least three nodes away from the
source. All other traffic is packet-switched in a uniform
random distribution pattern. TDM clearly leads to reduced
average packet latency as the amount of multicasting increases.

C. Comparison to Single-Source, Single-Destination Routing

In a final experiment, we compare our hybrid router against
a packet-switched router for single-source, single-destination
routing patterns [10]. For this experiment, we use 64 routers
in an 8 × 8 grid with 64-bit flits and a 10 Gbps overall data
insertion rate. Data injection is distributed evenly across data
sources. Sources and destinations are located either around the
perimeter of the FPGA (4-sided) or along two parallel sides
(2-sided). Permutation traffic (e.g. the top, left node sends data
to the bottom, right node) is used to stress the network. Our
results for flit and packet latency versus packet-switched only
routing (Y-X) are shown in Figure 10. The use of TDM to
avoid DoR congestion allows for a latency reduction. It should
be noted that the router application in [10] can support variable
packet sizes and an uneven packet insertion rate across sources,
aspects that were not considered in this experiment. Traffic
with these time-varying characteristics are best supported with
a packet-switched framework.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a hard FPGA NoC that can support both TDM
and packet-switched routing has been described. Experiments
show that TDM routing can reduce NoC dynamic energy
consumption for traffic patterns that traditionally perform
poorly with packet-switched dimension-ordered routing. We
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Fig. 10. TDM-only comparison versus packet-switching for average flit
and packet latency. Single-source, single-destination traffic patterns [10] were
used.

demonstrate that TDM can also natively support multicast-
ing. In the future, we will consider FPGA core placement
techniques that can assist both packet-switched and TDM
routing. By better placing cores, DoR bottlenecks can be better
avoided.
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