
Adaptive MRAM-Based CGRAs
Xiaobin Liu, Tedy Thomas, Alan Boguslawski, and Russell Tessier

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, USA

Abstract—In this paper, we describe the use of magnetic RAM
(MRAM) in coarse-grained reconfigurable arrays (CGRAs) as
a configuration cache to allow for bulk low-energy storage and
rapid device reconfiguration. If an energy-saving configuration
update for an application is needed, a new configuration can be
quickly swapped into compute blocks and interconnect switch-
boxes to minimize system down time. The determination of when
to configure and an analysis of the CGRA architectural impact of
MRAM is evaluated via system-level emulation. Our experiments
show that the use of MRAM reduces overall application energy
consumption by nearly 30% when dynamic reconfiguration is
used.1

I. INTRODUCTION

In this paper, we address concerns about coarse-grained
reconfigurable array (CGRA) reconfiguration time and energy
in response to changing environmental parameters for signal
processing applications. Our main contribution is the storage
of multiple configurations for CGRA processing elements and
associated interconnect in magnetic RAM (MRAM) close to
their target resources. This emerging memory architecture
is well suited to bulk configuration storage, given its non-
volatile and low leakage characteristics. The reduced size of
MRAM in contrast with SRAM (roughly a factor of four)
allows for increased configuration storage with the ability to
support numerous applications, both active and inactive. Since
both the energy and access time characteristics of MRAMs
differ from SRAM, architectural changes to the CGRA system
are required. Our work includes a full evaluation of MRAM
implementation tradeoffs for CGRAs and the energy benefits
that can be achieved. We demonstrate that this CGRA design
is rapidly responsive to changes in processing demands, pro-
viding just enough computation to the target application.

The specific contributions of this work include: (1) Exami-
nation of the architectural impact of MRAM on CGRAs with
respect to memory architecture, (2) quantification of energy
savings from using MRAM instead of on-chip SRAM to
cache CGRA configuration information for time-varying signal
processing applications and (3) quantification of the energy
reduction available from fast CGRA reconfiguration based on
DSP application parameters.

II. BACKGROUND

Energy-efficient implementation of baseband signal pro-
cessing and image processing is challenging due to recent

1An extended version of this paper is available at
http://www.ecs.umass.edu/ece/tessier/liu-fpl15-extended.pdf.

industrial trends. For example, link adaptation (or adaptive
coding) is widely used to maximize overall data transmission
throughput by adapting the coding scheme according to the
quality of the radio channels [1]. Adaptive image processing
is being performed on a large class of personal and automo-
tive devices, often in energy-constrained environments. These
trends create significant run-time computational workload vari-
ations. Specific signal processing applications which exhibit
time-varying computational loads, communication decoding
(e.g. Reed Solomon) and image processing (filtering, motion
estimation), are targeted to our platform for experimentation.

Coarse-grained reconfigurable arrays generally contain tens
or hundreds of ALU-based processing elements (PEs) which
include small amounts of memory. CGRAs typically store
configuration information on-chip in SRAM and the informa-
tion is distributed to processing elements and switchboxes as
application execution changes (e.g. in response to a context
switch or application update). In this paper, we address SRAM
power limitations through the use of MRAM to allow for the
storage of multiple configurations for the processing elements
and determine appropriate times to reconfigure the system.

MRAM has emerged as a promising candidate for on-chip
non-volatile RAM due to programmability using standard sup-
ply voltages. Compared with SRAM, MRAM achieves a 4 to
7× storage density improvement [2]. Each magnetic tunneling
junction (MTJ), the basic storage element in MRAM, has two
ferromagnetic layers separated by an oxide barrier layer. MTJ
resistance is dependent on the directions of magnetization of
the ferromagnetic layers (parallel or anti-parallel). In spin-
torque transfer memory (STT-RAM)2, magnetization occurs
using write currents in the MTJ in opposite directions. MRAM
cells typically exhibit substantially lower static power than
SRAM (10×) and similar dynamic read power and latency.
However, high write energy and a long write latency are
observed (3 to 10× greater) [2].

III. MRAM-ENABLED COARSE-GRAINED
RECONFIGURABLE ARRAY

Our MRAM-enabled coarse-grained architecture is designed
to support streaming applications with pre-scheduled commu-
nication paths. The architecture is based on a two-dimensional
array of ALU-based processing elements. Each cell contains a
32-bit ALU, a 36K-word data memory, and a 24K-word con-
figuration memory. These memories are directly connected to

2We use the terms MRAM and STT-RAM interchangably.



TABLE I
MRAM AND SRAM PARAMETER COMPARISON FOR TWELVE 256K×32

(1MB), THREE 256K×128 (4MB), AND ONE 256K×384 (12 MB)
MEMORY BANKS. ACCESS TIMES AND ENERGY VALUES ARE PER MEMORY

ACCESS. ENERGY AND LEAKAGE VALUES ARE SUMS ACROSS ALL
MEMORY BANKS.

MRAM SRAM
Output
bits/bank 32 128 384 32 128 384
Banks 12 3 1 12 3 1
PEs/
bank (n) 1 4 12 1 4 12
Read
time (ns) 1.30 1.67 2.74 0.60 1.23 3.39
Write
time (ns) 5.36 5.88 6.73 0.49 0.82 3.09
Read
ene. (pJ) 470.04 382.20 517.63 364.08 416.30 313.58
Write
ene. (pJ) 356.88 317.13 592.75 273.72 349.35 256.46
Area
(mm2) 29.04 14.76 13.09 40.56 38.85 45.77
Leakage
(mW) 42.72 11.61 5.27 102.24 95.94 75.04

much larger multi-MB non-volatile memory (MRAM) blocks
which can be used to change their configuration memory
contents. The array interfaces to a network of multiplexer-
based switchboxes to provide inter-element communication.
Data are switched in 32-bit increments to lower the switch
configuration memory overhead. A dedicated microprocessor
is located on the bottom of the array to provide control
over the loading of configurations to MRAM (if needed) and
coordinating signal processing application data transfer to and
from DRAM.

The switchbox for each processing element operates on a
pre-determined schedule that coordinates communication with
neighboring elements. Schedule information for cycle-by-cycle
configuration of the multiplexer-based crossbar is stored in
the schedule memory. Buffers and flow control signals are
provided on each interface port to prevent overflow. On each
cycle for a port, data can be forwarded from the buffer or the
neighbor. Each buffer contains storage for data from multiple
independent streams (effectively, virtual channels).

A key architectural feature in this scalable multi-PE system
is the use of MRAM to cache multiple PE and switchbox con-
figurations. To allow for faster configuration download, many
CGRAs [3] distribute the SRAM-based configuration cache
so that one bank is located near each target PE. As a result,
individual PEs can be updated separately, as needed. However,
the characteristics of MRAM and the use of streaming DSP
applications draw this approach into question. Specifically,
(1) MRAM has substantially reduced leakage power versus
SRAM. As the array size of the MRAM increases, the ratio
of MRAM to SRAM leakage increases, advocating for the
use of larger MRAM arrays. (2) The read time of MRAM
array accesses grow at a much smaller rate as the array
increases in size versus corresponding access time increases
in SRAM memory arrays. (3) Most PEs of a signal processing
application can be reconfigured at the same time, advocating

for wide MRAM arrays which can transfer configurations to
multiple PEs at the same time.

As a result, we can consider using a single memory bank
as a configuration cache for multiple PE/switchbox pairs and
configuring all pairs at the same time. To quantify the potential
of this approach, parameters for similarly sized MRAM and
SRAM caches were generated. NVSIM [4] is used to evaluate
circuit-level area, performance, power, and energy for our
STT-RAM (MRAM) implementations. The NVSIM LOP (low
power) library is used to evaluate read/write access time and
static and dynamic energy for varying MRAM array sizes.
NVSIM was also used to model low-power SRAM banks in
the same 40 nm size.

Table I provides an MRAM/SRAM comparison for 12 MB
of configuration cache distributed across 12 PE/switchbox
pairs. The number of banks of each memory and the respective
output bits per bank are listed in the first two rows of the
table. Energy and leakage values are sums across all memory
banks. For 1MB (32 bit output), 4MB (128 bit output), and
12MB (384 bit output) memory configurations, the ratio of
total leakage power for SRAM versus MRAM are 2.4, 8.3,
and 14.2, respectively. In general, STT-RAM cells exhibit little
leakage, so much of the array leakage is due to the decoders
and output multiplexer.

A. Time-Varying Signal Processing Applications

Localized embedded MRAM configuration caches can dy-
namically reconfigure PE and switchboxes, enabling changes
in signal processing algorithm implementations in response to
the physical environment and/or signal characteristic changes
(e.g. noise). Thus, multiple, independent CGRA configurations
can be used for an application and swapped into the PE
configuration and switchbox schedule memories as needed.
Periodic changes between applications may also be needed. To
illustrate the benefit of MRAM in supporting rapid, low-energy
reconfiguration, three signal processing algorithms are mapped
to our parallel, MRAM-enabled CGRA: a Reed Solomon
communications decoder, a motion estimation algorithm, and
a large multi-tap FIR filter.

Reed Solomon (RS) coding is widely used for communica-
tions in environments with noise. Message data is digitized and
broken into multi-bit symbols. A group of k data symbols is
augmented with n−k parity symbols used for error correction
to form an n symbol codeword. A Reed Solomon decoder
provides error recovery by detecting and correcting codeword
symbols [5]. The number of recovery operations can be tuned
based on the amount of noise in the received channel data.
While data communication throughput rates can vary, many
applications require a constant codeword error rate (CER), the
rate at which decoder symbols are in error. In response to
changes in channel noise, system reconfiguration to maintain
constant CER is required. An increase (decrease) in channel
noise requires a more (less) powerful decoder implemented
in each processing element. The processing elements are
reconfigured to reflect the change.



Motion estimation is used in image processing to identify
portions of an image that move from frame to frame. A new
image is broken into windows which are repetitively compared
against portions of a previous image to determine a motion
vector. For improved accuracy, a smaller search window within
a frame can be used. For reduced accuracy, a larger window
is deployed, saving computation and energy. An FIR filter is
used as the third signal processing application which exhibits
time-varying computational needs. The number of taps are
varied over time to trade off energy and filter performance.

IV. EXPERIMENTAL APPROACH

To validate the energy and performance aspects of our ap-
proach, we use a combination of simulation and FPGA-based
architectural emulation to accurately measure system energy
and performance. The processing element in our system, a
modified version of the ALU-based SPREE functional unit [6],
and the switchbox were written in Verilog. The performance
of the architecture for 12 PEs and switchboxes was validated
using both RTL simulation and in-circuit emulation after
design synthesis using an Altera DE4 FPGA board. Cycle-
accurate performance and node toggle rate calculations for
the applications were determined using the Altera Perfor-
mance Counter Unit, instrumented in the FPGA hardware.
Detailed power consumption was determined using a current
measurement sensor included on the DE4 board. Power and
performance were scaled from measured 40 nm FPGA values
found in emulation to estimated 40 nm ASIC values. The
switchbox and SPREE designs were analyzed by both Altera
PowerPlay and Synopsys Design Compiler using the NanGate
open core 40 nm library3 to determine the scaling factors of
11.6 for performance and 5.0 for power.

The implementation specifics for each benchmark are pro-
vided below. In the RS decoding application, each PE is
assigned one RS decoder. The error-correcting capability of the
decoder (e.g. number of k message symbols) is determined by
the PE configuration. Our experimentation considers k values
ranging from 217 to 239 out of n = 255 total symbols (e.g.
RS(255,217) to RS(255,239)). A constant codeword error rate
(CER) of 10−4 is used. The specific decoder configuration is
selected based on channel noise. To simulate the behavior of a
communication system, channel noise (SNR) was considered
to vary at an accepted rate [5] of 1.5 seconds and a new noise
value was randomly selected at this rate. If necessary, the
CGRA configuration was updated in response to the change in
noise, necessitating a PE configuration load from the attached
configuration cache.

For motion estimation, a series of 1024×1024 pixel
greyscale images are distributed to the PE array. Each of
these images is part of a sequence in which motion can be
detected. Subsequent images in the sequence are split into
windows and each window is tested by each PE for motion.
In this implementation, the accuracy of the motion estimation

3www.nangate.com

TABLE II
PE AND SWITCHBOX (SB) CONFIGURATION BIT SIZES FOR ONE

CONFIGURATION OF EACH APPLICATION

one PE whole CGRA
PE SB Total PE SB Total

RS 81,920 16,384 98,304 983,040 196,608 1,179,648
ME 49,152 16,384 65,536 589,824 196,608 786,432
FIR 40,960 16,384 57,344 491,520 196,608 688,128

algorithm is dependent on the window size. For higher accu-
racy, a smaller window size is used, leading to more windows
and increased computation. For reduced accuracy, the opposite
effect is observed. In our experimentation, we consider square
window sizes of 14, 16, 18, 20, 24 and 26 pixels on a side.
Reconfiguration is considered every 0.5s based on changes in
expected motion.

FIR filtering involves the implementation of a filter with tap
counts ranging from 120 to 1920 taps. A stream of input data is
sourced from the DRAM and the filtered data is streamed back
to DRAM. For our experimentation, eight-bit sampled radar
data is used. Computation for the taps is distributed evenly
across the PEs. An increased number of taps leads to more
accurate filtered data. Reconfiguration is considered every 0.5s
based on changes in expected data quality.

V. RESULTS

Table II illustrates the configuration bit sizes required for
the individual processing elements and switchboxes. A CGRA
with 12 PEs is used for experimentation. The total bit count
for 12 PE/switchbox pairs is shown in the table for each
application. PE configuration memory bits set connections
between the ALU and data memory. Switchbox configuration
information, stored in the schedule memory, configures the
routing crossbar on a per-cycle basis. As will be described later
in this section, seven distinct Reed Solomon configurations,
six distinct motion estimation configurations and five distinct
FIR configurations are used. As a result, a configuration cache
must hold multiple copies of configuration information for
each PE/switchbox, even though only one is loaded into the
PE config. memory and switchbox schedule memory at a given
time. A total of 12 MB of configuration cache in the system
is sufficient to hold these configurations.

An example of throughput and energy tradeoffs can be ob-
served for the motion estimation application (Fig. 1) for search
window sizes between 14 and 26. The figure indicates that
the application throughput improves with increasing window
size since fewer windows must be searched. A 4 MB cache
size (256K×128, n = 4) is assessed for this application. For
comparable cache sizes, MRAM requires about 3 to 8× less
energy than its SRAM counterparts.

Similar throughput and energy results are seen for the RS
and floating point FIR applications. For example, the average
energy per million decoded bits for the MRAM (1.60 mJ) is
much less than the energy of a (255,217) RS decoder (11.76
mJ). However, an SRAM-based cache consumes a similar
value (13.91 mJ). The throughput difference between a 120



0

200

400

600

800

1000

1200

1400

1600

1800

2000

14 16 18 20 24 26
ME Window Size

Th
ro

ug
hp

ut
 (F

PS
)

0.00

0.05

0.10

0.15

0.20

0.25

En
er

gy
 (m

J)

ME throughput 4 MB SRAM energy ME energy 4 MB MRAM energy

Fig. 1. Energy consumption and throughput of motion estimation mapped
to 12 PEs for different ME window sizes. The energy consumption of
the application and the caches was calculated over one processed frame.
All configuration caches are implemented as 3 individual banks of 4 MB
(256K×128) MRAM or SRAM.

TABLE III
RESULTS OF DYNAMIC RECONFIGURATION FOR MAPPED APPLICATIONS

USING THREE 4MB (256K×128) MEMORY BANKS PER CGRA.

MRAM
Ave. Energy Av. Energy Energy % Energy

Power MRAM App Total improve-
(mW) (mJ) (mJ) (mJ) ment

RS 90.91 0.99 7.66 8.65 26
ME 94.31 0.013 0.106 0.11 38
FIR 97.91 7.11 59.31 66.42 33

SRAM
Ave. Energy Av. Energy Energy % Energy

Power SRAM App Total improve-
(mW) (mJ) (mJ) (mJ) ment

RS 176.46 9.12 7.66 16.78 -43
ME 179.86 0.12 0.10 0.22 -22
FIR 183.46 69.84 59.31 129.15 11

tap FIR implementation (5.2 MB/s) and the 1920 tap version
(0.56 MB/s) is almost an order of magnitude. For three 4MB
configuration caches, the average energy per million decoded
bits of the MRAM (29.20 mJ) is less than half the energy of
the 960 tap FIR filter (74.47 mJ). However, an SRAM-based
cache is nearly the same value (69.84 mJ).

As mentioned in Section IV, applications with differing
error-correcting capability and power consumption can be
used at different times based on environmental factors. For
example, for RS as k changes from 239 to 217, decode rate
is reduced from 16.39 to 6.34 Mb/s and the energy to decode
one million bits increased from 4.44 mJ to 11.76 mJ. One
approach to providing sufficient error correcting capability
would be to use an RS(255,217) decoder at all times and
avoid decoder reconfiguration and the need to cache numerous
configurations. However, this approach limits opportunities for
faster decode rates and reduced energy consumption.

For all three applications (Reed Solomon decoding, motion
estimation, and FIR), energy consumption can be improved
by adapting the application configuration to the measured

environmental condition (e.g. noise in the communications
channel for RS). In a final set of experiments, we examine
the benefit of using dynamic reconfiguration of the CGRA
with either an MRAM- or SRAM-based cache versus simply
using the most powerful configuration of the application all
the time (e.g. using the RS(255, 217) decoder for all RS
decoding). A series of 10,000 random selections of decoder
noise, required ME motion detection, and FIR accuracy were
generated to represent changing environmental conditions. The
application configuration which best met the requirements for
these conditions were then chosen for each selection.

The average power and energy of the applications consider-
ing dynamic reconfiguration from an MRAM-based or SRAM-
based cache is shown in Table III. Energy is determined per
one million processed bits for RS and FIR and per frame for
ME. The percentage improvement is the energy improvement
for the average case using reconfiguration versus the most
computationally powerful configuration of the application (e.g.
RS(255, 217), window size 14 for ME, 1920 taps for FIR). For
example, the RS(255, 217) decoder has a 11.76 mJ dissipation
while the average energy with reconfiguration with MRAM is
8.65 mJ, a 26% savings. Although not shown in the table, the
throughput performance improvement of the applications using
the reconfigured average case versus the most computationally
powerful configuration is 70%, 118%, and 94% for RS, ME,
and FIR, respectively.

From Table III, it is apparent that the use of SRAM
is limiting. The average energy consumption of the recon-
figured RS and ME applications are increased versus the
most computationally-powerful versions by 43% and 22%,
respectively due primarily to leakage.

VI. CONCLUSIONS

For CGRAs, leakage power can dominate configuration
cache energy consumption. We show that the use of MRAM as
a configuration cache is preferable to SRAM for a collection of
three signal processing applications, due to reduced leakage.
By using dynamic CGRA reconfiguration in response to envi-
ronmental factors (e.g. noise), application energy consumption
is reduced by about 30%.4

REFERENCES

[1] T. Keller and L. Hanzo, “Adaptive multicarrier modulation: a convenient
framework for time-frequency processing in wireless communications,”
Proceedings of the IEEE, vol. 88, pp. 611–640, 2000.

[2] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of
the 3D stacked MRAM L2 cache for CMPs,” in Proc.: I’ntl Symp High
Performance Comp. Arch., Feb. 2009, pp. 239–249.

[3] K. Eguro and S. Hauck, “Issues and approaches to coarse-grain reconfig-
urable architecture development,” in Proc. FCCM, Apr. 2003, pp. 111–
120.

[4] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
in Proc.: ICCAD, Nov. 2012, pp. 994–1007.

[5] L. Atieno, J. Allen, D. Goeckel, and R. Tessier, “An adaptive Reed-
Solomon errors-and-erasures decoder,” in Proc. FPGA, Feb. 2006.

[6] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific cus-
tomization of soft processor microarchitecture,” in Proc. Int’l Symp. on
FPGAs, Feb. 2006, pp. 201–210.

4This work was supported by NSF grant EECS-1201834.


