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Abstract—Differential Fault Intensity Analysis (DFIA) is a class
of biased-fault attacks that aim to recover secret keys from block
ciphers such as Advanced Encryption Standard (AES). In DFIA
an attacker collects a set of ciphertexts generated while carefully
controlling the fault intensity, and then performs an analysis on
the results that reveals the secret encryption key. In AES, DFIA
requires injecting varied intensity faults during exactly the 9th
round of encryption, which could be accomplished using clock
or supply voltage glitching, although previous works give scant
consideration to shaping the fault within a realistic scenario.

In this work, we demonstrate DFIA against an FPGA imple-
mentation of AES without assuming arbitrary external control of
clock or supply voltage. Instead we use on-chip ring oscillators
(ROs) to create a precise and controllable voltage drop in the
vicinity of the AES circuit, which causes timing faults to occur.
The fault intensity is finely controlled by changing the number
of activated ROs, and we explore how to optimize the timing of
the RO activation to cause a fault in the 9th round as is required
in DFIA. We use this approach to perform DFIA against AES on
Xilinx Spartan-7 FPGA, show that it successfully extracts AES
key bytes, and discuss its performance.

I. INTRODUCTION AND RELATED WORK

Fault attacks (FA) [1]–[14] in FPGAs can occur when
excessive on-chip switching stresses the power distribution
network (PDN), inducing a voltage drop that causes timing
faults [1], [2]. Such attacks can happen remotely, without user
access using a variety of power wasting circuits [8], [12]. For
example, Mahmoud et al. use ROs to create timing faults in
random number generators [10].

Fault and side channel attacks have previously been used
to extract encryption keys from FPGAs via differential fault
analysis (DFA) [8]. However, differential fault intensity analysis
(DFIA), which can recover keys by differential analysis on
possibly-faulty ciphertexts without requiring the acquisition of
correct ciphertexts, has not been explored in the context of
remote FPGAs. DFIA [3], [4] induces faults with clock glitches.
Recognizing that clock glitching and voltage drops both cause
delay faults, in this work we implement a DFIA attack on
AES in an FPGA by using a variable number of RO power
wasting circuits to cause supply voltage drops. The voltage
drop can be shaped by adjusting the number of ROs and the
duration for which they are active. The ability to control the
shape of a voltage drop is critical for DFIA, which requires
varied faults in the 9th round of AES [3] to extract the secret
key. We demonstrate the attack with experiments carried out
on a Xilinx Spartan-7 FPGA.

Our work has some similarities to previous on-FPGA DFA
experiments using power wasters [8]. This earlier work targets
bytes generated before the 9th AES round and requires an
adversary to obtain faulty and fault-free ciphertexts to extract
the key. DFIA, which our work employs, does not require
targeting of specific bytes, nor does it require any fault-free
ciphertexts.

II. ATTACK MODEL

As mentioned in the previous section, for DFIA, faults must
be induced during a particular round of encryption. Ghalaty et
al. [3] demonstrated DFIA using a controlled multiplexer to
switch to a short-period clock for fault-inducing clock cycles.
This type of clock control is challenging to implement in
FPGAs since on-FPGA clocks are often derived using a main
clock and phase-locked loops (PLLs). In this work, we control
fault intensity by enabling differing numbers of single lookup
table (LUT) ROs. In general, the number of faults per byte
grows with an increasing number of enabled wasters. Using this
approach, we implement the following fault attack scenario:

• The victim encrypts plaintext with a secret key that is
unknown to the attacker.

• The attacker can trigger repeated encryption of the same
plaintexts, but does not know the plaintexts.

• When the attacker triggers an encryption they know the
start time of the encryption.

• The attacker collects the ciphertexts, which may be faulty.

For illustration, we give an example by inducing faults in one
state byte during the first round of AES. In each trial, the
same input value is applied twice to the first round of AES
with a differing number of ROs enabled. Fig. 1 shows the
Hamming distance (HD) between the resulting bytes, with
50 trials performed for each case. The figure shows that HD
increases with incremental fault intensity; similar numbers
of activated ROs will induce one or two bits of difference,
and vastly different numbers of ROs induce larger HDs. The
correlation between HD and fault intensity is the information
that DFIA uses to identify the value of each AES key byte.
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Fig. 1: Distribution of observed Hamming distances relative to
the difference in number of activated ROs. Hamming distances
tend to be larger when the number of activated ROs in two
trials are dissimilar. Trials in which both encryptions produced
the same byte value are excluded from consideration.978-1-6654-8332-2/22/$31.00 ©2022 IEEE



A. DFIA on AES

AES-128 is an iterative algorithm with 10 rounds; the
first 9 include operations S-Box, ShiftRows, MixColumns and
AddRoundKey while the final (10th) round does not have
MixColumns. In hardware, one round is typically computed per
clock cycle, with a register storing and updating intermediate
state in each cycle. An attacker may know the timing of AES
rounds through on-chip voltage sensors [5] or other means.
Fig. 2b depicts where the fault is injected into AES causing
wrong bytes captured in the register. The 10th round, in the
next clock cycle, still needs to operate correctly, but it operates
on the faulty inputs from the register.

We illustrate the DFIA procedure generically on one of the
16 key and state bytes, as the attack works the same against
each byte. Intuitively, the attack exploits the similarity (low
HD) between values of S in the state register when the repeated
encryptions are subjected to similar fault intensities during the
9th round. The attacker, by controlling the number of ROs,
knows when state byte values should be similar, but cannot
observe the values directly. Because the state byte at the end
of the 9th round can be predicted by reversing from ciphertext
based on a key byte hypothesis, the attacker can identify the
correct hypothesis by finding the one that predicts state bytes
showing the expected similarity. Varying the fault intensities
causes the number of faulty bits in S to increase or decrease
accordingly, but only one key guess will reveal this.

C = sbox(S)⊕K (1)

Si,p = sboxInv(Ci ⊕Kp) (2)

Formally, a ciphertext byte C can be described by Eq. 1
where S is a state byte after the 9th round and K is a byte of the
10th round key. We define fault intensity as an increasing order
from level 0 to level n. With one plaintext, multiple possibly-
faulty ciphertext bytes are generated as C1, C2, . . . , Cn under
different fault intensity levels (0, 1, 2, . . . , n). Among the levels,
we use ID to denote the set of levels that produce a ciphertext
different from the preceding level. There are 256 key byte
hypotheses (K0, K1, . . . ,K255) available to the attacker. For
a given plaintext, the byte Si,p is predicted by Eq. 2 using
possibly-faulty ciphertext byte Ci and key byte hypothesis
Kp. Only the correct key byte hypothesis predicts Si,p which
matches the actual byte captured in the state register at the end
of 9th round; other key hypotheses yield arbitrary predictions
that do not correspond to the computation performed. An
exemplary case with real data is illustrated in Fig. 2a; the
predictions and resulting HD are shown for the correct key
guess, and one incorrect key guess.

For a given plaintext, the average Hamming distance between
adjacent fault intensity levels according to each key hypothesis
p is given by Eq. 3. The analysis is extended to m plaintexts
in Eq. 4. Provided that fine control of fault intensities causes
similar state bytes to be captured (see Fig. 1), avgHDp will
be small when Kp is the correct key byte. The diffusion of
sboxInv in Eq. 2 causes mispredicted bytes to be random, so
avgHDp for all incorrect key guesses will be centered around
4, which is the expected Hamming distance between random
8-bit strings. The attacker decides the correct key to be the one
that has minimum avgHDp. In addition to AES, DFIA can also
be applied to some other substitution-permutation networks
like PRESENT and LED [4].

HD[plaintext]p =
1

|ID|
∑
i∈ID

HammingDist(Si,p, Si−1,p) (3)

avgHDp =
1

m

m∑
j=0

HD[plaintextj]p (4)

Prediction with
correct key byte

Prediction with
wrong key byte

number 9th round 9th round
of ROs state byte

HD
state byte

HD

100 0x01 - 0x37 -
200 0x01 0 0x37 0

... 0x01 0 0x37 0
6600 0x01 0 0x37 0
6700 0x09 1 0xB0 4

... 0x09 0 0xB0 0
8300 0x09 0 0xB0 0
8400 0x19 1 0xA1 2

... 0x19 0 0xA1 0

(a) Example Results
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Fig. 2: DFIA aims to inject faults in the 9th round of AES.
Similar fault intensities induce low-HD values in a 9th round
state byte. The correct key is identifiable because its predictions
reveal low-HD values in the state byte.

III. CHARACTERIZATION OF FAULT INJECTION

The requirements of DFIA guide our selection of fault attack
parameters such as the number of ROs between levels, and
when to enable and disable the wasters. We address these
parameter choices in this section of the paper.

A. Experiment setup
We perform our experiment on an Arty S7 development

board featuring a Xilinx Spartan-7 XC7S50-CSGA324 FPGA
with 8,159 slices and 65,200 FFs. We put 12,000 ROs separated
from AES by at least one row, which can be enabled in groups
of 100, on the FPGA to cause excessive switching activity and
high power consumption. The 12,000 ROs, AES and control
logic collectively consume 72% of LUTs and 87% of slices.
More ROs could be placed when DFIA is applied to larger
FPGAs. The AES-128 victim design in this work is a compact
round-based implementation that consumes 379 slices and 280
FFs. Round keys are pre-computed. Encrypting each plaintext
takes 11 cycles; the first cycle XORs plaintext with initial key
and the 10 rounds each take 1 cycle to finish.

B. Coarse Attack Timing and Number of ROs
We target the first round of AES operation as a test case to

characterize attack timing. Arbitrary plaintexts are used and
clock period is set as 8.5 ns. We activate ROs and then start
AES after a certain delay which is swept as the parameter in
this test. For each delay value, the percentage of correct bits in
the first round output is measured. Though the ROs remain on
after the first AES round, this does not affect the first round
output that is captured. A lower percentage of correct bits
implies a larger voltage drop which is causing more path delay
faults to occur. The result in Fig. 3 shows instant voltage drop
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Fig. 3: Profile of faults versus time since RO activation.

and bounce-back after RO activation which is also observed
on Intel Arria 10 [13] and Kintex-7 FPGAs [15]. The largest
voltage drop happens at the 4th cycle after RO activation,
corresponding to a delay of 34 ns between RO activation and
the AES round. The quick reaction and recovery provides a
promising scenario for injecting faults into a single AES round.

C. Quantifying Delay Change

To cause timing faults, the slowdown by ROs should be
significant enough to induce path delay faults at a targeted clock
frequency. Choosing appropriate attack parameters therefore
requires understanding of timing margins and the amount of
slowdown caused by the power wasters. From the timing report
in Vivado, the critical path delay of AES module is 14.48 ns,
which is known to be conservative.

We perform experiments to estimate the timing margins
and path delay profile. 100 plaintexts are encrypted across a
variety of clock periods and number of activated ROs. The
clock periods are swept from 7.75 ns to 10.5 ns in steps of
250 ps, and the number of ROs is swept from 0 to 12,000
in steps of 1,000 ROs. For each intensity and clock period
setting, we apply the plaintexts to AES and check the number
of incorrect bits produced in the first round output. The result
in Fig. 4 shows that faults start emerging when the clock
period is 7.75 ns without ROs, which gives an indication of the
true delay at nominal conditions of the longest path sensitized
during the 100 encryption rounds. To equate ROs to a delay
change, we look for multiple pairings of clock and ROs that
have a similar number of faults. For example, in Fig. 4, a clock
period of 10.25 ns with 12,000 ROs, and a clock period of
7.75 ns without ROs cause a similar number of timing faults.
From this we infer that the impact of 12,000 ROs is roughly
equivalent to the 2.5 ns difference in clock period, and hence
that 12,000 ROs cause around a 32.2% slowdown.

D. Hamming Distance with Different Fault Intensities

Although DFIA does not require fault-free ciphertexts, we
assume that the design is overclocked but operating correctly
at nominal conditions. The 8.75 ns clock period used in this
section allows the AES design to be fault-free when the ROs
are off, and susceptible to producing a variety of faulty values
when ROs are activated. Fault intensities can be ordered as
incremental levels by adding activated ROs between each level.
A larger difference of ROs between levels bring about larger
changes in the voltage drop, which increases the HDs between
neighboring levels. To investigate the resolution of HD, 60
plaintexts are repeatedly applied to AES while varying the
number of ROs between adjacent levels. The result in Fig. 5a
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Fig. 4: Number of faulty ciphertexts across different clock
periods and number of activated ROs.

shows that the HD distribution tends to be larger when more
ROs are activated between levels. Because the ideal outcome
is to have 1 as the HD value in order to make the correct key
stand out, the larger HDs may diminish the attacker’s resolution
in distinguishing the correct key. Fig. 5b shows how many
different ciphertexts arise when sweeping the fault intensity
for each plaintext; the percentages in Fig. 5a consider only
these cases where the ciphertext changes across levels.
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Fig. 5: Increasing the step size of the fault intensity produces
fewer cases with low Hamming distance, and a smaller number
of usable ciphertexts per plaintext.

E. Attack Specificity
Subsection III-B showed the existence of a fault spike shortly

after RO activation which enables the possibility to attack the
9th round in AES. In this subsection, we determine suitable
parameters for the timing and duration of the RO activation,
keeping the same 8.75 ns clock period from the prior subsection.
To find the optimal parameters, we sweep the timing and
duration to activate 12,000 ROs from 1st to 9th round. 1000
random plaintexts are applied to AES and the output of each
round is checked to find the earliest round with faults in each
trial. Only five suitable configurations that successfully attack
the 9th round are identified, and these are summarized in Fig. 6.
Activating the ROs for 1 or 2 cycles starting from the 7th round
of encryption are both successful in causing 9th round faults,
as depicted in the 2nd and 3rd subplots of Fig. 6. Between
these choices, we select the former because it does not induce
any faults in the 10th round which would render the 9th round
fault useless toward distinguishing the correct key.

IV. DFIA EVALUATION

In this section, we present the result of attacking AES and
discuss some trade-offs with the control of fault intensities.



Fig. 6: Five attack scenarios identified for attacking the 9th
round in AES. The gray box indicates the cycles in which
the ROs are active for each scenario. Activating the ROs in
the 7th round for 1 or 2 cycles causes faults in the 8th round
in approximately 9% of encrypted plaintexts, and in the 9th
round for 86.6% and 84.6% respectively.

Based on the results in the prior section, for DFIA, ROs are
activated in the 7th round of encryption for just one cycle and
the number of ROs is swept to control intensity. The victim
AES is running at 8.75 ns clock period as in the previous
section.

A. Key Extraction from AES

We firstly demonstrate the evaluation of extracting key bytes
from AES by DFIA. The 12,000 ROs are configured as 121
fault intensity levels, with 100 ROs added per level. For each
randomly generated plaintext, we iterate all RO levels with the
selected injection timing and perform the DFIA analysis on the
resulting ciphertexts. The result of a successful attack toward
four arbitrary key bytes is shown in Fig. 7. In order to quantify
how many ciphertexts are needed before the correct key stands
out, we use Measurements-to-Disclosure (MTD) as the metric.
Specifically, we consider a key byte as the correct one when
its average HD is lowest among all guesses and remains so
for at least 20 consecutive ciphertexts. The threshold for MTD
ensures that a key is only declared as correct once it consistently
outperforms other guesses, and this increases robustness against
randomness in the first few trials. Out of the 16 key bytes in
AES, 12 are successfully extracted; the remaining 4 key bytes
have shorter paths and produce an insufficient number of faulty
ciphertext bytes at this particular clock frequency.

B. Performance

Subsection III-D has shown that the HD tends to be larger
when subjected to more ROs added per fault level. The larger
HDs might require more plaintexts to extract the keys, because
less useful information is derived from each plaintext. On the
other hand, when using a finer number of ROs per level, the
ciphertexts remain the same (HD=0) across most fault intensity
levels, and these trials do not contribute any distinguishing
information about the key and represent wasted work by the
attacker. We evaluate the tradeoff between these opposing
objectives of minimizing plaintexts and minimizing trials
performing the DFIA attack with 12,000 ROs while sweeping
the number of ROs per level. For each setting, we make use of
all intensity levels and measure the number of plaintexts and
trials that are required to extract the key bytes. The result in
Fig. 8a shows that as the number of ROs per level increases, the
number of required plaintexts also increases. This is attributable
to two factors: (1) larger HD between levels makes the correct
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Fig. 7: Average HD traces under 256 key bytes versus number
of ciphertexts. The MTD is 21 in each case, and the extracted
key byte is confirmed to be the correct one.
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Fig. 8: The traces represent 12 extracted bytes. The number
of plaintexts and trials required to extract key bytes vary with
the step size of injected fault intensity.

key less distinguishable from other key guesses, and (2) fewer
ciphertexts for each plaintext are generated. Therefore, if the
goal is to minimize the number of plaintexts, it is desirable to
use the finest possible fault intensity levels in order to maximize
the information extracted from each. On the other hand, Fig. 8b
shows that the number of trials to extract a key decreases as
number of ROs per fault level increases, because there are fewer
fault levels that generate identical and useless ciphertexts. Note
that the observations about selecting the number of ROs per
level to minimize plaintexts or trials hold universally across
all 12 bytes that are broken in the attack.

V. CONCLUSION

This work presents the first DFIA on AES that is suitable for
remote FPGAs. The use of ROs to create precisely controllable
voltage glitches provides an attacker with fine control of fault
injection, allowing for a diverse set of faulty ciphertexts to
be generated. We show experimentally that AES key bytes
are successfully extracted in the attack, and furthermore study
how to tailor fault injection parameters for the attack, and for
various competing objectives that the attacker might have.
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