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Abstract—The importance of the Internet for society is increasing.
To ensure a functional Internet, its routers need to operate correctly.
However, the need for router flexibility has led to the use of software-
programmable network processors in routers, which exposes these
systems to data plane attacks. Recently, hardware monitors have been
introduced into network processors to verify the expected behavior of
processor cores at run time. If instruction-level execution deviates from
the expected sequence, an attack is identified, triggering processor core
recovery efforts. In this manuscript, we describe a scalable network
processor monitoring system that supports the reallocation of hardware
monitors to processor cores in response to workload changes. The scal-
ability of our monitoring architecture is demonstrated using theoretical
models, simulation, and router system-level experiments implemented
on an FPGA-based hardware platform. For a system with four processor
cores and six monitors, the monitors result in a 6% logic and 38%
memory bit overhead versus the processor’s core logic and instruction
storage. No slowdown of system throughput due to monitoring is re-
ported.

Index Terms—network security, network infrastructure, data plane at-
tack, hardware monitor, multicore processor, FPGA

1 INTRODUCTION

Network routers are core components of the Internet
infrastructure. Routers implement the packet processing
and forwarding operations that need to be performed on
every packet that is transmitted through the network.
Typical processing tasks on routers include security
checks, data filtering, and traffic statistics collection.
These functions augment basic forwarding as required
by the Internet Protocol (IP) [1]. Since network func-
tions may be introduced dynamically, routers require the
programmability offered by network processors (NPs)
[2] as opposed to fixed-function application-specific inte-
grated circuits (ASICs). Network processors often feature
multiple software-programmable processor cores, which
operate in parallel to achieve high throughput rates. As
a result, NPs are the computing device of choice in the
large fraction of contemporary network routers.
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The programmability offered by network processors,
while providing system-level adaptability, also exposes
potential security weaknesses. Similar to network end-
systems, such as general-purpose desktop and server
computers, software-based network processors are vul-
nerable to remote attacks. These attacks can cause routers
to exhibit unpredictable and malicious behavior. Re-
cently, it has been shown that the functionality of a
network processor could be modified by processing a
single User Datagram Protocol (UDP) packet [3] in the
data plane. In this attack, the network processor is repro-
grammed to indefinitely retransmit the malicious packet
to downstream routers. This self-propagating attack can
be particularly difficult to control since it only requires
data plane access (i.e., no access to the control plane
is needed by the attacker). Thus, rapid identification of
these malicious packet processing operations must take
place on the network processor to prevent the attack
from propagating and disabling the network.

Since network routers are embedded systems, their
defense mechanisms are necessarily limited in extent.
Network processor cores typically do not execute oper-
ating systems, thus anti-malware software is not suitable
in this context. Additionally, network intrusion detection
systems (e.g., Snort [4] or Bro [5]) are often only posi-
tioned on the ingress side of campus networks and thus
do not protect the Internet core. In response to this need,
hardware monitors for network processor cores have
been introduced to provide runtime execution protection
[6]. A hardware monitor operates in concert with an
embedded network processor core to assess runtime
behavior. If anomalous or unexpected operation is ob-
served, the core can be reinitialized to avoid processing
malicious code while continuing to process subsequent
benign packets.

Most previous hardware monitor designs have fo-
cused on processors with a single processor core ex-
ecuting a single program or a program that changes
very infrequently. This model is not effective for network
processors, which contain core counts in the hundreds
and exhibit frequent changes in packet processing ob-
jectives with changing traffic patterns [7]. As a result,
new monitoring techniques for embedded multicores
are needed to ensure adequate system protection. This
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manuscript presents the architecture and in-circuit hard-
ware evaluation of a Scalable Hardware Monitoring Grid
(SHMG) to address multicore monitoring. A lightweight
interconnection network between processor cores and
monitors is dynamically configured to form monitoring
connections in response to packet processing needs. In
some cases multiple processor cores can share a single
monitor, reducing memory overhead. Results developed
using both analysis and simulation indicate that our
monitoring approach is scalable for network processors
containing hundreds of processing cores.

The specific contributions of our work are:
• The design of a scalable architecture for hardware

monitors that can be used in a practical network
processor system with a large number of processor
cores.

• An algorithm that can dynamically allocate moni-
tors to processor cores as application packet work-
loads change.

• A simulation and analysis of performance of the
proposed design at runtime that considers the ef-
fects of dynamically assigning processors to moni-
tors and the resulting resource contention.

• A prototype system implementation of a hardware
monitoring system on an field-programmable gate
array (FPGA) platform that illustrates the feasibil-
ity of our design and provides detailed resource
requirement numbers. A system which includes a
four-core network processor with six monitors has
been deployed and tested.

Our results indicate that our Scalable Hardware Mon-
itoring Grid and associated allocation algorithm pro-
vide a low-overhead and scalable solution for network
processor protection against data plane attacks, thus
securing Internet infrastructure.

This remainder of the manuscript is organized as
follows. Section 2 discusses related work. We describe
data plane attacks and potential defense mechanisms in
detail in Section 3. Section 4 introduces the design of our
Scalable Hardware Monitoring Grid, which is evaluated
in Section 5. The details of our monitor resource alloca-
tion algorithm are described in Section 6. Results from
a prototype implementation are presented in Section 7.
Section 8 concludes this paper and offers directions for
future work.

2 RELATED WORK

Network processors are used in routers to implement
standard IP forwarding functions as well as advanced
functions related to performance, network management,
flow-based operations, etc. [2]. Network processors use
on the order of tens to low hundreds of parallel cores in
a single multi-processor system-on-chip (MPSoC) config-
uration. Example devices include Cisco QuantumFlow
[8], Cavium Octeon [9], and EZchip NP-5 [10] with data
rates in the low hundreds of Gigabits per second.

Attacks on networking devices have been described in
[11], but that work explored vulnerabilities in the control
plane, where attacks aim to hack into the control interface
of a router (e.g., IOS [12]). In more recent work, Chasaki
and Wolf have described attacks on network processors
through the data plane [3], where attackers merely need
to send malformed data packets. In our work, we focus
on the latter type of attack.

Since the processor cores of routers are very simple,
there are not sufficient resources to run complex intru-
sion detection or anti-malware software. These resource
constraints are similar to what has been encountered in
the embedded system domain. Embedded systems (of
which network processors are one class) exhibit a range
of vulnerabilities [13], [14].

One defense technique for systems, where software
defenses are not practical, is hardware monitoring. A
hardware monitor operates in parallel with a processor
core and verifies that the core operates within certain
constraints (e.g., not accessing certain memory loca-
tions, executing certain sequences of instructions, etc.).
Hardware monitoring has been studied extensively for
embedded systems [15]–[17] and has also been pro-
posed for use in network processors [6]. In our recent
work, we describe a high-performance implementation
of such a hardware monitoring system that can meet
the throughput demands of a network processor with a
single processing core [18].

What has been missing in the space of hardware
monitoring for network processors is a system-level
design of a comprehensive monitoring solution that can
support a large number of processor cores and can adapt
to quickly changing workloads. Since network processors
have many processor cores, it is not practical to equip
every core with a monitor that can handle any type
of processing since this would lead to prohibitively
expensive monitors. Instead, monitors need to be limited
to handle one or a few processing tasks and adapt as
the workload changes. Since network processors may
experience highly dynamic workload changes based on
changing traffic patterns [7], effective solutions for such
an environment need to be developed.

This paper substantially extends our previous confer-
ence publication on network processor multicore mon-
itoring [19]. We examine the system-level operation of
monitoring in greater detail using a cycle-accurate mul-
ticore simulator and additional benchmark applications.
This infrastructure is used to evaluate a new workload
allocation algorithm that has been developed to dy-
namically assign applications and monitors to processor
cores. Results obtained via simulation match values de-
termined using an analytical model and using hardware
implemented in an FPGA-based board in the laboratory.
Additionally, in this extended version we consider both
the power and energy consumption of monitoring in
addition to area. Direct comparisons are made for these
parameters between processor cores, monitors, and inter-
faces. Finally, we carefully quantify the time needed to
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Fig. 1: Attack on a network processor.

load new monitoring information into a monitor versus
the time needed to connect a processor to a previously-
loaded monitor via programmable interconnect.

3 DATA PLANE ATTACKS AND DEFENSES

To provide the necessary context for our Scalable Hard-
ware Monitoring Grid, we briefly describe how network
processors can be attacked in the data plane and how
hardware monitors can be used to defend against these
attacks.

3.1 Vulnerabilities in Networking Infrastructure
The typical system architecture and operation of a net-
work processor is illustrated in Figure 1. Network pro-
cessors are located at router ports, where they process
traffic that is traversing the network.

Due to the very high data rates at the edge and
the core of the network, network processors typically
need to achieve throughput rates in the order of tens to
hundreds of Gigabits per second. To provide the neces-
sary processing performance, network processors are im-
plemented as multi-processor systems-on-chip (MPSoC)
with tens to hundreds of parallel processor cores. Each
processor has access to local and shared memory and
is connected through a global interconnect. Depending
on the software configuration of the system, packets are
dispatched to a single processor core for processing (run-
to-completion processing) or passed between processor
cores for different processing steps (pipelined process-
ing). An on-chip control processor performs runtime
management of processor core operation.

In order to fit such a large number of processor cores
onto a single chip, each processor core can only use
a small amount of chip real estate. Therefore, network

processor cores are typically implemented as very simple
reduced instruction set computer (RISC) cores with only
a few kilobytes of instruction and data memory. These
cores support a small number of hardware threads, but
are not capable of running an operating system. There-
fore, conventional software defenses used for worksta-
tion and server processors cannot be employed. Never-
theless, these cores are general-purpose processors and
can be attacked just like more advanced processors on
end-systems.

An attack scenario for network processors is illustrated
in Figure 1. The premise for this attack is that the
processing code on the network processor exhibits a
vulnerability. It was shown in prior work that such
a vulnerability can be introduced due to an uncaught
integer overflow in an otherwise benign and fully func-
tional packet processing function [3]. If a vulnerability in
packet processing code is matched with a suitable attack
packet (e.g., a malformed UDP packet), then an attack on
a processor core can be launched. In the case of [3], the
attack packet smashed the processor stack and led to the
execution of code that was carried in the packet payload.
The processor ended up re-transmitting the attack packet
at full data rate on an outgoing link without recovering
until the network processor was reset.

Launching a denial-of-service attack, such as in [3],
can be done by using a single packet and can have
more impact than conventional botnets, which are more
complex to coordinate and are constrained by the access
link bandwidth of the bots [20]. In addition, attacks on
network processors have been shown both on systems
that are based on von Neumann architecture [3], lead-
ing to arbitrary code execution, and on systems based
on Harvard architecture [18], leading to return-to-libc
attacks.

3.2 Defense Mechanisms With Hardware Monitoring

Solutions to protect network processors from attacks on
vulnerable processing code are constrained by the lim-
ited resources available on these systems. One promising
approach is to use hardware monitors, which have been
successfully used in resource-constrained embedded sys-
tems [15]–[17].

The operation of a hardware monitor is illustrated in
Figure 2. The key idea is that the processing core reports
what it is doing as a monitoring stream to the monitor.
The monitor compares the operations of the processor
core with what it thinks the core should be doing. If a
discrepancy is detected, the recovery system is activated
to reset the processor core. In order to inform the monitor
of what processing steps are valid, the processing binary
is analyzed offline to extract the “monitoring graph” that
contains all possible valid program execution sequences.

The granularity of monitoring can range from basic
blocks [15] to individual processor instructions [17]. The
detection times are as low as a single processor cycle, and
the recovery times are in the order of tens of processor
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Fig. 2: Hardware monitor for a single processor core.

cycles. Since the monitor does not need to implement a
full processor data path and the monitoring information
can be compressed through hashing, the overall size of a
typical monitor and its memory is about 10–20% of that
of a processor core.

Hardware monitors for single core network processor
systems have been demonstrated in prior work [3], [18].
These solutions, however, do not address three critical
problems that appear in practical network processor
systems:

• Multiple cores: Practical network processors use
multiple processor cores in parallel, and all of these
cores need to be protected by hardware monitors.

• Multiple processing binaries: Network processors
need to perform different packet processing func-
tions on different types of network traffic. These dif-
ferent operations are represented by different pro-
cessing binaries on the network processing system.
Thus, different cores may need to execute different
binaries and need to be monitored by hardware
monitors that match these binaries.

• Dynamically changing workload: Due to changes
in network traffic during runtime, the workload of
processor cores may change dynamically [7]. Thus,

hardware monitors need to adapt to the changing
processing binaries during runtime.

We present the design and prototype of a hardware
monitoring system that can accommodate these require-
ments.

4 SCALABLE HARDWARE MONITORING GRID

4.1 Design Challenges
The development of a scalable monitoring system for
multicore network processors has several challenges. The
use of monitoring should not impact the throughput or
latency of the network processor. For monitors that track
individual instructions, each per-instruction monitoring
operation must be completed in real time (i.e., during
the execution of the instruction), so that deviations from
expected program behavior are identified immediately.
Additionally, the amount of hardware resources used for
monitoring should be limited to the minimum necessary
to reduce chip area and power consumption. Since net-
work processor programs may change frequently, it must
be possible to modify monitoring tasks for each NP core
to accommodate changing workloads.

These challenges necessitate the design of a cus-
tomized solution for multicore monitoring. Perhaps the
most straightforward monitoring approach would be
simply to attach a dedicated monitor to each individual
NP core, following previous approaches to single-core
monitoring, as shown in Figure 3. Although this ap-
proach minimizes the amount of interconnect hardware
needed to connect an NP core to a monitor, it suffers
from the need to reload monitoring information each
time the attached NP core’s program is changed. Alter-
natively, allowing an NP core to dynamically access any
monitor among a pool of monitors as shown in Figure 4,
while flexible, is expensive and incurs a high processor-
to-monitor communication cost. In the next section, we
describe a scalable monitoring grid system that balances
these two concerns of area and performance overhead
by using the clustered approach illustrated in Figure 5.

4.2 Architecture of Scalable Hardware Monitoring
Grid
Our model of the multicore NP system including moni-
toring is shown in Figure 6. The architecture includes a
control processor that coordinates overall NP operation
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by assigning arriving packets to individual NP cores.
Each core executes a program using instructions from
its local memory. External memory, which can be used
to buffer packets and instructions for currently unused
programs, is located off-chip. An on-chip interconnect is
used to connect cores to external memory and outside
interfaces. In this architecture, processors are grouped
into clusters of n processors. Any of the processors in a
cluster can be connected to any of m monitors.

The management of loading application-specific mon-
itoring graphs into monitors and configuring specific
processor-to-monitor connections is performed by the
same control processor used to assign packets to NP
cores. Graph loading is performed in conjunction with
security key management hardware (e.g., a trusted plat-
form module, TPM). Copies of monitoring graphs for
programs that are currently being executed or are likely
to be executed in the near future are stored on-chip in a
centralized monitor memory (CMM).

To ensure that monitoring graph information can be
installed securely in the CMM, we use the following pro-
cess to ensure authenticity, integrity and confidentiality:

• Authenticity and integrity: We use asymmetric cryp-
tography to generate digital signatures that enable
the TPM to verify authenticity and integrity of a
monitoring graph. Public keys are installed using
certificates that establish a chain of trust from the
router manufacturer to the network operator to the
TPM on the router system. Thus, an attacker cannot
install a modified monitoring graph without having
access to the private keys of the network operator.

• Confidentiality: We use symmetric cryptography to
hide the monitoring graph information from an
attacker when the monitoring graph is installed
remotely through the network. The symmetric key
is provided by the network operator securely to
the TPM by encrypting it asymmetrically with the
TPM’s public key. Using this approach, an attacker
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cannot obtain any information about the monitoring
graph.

The details of the installation and verification process,
including a detailed security analysis, are presented in
[21].

The amount of time needed to load a monitor with a
graph from the centralized monitor memory is signifi-
cant enough that reloading should be minimized. It is
desirable to have a program monitor used by different
cores at different times during packet processing, neces-
sitating a flexible interconnection between NP cores and
monitors. In cases where m > n, a total of m−n monitors
are unused at a given point in time, although they can
be activated by the control processor, if needed.

4.3 Multi-Ported Hardware Monitor Design
To support scalability, we have optimized the structure
of single-processor monitors, which are capable of track-
ing NP core execution on an instruction-by-instruction
basis. The monitoring graph for an application is gener-
ated from the application binary (Figure 2) at compile-
time by performing an analysis of execution flow and
feasible branch targets. Each instruction in the program
can be represented as a state in a finite state machine
(Figure 7). A transition between states is represented
as the hash of the instruction binary. Control flow in-
structions (e.g., branch, jump) have multiple next states
representing different flows of control.
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The monitoring graph includes all feasible next states
for the current state and the expected hash values for
transitions from the current state. Hash values are used
rather than the instruction values themselves to save
memory space for the monitoring graph. Our approach
handles hash collisions (e.g., multiple edges from a
state with the same hash value) by converting the non-
deterministic graph (NFA) generated directly from the
binary to a deterministic finite automata (DFA). This
process removes the effects of the hash collisions by
adding states. Our approach is effective for all programs
where the expected execution flow, including branches,
can be determined either statically or via profiling. Our
benchmark analysis shows that this is the typical case
for NP applications. Full details of graph generation,
including a detailed example, are shown in [18].

The architecture of two monitors that perform this
type of instruction-by-instruction monitoring is shown
in Figure 8. The monitoring graph, which is stored in
a memory block, includes one entry for each state in
the execution state diagram. A k-bit pointer indicates
the entry in the graph that corresponds to the currently
executed instruction. As an instruction is executed, a
four-bit hash value of the instruction is generated, which
is then converted to a one-hot encoding. This encoding is
then compared against the expected hash values that are
stored in the graph entry (valid hashes) for the instruction.
The next entry (memory row) in the monitoring graph
is determined using next state information stored in the
current entry and the matched hash value. The imple-
mented monitor requires only one memory lookup per
instruction, limiting the time overhead of monitoring.

Although separate hash comparison and next state
select information is needed for each monitor, multiple
monitoring graphs can be packed into the same memory
block if the block is multi-ported (Figure 8). In the
example, the monitoring graph for the monitor on the
left is located in the top half of the memory block while
the graph for the monitor on the right is located in the
bottom half. For each monitor, the selection of which
monitoring graph (top or bottom) is used by the monitor
is set by a single graph select bit which forms the top
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address bit into the block memory. A benefit of this
shared memory block approach is the possibility of both
monitors accessing the same monitoring graph at the
same time without having to reload monitor memory
(e.g. both associated NPs execute the same program and
require the same monitor). In this case, the second graph
in the memory block would be unused.

4.4 Scalable Processor-to-Monitor Interconnection
The detailed interconnection network between a cluster
of n processors and m monitors is shown in Figure 9. In
this architecture, any processor can be connected to any
monitor via a series of n-to-1 (processor-to-monitor) and
m-to-1 (monitor-to-processor) multiplexers. The four-bit
hash values shown in Figure 8 are generated from
instructions close to the processor, reducing processor-
to-monitor interconnect. One of n four-bit values from
the processors is selected for a specific monitor using
multiplexer dlog ne select bits. During monitoring, a
monitor generates a single reset/recover bit, which is
returned to the monitored processor to indicate if an
attack has occurred. In our implementation, this signal
is sent to the target processor via a multiplexer with
m single-bit inputs. The monitor and processor select bits
are generated by the control processor and sent to the
appropriate multiplexers via decoders.

5 ANALYSIS OF SHMG ADAPTATION

Although the SHMG runtime adaptation can adjust the
processing resource distribution at runtime to maximize
the system throughput, due to variations in workload
there may be a situation where more processors need to
execute a particular program than monitors are available.
In this case, some processors temporarily block (until a
monitor becomes available, at which point they continue
processing). We provide a brief analytical analysis of
the blocking probability of the system and the resulting
throughput for different cluster configurations.

5.1 Monitor Configuration
In the n processors, m monitors SHMG system we
defined in Section 4, for each program i (1 ≤ i ≤ p), we
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assume that ti represents the average processing time
and qi represents the proportion of traffic that requires
this program. We assume

∑p
i=1 qi = 1, which implies

that each packet is processed only by one program.
(The analysis can be extended to consider more complex
workload configurations.) The total amount of “work,”
wi, that the network processor needs to do for each
program i is the product of the traffic share and the
processing time:

wi = qi · ti. (1)

In order to make the assignment of monitors to pro-
grams match the operation of the network processors,
we need to determine how many of the n processors are
executing program i at any given time. We assume that
processors randomly draw from available packets (and
thus the associated programs) when they are available.
Thus, the probability of a processor being busy with
processing program i, bi, is proportional to the amount
of work, wi, that is incurred by the program (see Equa-
tion 1):

bi =
n · wi∑p
j=1 wj

. (2)

That is, more processors are busy with program i if
program i is either used by more traffic or has a longer
average processing time.

Monitors should be configured to match the propor-
tions of bi for each program. The fraction of monitors,
ai, that should be assigned to monitor program i is

ai = max
(m
n
· bi, 1

)
. (3)

Since each program needs to have at least one monitor
assigned to it, the lower bound for ai is 1.

In practice, the number of monitors per program needs
to be an integer. We denote the integer allocation of
monitors with Ai. One way to translate from ai to Ai

is to use a max-min fair allocation process.

5.2 Blocking Probability and Throughput

Given a monitoring system where Ai monitors are al-
located to program i, we need to figure out what the
probability is that the number of processors executing
program i exceeds Ai (leading to blocking). The number
of processors executing program i, Bi, is given by a
binomial probability distribution

Pr(Bi = k) =

(
n

k

)(
bi
n

)k (
1− bi

n

)n−k

. (4)

The expected number of processors, Ri, that are blocked
because of program i not having enough assigned mon-
itors is

Ri =

n∑
j=Ai+1

(j −Ai)Pr(Bi = j). (5)
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Fig. 10: Throughput depending on overprovisioning of
monitors for different numbers of processors (n).
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Fig. 11: Throughput depending on number of clusters
for different numbers of total processors (c · n).

The total number of blocked processors, R, across all
programs is

R =

p∑
i=1

Ri. (6)

Note that in this case, the probabilities in Ri are not
independent since

∑p
i=1Bi = n.

The fraction of blocked processors is then R
n and the

throughput, t, of the system is

t = 1− R

n
. (7)

5.3 System Comparison
To illustrate the effect of blocking due to the unavail-
ability of monitoring resources, we present several re-
sults based on the above analysis. For simplicity, we
assume p = 2 programs with w1 = w2. Figure 10
shows the throughput as a function of how many more
monitors than processors are in the system. We call this
“monitor overprovisioning” (i.e., m/n). In the figure, the
overprovisioning factor ranges from 1 (equal number of
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monitors and processors) to 2 (twice as many monitors
as processors). The figure shows that only for very small
configurations (e.g., n = 2 processors), there is a signif-
icant decrease in throughput. For larger configurations,
there is only a slight decrease for low overprovisioning
factors. For our prototype implementation, we choose a
configuration of n = 4 processors and m = 6 monitors
(i.e., m/n = 1.5), which achieves a throughput of over
96%.

The effect of clustering is shown in Figure 11. Since
we need to cluster monitors to achieve scalability in the
system implementation, a key question is how much
worse a clustered system performs compared to a system
with no clustering (i.e., full interconnect between all
processors and monitors). We denote the number of
clusters with c. The figure shows the throughput for
configurations with the same total number of processors
and a monitor overprovisioning factor of 1.5. The full
interconnect (c = 1) always achieves full throughput. As
the number of clusters increases, small systems degrade
in throughput slightly. However, if the number of pro-
cessors per cluster does not drop below 8, throughput
of over 99% can be achieved. These results indicate that
using a clustered monitoring system instead of a full
interconnect can achieve nearly full performance, while
being much less costly to implement.

6 RUNTIME RESOURCE REALLOCATION AL-
GORITHM

While the previous section provides an analytical evalu-
ation of dynamic resource allocation, system through-
put based on varying workloads can also be evalu-
ated through experimentation. In the Scalable Hardware
Monitoring Grid design, the control processor (see Fig-
ure 6) assigns programs to processors and monitors. As
the traffic workload changes, the optimal assignment
of cores and monitors should reflect the processing
workload. In order to achieve this goal, a Runtime
Resource Reallocation Algorithm (RRRA) is needed to
dynamically reconfigure the SHMG at runtime based on
network workload changes.

6.1 Reallocation Algorithm
The control processor periodically monitors network
workload to assess the current allocation of processing
resources. As network packets enter the network pro-
cessor, they are buffered in the external memory in a
series of packet queues. Each queue stores a different
type of network packet. The control processor assigns
packets to queues based on processing requirements and
the number of packets in the queue defines the queue
length. Similar, stable queue lengths for each packet type
reflects packet processing balance in terms of number of
assigned processors and router processing speed. If the
queue length increases significantly, the network traffic is
too heavy compared to the current processing speed and
more compute resources are needed for this program.

We assume the input network traffic fully utilizes the
system, i.e., when the workload increases for one packet
type, then the workloads of other packet types decrease.
As mentioned in Section 4.2, a processor/monitor cluster
consists of n processors and m monitors. The workload
of the system consists of p different programs that each
monitor may execute (one program per packet type).
For practicality, we assume m ≥ n and m ≥ p and no
processor is idle.

For each program i (1 ≤ i ≤ p), ai is the number of pro-
cessors assigned to the program and qli(t) is the queue
length at time t. If queue length qli increases and exceeds
threshold θ, the required packet processing exceeds the
current processing power and more processing resources
need to be allocated to this program. Our algorithm
performs this process in two steps: First, the algorithm
examines all p queues to locate a program j which can
release resources to program i; second, the algorithm
determines which monitoring resources to allocate to the
reassigned program (and thus which cluster is used).
Each step is explained in detail in the following.

6.1.1 Identification of Program for Reallocation
In order to find the most suitable program j, the follow-
ing criteria are applied during the search:

1) If a queue is empty, select this program to release
one processor. If there is more than one empty
queue, select the program that has had an empty
queue for the longest time. For this purpose, an
empty time marker tek is used for each empty
queue k to record the time the queue drained. The
algorithm maintains a priority queue for the empty
queue that allows easy identification of the queue
that has been empty longest (i.e., with minimum
tek).

2) If no queue is empty, select the program with
the shortest queue length that has at least two
processors allocated. (Each program is guaranteed
at least one active processor in the system if it has
a non-zero queue length, so deallocating resources
from a program with a single processor is not
allowed.)

This queue monitoring algorithm is shown in Algo-
rithm 1. A program that needs an additional core is i and
the program that releases a core is j. When a new packet
is assigned to queue i, the algorithm assesses the queue
length qli. If qli passes the threshold θ, an additional pro-
cessor is assigned to program i. The algorithm examines
the length of all queues to find program j based on the
above criteria.

6.1.2 Identification of Monitor for Reallocation
After i and j have been determined, the next step is to
select a specific system processor to switch from program
j to program i. To minimize monitor reloading during
the switching process, the selection is made as follows:

1) Identify all unused monitors in the system.
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Algorithm 1 Runtime Resource Reallocation Algorithm

1: qli(t)← qli(t) + 1 . packet arrival for program i
2: if qli(t) ≥ θ then . queue length passes threshold
3: qlmin ← θ . initialize variables to find j
4: temin ← t
5: for k = 0 to p do . iterate over all queues
6: if qlk(t) = 0 then . queue empty
7: if tek ≤ temin then . empty for longer

time
8: j ← k
9: temin ← tek

10: qlmin ← 0
11: end if
12: else if qlj(t) ≤ qlmin then . queue is shorter
13: if aj ≥ 2 then . has 2 or more processors

allocated
14: j ← k
15: qlmin ← qlk(t)
16: end if
17: end if
18: end for
19: end if
20: aj ← aj − 1
21: ai ← ai + 1

2) If there is an unused monitor that has a preloaded
graph of program i, identify all the processors
in the same cluster as this monitor. If there is a
processor running program j in the same cluster,
switch it to program i, disconnect the program j
monitor and connect the processor to the program
i monitor.

3) If there is no processor running program j in the
same cluster, try to find another unused monitor
with program i in a different cluster.

4) If there is no unused monitor that has preloaded
program i, switch one processer j to program i and
reload the least recently used monitor to program
i in the same cluster of the switched processor.

After switching resources, several packets must be
processed before the effect of the new configuration
reflects on the queue lengths. To prevent additional
programs from passing the threshold soon after resource
switching and taking processing resources from the same
program j, a mandatory delay δ is introduced. After one
adaptation, new switching requests will be blocked until
δ packets are processed.

6.1.3 Reallocation Algorithm Complexity
Overall, the Runtime Resource Reallocation Algorithm
has two traversal operations:

• Evaluate all p queues to find j when the threshold
θ is exceeded by a program i. This action which
requires O(p) time.

• Evaluate all monitors in the clusters that include
program j to find a monitor and processor core to

use or switch functionality, which requires O(m+n)
time.

In total, RRRA has an asymptotic complexity of O(p+
m + n), which is linear in the number of programs,
monitors, and cores in the system.

6.2 System Simulation
A Java-based simulator was built to verify RRRA and
evaluate runtime throughput results with the results
obtained from the analytical model in Section 5.3. The
simulator can generate network packets that require
processing by programs in different ratios and can vary
these ratios over time. With this time-changing network
traffic input, the simulator assesses the behavior of
RRRA and measures the runtime resource allocation and
system throughput.

6.2.1 Runtime Adaptation
Figure 12 shows that network traffic is balanced (i.e.,
the total number of packets during a fixed time period
is the same) for three different types of packets. The
packet proportions change from 1: 1 : 1 to 8: 1 : 1, then
to 1: 1 : 8, and finally back to 1: 1 : 1 and then decrease to
0. For simplicity, we assume that the packet processing
time for all types is equal (i.e., t1 = t2 = t3). Figure 13
shows the number of processors running each program
during the runtime in an experimental system with 16
processors and 24 monitors. We can observe that the
ratios of the processors assigned to each program follow
the ratios of each packet type in the network traffic, thus
validating the effectiveness of the RRRA. In Figure 14,
the system throughput is at a maximum shortly after the
system starts processing. Then, there are three obvious
transitions corresponding to the three network traffic
allocation changes. The biggest drop happens when the
network traffic changes dramatically from 8: 1 : 1 to
1: 1 : 8. Using RRRA, the system can adapt its resource
allocation to traffic changes and the throughput quickly
returns to the maximum value.

6.2.2 Overprovisioning Simulation
To verify the monitor overprovisioning analysis, two
experiments were conducted in simulation. The first
experiment considered the simplest case of p = 2 with
w1 = w2, total processor number n = 4, 8, 16, 32, and
overprovisioning factor ranging from 1 to 2. The results
shown in Figure 15 match with the previous analytical
results in Figure 10. The second experiment kept the as-
sumption of evenly distributed workload, but extended
the program number to three and the overprovisioning
factor range from 1 to 3. Although the upper bound of
the overprovisioning range increases to 3, the through-
put is still more than 95% after m/n = 1.5.

The effect of number of clusters on throughput was
measured in a second simulation. The experiment was
setup with monitor overprovisioning of 1.5, the same as
the previous analytical analysis, and a total number of
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Fig. 12: Input network traffic used during simulation.

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

9	  

10	  

11	  

12	  

13	  

14	  

15	  

16	  

0	   5	   10	   15	   20	   25	   30	   35	   40	   45	   50	   55	   60	   65	   70	  

N
um

be
r	  o

f	  p
ro
ce
ss
or
s	  a

ss
ig
ne

d	  

Time	  t	  (kilocycles)	  

Packet	  type	  1	  

Packet	  type	  2	  

Packet	  type	  3	  

Total	  

Fig. 13: Processor distribution for different packet types
as traffic allocation changes.
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processors of 32, 64, 128 and 256. Compared to the ana-
lytical results in Figure 11, results from this experiment,
shown in Figure 16, demonstrate good consistency, thus
supporting the appropriateness of the analytical model.

7 PROTOTYPE IMPLEMENTATION AND
EVALUATION

To demonstrate the effectiveness of our Scalable Hard-
ware Monitoring Grid in a real system, we have imple-
mented a prototype system.

7.1 Experimental Setup

We have implemented a prototype network processor
in an Altera Stratix IV FPGA on an Altera DE4 board.
This board contains four 1 Gbps Ethernet ports to receive
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and send network traffic. We implemented one SHMG
cluster in the FPGA, consisting of four processor cores
(soft processors created using a synthesizable PLASMA
processor [22]) and six hardware monitors (i.e., n = 4
and m = 6). The flexible, multiplexer-based interconnect
shown in Figure 9 is used to allow any processor to
connect to any monitor within our cluster.

To evaluate the functionality and performance of the
monitoring system, we transmit traffic through the pro-
totype system. Packets are received on two of the Eth-
ernet ports and transmitted on the other two. For each
packet, a simple flow classifier determines the appro-
priate NP program for processing. After the packet is
processed by a core, it is sent to the appropriate output
queue for subsequent transmission.

We use two types of packets, which need different
types of processing and thus different monitors: (1) IPv4
packets and (2) IPv4/UDP packets that require conges-
tion management (CM) for processing. The processing
code for IPv4 does not exhibit vulnerabilities, but the
IPv4+CM processing code exhibits the integer overflow
vulnerability described in [3]. We introduce 1% of attack
packets, which can trigger a stack smashing attack in the
IPv4+CM processing code [3].

To generate the monitoring graph, as described in
Section 4.3, the program is first passed through the stan-
dard MIPS-GCC compiler flow to generate assembly-
level instructions. The compiler output allows for the
identification of branch instructions and their branch tar-
get addresses. The instructions and branch information
are then processed to generate the data structure used
inside the hardware monitor. This data structure is then
loaded into the SHMG system.

7.2 Experimental Results
Our system was verified through a series of experiments
that were run on the FPGA in real time.

7.2.1 Correct Operation
To illustrate the operation of our SHMG, we have as-
signed two cores to process IPv4 and two cores to
process IPv4+CM. Of the available six monitors, two are
configured to monitor IPv4 and four are configured to
monitor IPv4+CM (since the latter is more processing-
intensive). All four NP cores execute program code from
internal FPGA memory. The initial configuration of the
monitors, program code, and the processor-to-monitor
interconnect is set when the design is compiled to the
FPGA and the bitstream is loaded into the design on
system powerup.

Figure 17 shows the operation of a processor core
and its corresponding monitor on the IPv4 program.
(Waveform figures are generated through simulation in
order to obtain signals; however, the same functionality
has been verified in real-time operation of the system on
network traffic.) Similarly, Figure 18 shows the operation
of a core on the IPv4+CM program. In this case, the

TABLE 1: Resource utilization and dynamic power con-
sumption in the prototype system

Available DE4 Network SHMG
in FPGA interface processors monitors intrcon.

LUTs 182,400 33,427 15,025 816 96
- 67.8% 30.4% 1.7% 0.1%

FFs 182,400 36,467 8,367 147 0
Bits 14,625,792 2,263,888 2,097,134 786,432 0

- 44.0% 40.7% 15.3% 0%
Pwr
(mW) - 1490.83 388.6 41.76 5.30

packet is benign and no attack occurs. Figure 19 shows
the processing of an attack packet in IPv4+CM. The
attack is identified within one cycle of the instruction
fetch. Figure 19 shows that the monitor identifies the
attack since the stack gets smashed and the control flow
is redirected to code that differs from what the program
analysis has determined as valid. The processor core is
then reset and continues processing the next packet. The
reset operation completes in two cycles and thus does
not affect the throughput performance of the system
(and cannot be used as a target for denial of service
attacks). Other processor cores continue processing with-
out being affected.

A key functionality of SHMG is the dynamic assign-
ment of processors to hardware monitors. In our proto-
type system, we can trigger the reassignment of proces-
sors to monitors on-demand. In our experimental setup,
we switch one of the processor cores from IPv4 (Figure
17) to IPv4+CM (Figure 18). The processor-to-monitor
interconnect for the core that was previously processing
IPv4 packets is switched to connect the core to an unused
IPv4+CM monitor. The affected NP core and newly
connected monitor are then reset, and processing by
the core commences. After this runtime reconfiguration,
three NP cores process packets for IPv4+CM, while one
core processes IPv4.

Thus, we are able to show dynamic reassignment of
processors to monitors at runtime as well as the correct
detection of and recovery from attacks.

7.2.2 Resource Requirements and System Throughput

The resource requirements for the FPGA in our pro-
totype system are shown in Table 1. The lookup ta-
ble (LUT), flip flop (FF), and memory resources (Bits)
required for the network processor cores, monitors,
switches and other circuitry are shown in Table 1.
An LUT is a n-input, 1-output logic element that can
perform any logic function of n inputs. In Stratix IV
devices, LUTs can be configured to have between two
to seven inputs. Each monitoring graph can hold up
to 4,096 separate entries. The FPGA in the system is
able to operate at 125 MHz. For this relatively small
cluster size, the amount of logic needed for processor-
to-monitor interconnection is less than 1% of the total
logic needed for the monitors, cores, and processor-to-
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Fig. 17: Simulation waveforms showing correct forwarding of an IPv4 packet.

Fig. 18: Simulation waveforms showing forwarding of an IPv4+CM packet.

Fig. 19: Simulation waveforms showing identification of and recovery from an IPv4+CM attack packet.

monitor interconnect since only hash value, reset, and
control signals are communicated.

To assess the generality of our area results across dif-
ferent FPGA generations, we resynthesized the network
processor cores, monitors, and interconnect to an Altera
Stratix II device. The resulting LUT counts of 14,912, 774,
and 92 for the processor cores, monitors, and intercon-
nect, respectively are similar to the Stratix IV numbers.
For a Stratix II device, an LUT can range in size from 2-
input to 7-input depending on the desired logic function.
The distribution of input counts for LUTs across this
input spectrum was similar for both architectures.

The dynamic power consumption of the components,
shown in Table 1, was determined using the Altera
PowerPlay power analyzer. The monitors and associated
interconnect consumed 12% of the dynamic power of the

processors. The network and PCI interfaces on the board
consumed 3.4× more dynamic power than these compo-
nents combined. Based on board level experimentation,
average time to process one hundred 256 byte packets
is 6 ms. As a result, the dynamic energy to process 100
256-byte packets at 125 MHz is 6 ms × 1926.49 mW =
11.56 mJ.

The throughput of our system including monitoring
when processing normal 256-byte packets and an occa-
sional attack packet is shown in Figure 20. The through-
out of the system is limited by the processing capability
of the processor cores, not monitoring. The throughput
for normal packets is the same both with and without
monitoring. A small throughput reduction is observed
in the presence of attack packets due to the amount of
time needed to flush the packet buffer.
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7.2.3 Monitoring Graph Swap Time Overhead

To better illustrate the benefits of overprovisioning the
monitors relative to processor count (m > n), we assess
the average time required to swap monitors during a
processor allocation for the case when m/n = 1.5 versus
the case when a monitoring graph must be reloaded
from centralized monitor memory for every processor
reallocation. The steps required to perform each task
of monitor swapping includes: identification of a new
program i for allocation, identification of a program to
swap out (j), identification of a target processor core and
monitor for the new program, and monitor reload from
centralized monitor memory (if needed). The realloca-
tion operations needed to perform the first three steps
in the list were discussed in Section 6.1. The following
analysis is performed for a two cluster system with n = 6
processor cores and m = 9 monitors in each cluster.
The control processor operates at 125 MHz, the clock
speed for our prototype hardware implementation. Since
processor throughput is one clock cycle, we equate an
instruction execution to a clock cycle. The instructions
for the programs are stored in each processor core’s local
memory.

The initial allocation and deallocation steps require
examination of packet queues to identify a program i for
allocation to a processor and the reduction of one proces-
sor for a program j (Section 6.1.1). Our experimentation
using system simulation shows that 28 control processor
instructions are needed on average to identify a program
i which requires an additional processor. An additional
28 control processor instructions are required to identify
a program j that should have a processor deallocated.
Combined, these actions require 0.45 µs.

The tasks needed to identify a monitor for reallocation
are detailed in Section 6.1.2. This stage attempts to iden-
tify a spare monitor which has been previously loaded
with the monitoring graph for program i and a processor
core which is currently tasked with program j. This core
is subsequently switched to program i and the processor

TABLE 2: NpBench monitor graph reload cost

Network Memory graph Graph reload Graph reload
benchmark size (bits) time (cycles) time (µs)
crc 8,460 529 2.64
frag 18,660 1,166 5.83
red 25,410 1,588 7.94
md5 96,840 6,052 30.26
ssld 25,620 1,601 8.01
wfq 28,590 1,787 8.93
mtc 77,160 4,822 24.11
mpls (up) 52,590 3,287 16.43
mpls (down) 51,180 3,199 15.99

core/monitor interconnect is configured for the new
connection. The process of identifying a processor core,
swapping its program, and locating a suitable preloaded
monitor requires 197 instructions (clock cycles) on aver-
age, based on our simulation. The configuration of the
interconnect between the monitor and processor core in
the cluster requires 3 clock cycles. In total, these actions
require 1.60 µs.

In some cases, if a spare monitor with the appropriate
graph cannot be found, a graph must be loaded into
monitor memory. To evaluate the average monitoring
graph reloading cost from centralized monitor memory
to the dual-ported memory in a monitor, nine bench-
marks from the NpBench suite [23] were processed with
an offline analysis flow. NpBench is a benchmark suite
targeting modern network processor applications. The
benchmark applications are categorized into three spe-
cific functional groups: traffic management and quality
of service group (TQG), security and media processing
group (SMG) and packet processing group (PPG). In
our evaluation, monitor graph sizes generated with a
4-bit nibble-sum hash function were calculated and the
graph read/write times to an on-chip memory were
estimated for each of the benchmarks. The reloading
time estimation was based on on-chip SRAM which is a
200 MHz SSRAM with a 16-bit data bus. Table 2 shows
the evaluation results. The average reload time is found
to be 13.34 µs.

Based on our simulation, we determined that it was
necessary to reload a monitor from centralized monitor
memory 16% of the time during a reallocation for m/n
= 1.5. During the remaining cases, a spare monitor
with program i was available in a cluster and could be
connected to the newly-allocated processor core. As a
result, the average amount of time needed to reallocate a
processor core can be calculated as program allocation time
+ monitor/processor identification time + %reload × graph
reload time. In total, this analysis results in an average
reallocation time of 0.45 µs + 1.60 µs + 0.16 × 13.34 µs
= 4.18 µs. In contrast, the amount of time needed if a
processor is dedicated to a monitor is program reallocation
time + graph reload time. In total, for the m = n case, this
analysis results in an average 0.45 µs + 13.34 µs = 13.79
µs delay.
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8 CONCLUSIONS AND FUTURE WORK

The use of general-purpose processors to implement
packet forwarding functions in routers has opened the
door for a new class of network data plane attacks.
Prior work has shown examples for such attacks and
their considerable effects. To provide practical protection
for network processors, which are multicore systems
with highly dynamic workloads, we have presented
our design of a Scalable Hardware Monitoring Grid.
This monitoring system groups multiple processors and
monitors into clusters and provides an interconnect to
dynamically assign processor cores to monitors based
on their current workload using a Runtime Resource
Reallocation Algorithm. We show that the system can
correctly identify attacks and recover the attacked core
so that it can continue processing. In the future we plan
to assess techniques to speed up the runtime swapping
of monitoring information.

REFERENCES

[1] F. Baker, “Requirements for IP version 4 routers,” Network Work-
ing Group, RFC 1812, Jun. 1995.

[2] W. Eatherton, “The push of network processing to the top of
the pyramid,” in Keynote Presentation at ACM/IEEE Symposium on
Architectures for Networking and Communication Systems (ANCS),
Princeton, NJ, Oct. 2005.

[3] D. Chasaki and T. Wolf, “Attacks and defenses in the data plane of
networks,” IEEE Transactions on Dependable and Secure Computing,
vol. 9, no. 6, pp. 798–810, Nov. 2012.

[4] The Open Source Network Intrusion Detection System, Snort, 2014,
http://www.snort.org.

[5] The Bro Network Security Monitor, The Bro Project, 2014, http://
www.bro-ids.org.

[6] D. Chasaki and T. Wolf, “Design of a secure packet processor,” in
Proc. of ACM/IEEE Symp. on Arch. for Networking and Communica-
tion Systems (ANCS), San Diego, CA, Oct. 2010, pp. 1–10.

[7] Q. Wu and T. Wolf, “Runtime task allocation in multi-core packet
processing systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 10, pp. 1934–1943, Oct. 2012.

[8] The Cisco QuantumFlow Processor: Cisco’s Next Generation Network
Processor, Cisco Systems, Inc., San Jose, CA, Feb. 2008.

[9] OCTEON Plus CN58XX 4 to 16-Core MIPS64-Based SoCs, Cavium
Networks, Mountain View, CA, 2008.

[10] NP-5 – 240-Gigabit Network Processor for Carrier Ethernet Appli-
cations, EZchip Technologies Ltd., Yokneam, Israel, May 2012,
http://www.ezchip.com/.

[11] A. Cui, Y. Song, P. V. Prabhu, and S. J. Stolfo, “Brave new
world: Pervasive insecurity of embedded network devices,” in
Proc. of 12th International Symposium on Recent Advances in Intrusion
Detection (RAID), ser. Lecture Notes in Computer Science, vol.
5758, Saint-Malo, France, Sep. 2009, pp. 378–380.

[12] Cisco, Inc., “Cisco IOS,” http://www.cisco.com.
[13] P. Koopman, “Embedded system security,” Computer, vol. 37,

no. 7, pp. 95–97, Jul. 2004.
[14] S. Parameswaran and T. Wolf, “Embedded systems security – an

overview,” Design Automation for Embedded Systems, vol. 12, no. 3,
pp. 173–183, Sep. 2008.

[15] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure embed-
ded processing through hardware-assisted run-time monitoring,”
in Proc. of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’05), Munich, Germany, Mar. 2005, pp. 178–183.

[16] R. G. Ragel, S. Parameswaran, and S. M. Kia, “Micro embed-
ded monitoring for security in application specific instruction-set
processors,” in Proc. of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), San
Francisco, CA, Sep. 2005, pp. 304–314.

[17] S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Transactions on Computers, vol. 59, no. 6,
pp. 847–854, Jun. 2010.

[18] H. Kumarapillai Chandrikakutty, D. Unnikrishnan, R. Tessier,
and T. Wolf, “High-performance hardware monitors to protect
network processors from data plane attacks,” in Proc. of Design
Automation Conference (DAC), Austin, TX, Jun. 2013, pp. 1–6.

[19] K. Hu, H. Chandrikakutty, R. Tessier, and T. Wolf, “Scalable
hardware monitors to protect network processors from data plane
attacks,” in Proc. of the IEEE Conference on Network and Computer
Security, Washington, DC, Oct. 2013, pp. 314–322.

[20] D. Geer, “Malicious bots threaten network security,” Computer,
vol. 38, no. 1, pp. 18–20, 2005.

[21] K. Hu, T. Wolf, T. Teixeira, and R. Tessier, “System-level security
for network processors with hardware monitors,” in Proc. Design
Automation Conf. (DAC), San Francisco, CA, Jun. 2014, pp. 1–6.

[22] S. Rhoads, Plasma – most MIPS I(TM) Opcodes, 2001, http://www.
opencores.org/project,plasma.

[23] B. K. Lee and L. K. John, “NpBench: A benchmark suite for control
plane and data plane applications for network processors,” in
Proc. of IEEE International Conference on Computer Design (ICCD),
San Jose, CA, Oct. 2003, pp. 226–233.

Kekai Hu is a Ph.D. candidate in the Electrical
and Computer Engineering department at the
University of Massachusetts, Amherst. He re-
ceived the B.S. and M.S. degrees in electrical
and computer engineering from Wuhan Univer-
sity, China, in 2007 and 2009, respectively. His
research interests include network routers, em-
bedded system security, and computer architec-
ture.

Harikrishnan Kumarapillai Chandrikakutty
received the B.Tech. degree in applied electron-
ics and instrumentation engineering from Col-
lege of Engineering, Trivandrum, India in 2008
and the M.S. degree in electrical and com-
puter engineering from the University of Mas-
sachusetts, Amherst in 2013. He is currently with
Juniper Networks, Westford, MA, where he is
involved in the design and verification of next
generation routers and switch systems.

Zachary Goodman received the B.S. degree
in electrical engineering from the University of
Massachusetts, Amherst in 2014.

Russell Tessier (M’00-SM’07) received the B.S.
degree in computer and systems engineering
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1989, and the S.M. and Ph.D. degrees
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
1992 and 1999, respectively. He is currently Pro-
fessor of Electrical and Computer Engineering
with the University of Massachusetts, Amherst,
MA. His current research interests include com-
puter architecture and FPGAs.

Tilman Wolf (M’02-SM’07) is Professor of Elec-
trical and Computer Engineering at the Uni-
versity of Massachusetts Amherst. He received
a Diplom in informatics from the University of
Stuttgart, Germany, in 1998. He also received
a M.S. in computer science in 1998, a M.S. in
computer engineering in 2000, and a D.Sc. in
computer science in 2002, all from Washington
University in St. Louis. His research interests
include Internet architecture, network routers,
and embedded system security.


