
Hardware-Assisted Code Obfuscation for FPGA
Soft Microprocessors

Meha Kainth, Lekshmi Krishnan, Chaitra Narayana, Sandesh Gubbi Virupaksha and Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA, USA

Abstract—Soft microprocessors are vital components of many
embedded FPGA systems. As the application domain for FPGAs
expands, the security of the software used by soft proces-
sors increases in importance. Although software confidentiality
approaches (e.g. encryption) are effective, code obfuscation is
known to be an effective enhancement that further deters code
understanding for attackers. The availability of specialization
in FPGAs provides a unique opportunity for code obfuscation
on a per-application basis with minimal hardware overhead.
In this paper we describe a new technique to obfuscate soft
microprocessor code which is located outside the FPGA chip
in an unprotected area. Our approach provides customizable,
data-dependent control flow modification to make it difficult for
attackers to easily understand program behavior. The application
of the approach to three benchmarks illustrates a control flow
cyclomatic complexity increase of about 7× with a modest logic
overhead for the soft processor.

Keywords-Soft microprocessor, code obfuscation

I. INTRODUCTION

As FPGAs are deployed in a greater number of embed-
ded platforms, intellectual property protection becomes more
important. For example, field-programmable devices are now
found in mobile platforms, automobiles, and a variety of
consumer products. In most cases, program execution requires
access to instructions located in unprotected, off-chip memory
providing an inviting target for attackers to observe both
program instructions and the order in which they are accessed.
Although encryption provides significant protection for soft
processor instructions, the use of encryption does not mask
control flow and can expose repetitive instruction address
patterns to an attacker. These patterns can leak algorithm in-
formation even if the specific instructions are not decipherable.

As a supplement to encryption, code obfuscation [1] can
be used to further inhibit program instruction evaluation. The
goal of obfuscation is to retain the same code functionality,
but mask code behavior to make it much more difficult for an
attacker to discern software algorithm function. Many different
types of software obfuscation have been developed, including
obfuscated code layout, data structure masking, and control
flow obfuscation [2]. Our work focuses on the third type of
obfuscation.

Unlike fixed-functionality processors, an FPGA which con-
tains a soft processor has the capability to be configured at
the hardware-level on a per-application basis. While processor
operation and the processor instruction set are unaffected,

slight changes in the control flow of the processor can augment
traditional software obfuscation techniques to make obfusca-
tion more confusing to the attacker. The main contribution
of our approach is the use of a small hardware module
isolated in the FPGA to determine control flow for code
retrieved from external memory. A small hardware module
can be easily created at application compile time and isolated
in a reserved region of the FPGA that potentially could be
changed via partial reconfiguration. Reconfiguration allows
for replacement of this module at FPGA load time in a time
period which is small compared to application load time. The
contents of the partial bitstream can be secured by bitstream
encryption, providing protection for the obfuscation hardware
against attackers.

Our approach to code obfuscation takes advantage of control
flow flattening [2] [3] to automatically collapse the control
flow of C language procedures. The customized obfuscation
hardware module inside secure FPGA hardware allows for
correct program control flow. Through experimentation with
obfuscation we show that the code complexity not only
increases substantially, but since all control flow information
is not available to the attacker, the ability to understand
the obfuscated code is significantly hampered. To verify the
functionality of our approach, a complete software system
has been created and tested on an Altera DE4 board. Our
customized branching function is added to C code which
has its control flow flattened to obfuscate program behavior
from an attacker with access to the external memory bus. For
FPGA implementation, the branching function is implemented
in hardware structures with very low overhead, out of sight
from an attacker. In experiments targeted to a Stratix IV FPGA
it was found that our code obfuscator increases code flow
cyclomatic complexity by a factor of 7 for a modest lookup
table (LUT) count increase.

The remainder of the paper is organized in the following
fashion. Section II provides background on code obfuscation
and its use in securing software. Section III provides an
overview of our obfuscation algorithm and our implementation
approach. Section IV describes our experimental approach
and results are presented in Section V. Section VI provides
conclusions and directions for future work.



II. BACKGROUND

A. Code Obfuscation

Code obfuscation is typically employed to mask the specific
details of program flow and function from an attacker. The
algorithmic function of a program is retained, although its
structure and efficiency are typically altered. Quantitatively, a
goal of code obfuscation is the development of a polynomial
time obfuscation algorithm that requires at least an exponential
deobfuscation effort by an attacker [1].

To obscure dynamic (run-time) control flow analysis, it
is desirable to create multiple copies of basic blocks which
perform the same function but have been coded in different
styles. A value is then used in a conditional statement to select
specific equivalent paths [1]. Another approach focuses on
distributing decision-making predicate variables used in con-
ditional statements across multiple functions [4]. Our approach
uses predicate variables but hides the function used to control
program branching in FPGA logic. Another common code
obfuscation technique involves adding junk code or additional
program states to obscure program analysis. Often, code is
added near function calls or conditional instructions [5] to
obscure control flow. The use of indirect branch targets makes
analysis particularly difficult. Adding irrelevant conditions
with locally generated data to conditional statements leads
to an expansion of program state space [2]. This approach
is particularly effective if the consumed data is not easily
observed by the attacker. Our implementation uses this ap-
proach in addition to hardware-assisted branching functions
to diversify control flow options.

Other code obfuscation techniques include self-modifying
code [6], mobile code download [7], and software diversifica-
tion [8]. The latter two approaches focus on the periodic use of
different versions of code for network-connected applications.
These techniques are beyond the scope of this work.

B. Control Flow Flattening and Branching Functions

An effective way of obscuring code execution is to flatten a
procedure into a series of basic blocks which reside within a
loop and switch statement combination (Fig. 1) [2] [3]. As a
result, the previous and next basic blocks of computation are
much less apparent to an attacker. This type of structure has
several critical aspects. First, the next executed basic block
in the loop is controlled by a computation in the current
block. In this simple example, the switch control variable
swV ar is set to a fixed constant value in the current basic
block although, as discussed in the next section, much more
complicated assignments can be used. Second, the termination
of the computation is made much less apparent to an attacker.
Since basic blocks can be positioned in any order in the high
level and assembly code, the sequence of execution can be
effectively obscured.

Although it has been shown that analyzing flattened pro-
grams is an NP-hard problem [2], in the years since the
initial introduction of this obfuscation idea, a number of
enhancements have been proposed to improve the level of

int x=5;
int i=100;
while (i>10)
{

i ‐‐;
x ‐= i;

}

int x;
int swVar = 1;
while (swVar!=0){ 

switch(swVar){
case 1: 

x=5;
i=100;
swVar =2;
break;

case 2:
if (i>10)

swVar = 3;
else

swVar= 0;
break;

case 3:
i‐‐;
x‐=i;
swVar = 2;
break;

}
}

(a)

(b)

int i=0;
int x=0;
branch_func(1)

Block1: 
x=5;
i=100;
branch_func(2)

Block2 :
if (i>10)

branch_func(3)
else

branch_func(0)
Block3:

i‐‐;
x‐=i;
branch_func(2);

endblock;

(c)

Fig. 1. Example of control flattening showing original code (a), flattened
code (b), and obfuscated code (c)

obfuscation provided by control flow flattening. Perhaps the
most effective enhancement [9] to control flow flattening
has involved the replacement of the static switch variable
assignment (e.g. swV ar = 2) with a branching function
of the form:

branch target = f(input data, path signature) (1)

In the equation, the path signature represents a combination of
the start addresses of the basic blocks that have been executed
in sequence by the procedure. Data values can be used to
guide branching towards multiple equivalent copies of the
same target basic blocks.

Our approach to code obfuscation enhances these previous
techniques by isolating the branching function in hardware
on a per-application basis with almost no changes to the soft
microprocessor pipeline. This small hardware function can be
updated on a per application basis (potentially using partial
FPGA reconfiguration) to completely hide portions of the
code execution control flow from the attacker. Zhuang, et al.
[10] previously suggested using hardware-assisted obfuscation
to dynamically reposition chunks of virtual memory during
code execution. The need for an operating system may not be
appropriate for embedded applications implemented on FPGA-
based soft processors.

C. Security Model

It is assumed that the FPGA hardware and its associated
bitstream are secured using bitstream encryption, which makes
it difficult for all but the most experienced attackers to decipher
a bitstream using hardware-oriented means such as side-
channel attacks. External memory, which holds soft processor



instructions and its bus interface to the FPGA, are insecure.
Data memory values used by the processor can either be
located in internal FPGA memory or in external DRAM. It has
been previously shown [10] that neither encryption nor caches
remove the benefits of code obfuscation. Although encryption
hides the values of the instructions, instruction address patterns
are still apparent. Obfuscation scrambles these patterns making
it difficult to determine program function. Attacks which force
cache misses so that all instructions are fetched from external
memory are also possible. Code obfuscation is complementary
to code and data encryption and provides protection for control
flow which encryption does not provide.

III. HARDWARE-BASED OBFUSCATION

Our code obfuscation approach operates in a series of
automated steps (Fig. 2) that are customized for FPGA im-
plementation of obfuscation hardware.

Control flow flattening - The approach first involves flat-
tening the control flow of each selected C procedure into a
single while loop and switch statement. Control flattening is
performed on each selected C procedure, as illustrated in Fig.
1(a) and (b). The flattening of code into a format shown in
Fig. 1(b) takes place in a series of steps. First, all do and for
loops are converted to while loop equivalent representations.
Subsequently, all if, while, and switch statements are converted
to the while/switch structure illustrated in Fig. 1(b). The
algorithm implementation uses a stack to keep track of nested
loops and conditionals.

Branching function generation - A hardware implemen-
tation of a branching function is generated which dynamically
determines the next basic block to be executed by the proce-
dure. This action not only requires the generation of a small
amount of hardware, but also the modification of the flattened
C code to include subroutine “calls” to the branching function
which pass control to the hardware. The specific hardware
branching function is customized on a per application basis
based on user specification. In our current implementation, the
branching function uses information regarding the execution
path of the program (e.g. former branching function calls) and
specific data values from the datapath to generate a next target
address.

Backend compilation - The binary for the obfuscated code
is generated by a software compiler while the branching
function is synthesized for FPGA implementation.

We now explain each step of our flow in greater detail.
Specific steps in both the hardware and software compile flows
are shown in Algorithms 1 and 2.

A. Code Modification for the Branching Function

The flattened C code is modified to insert calls to a
branching function (Fig. 1(c)) which determines the execution
of the next basic block. During compilation, the subroutine
call instructions are converted to MIPS jump-and-link (jal)
instructions which include the address branch func, a dummy
procedure in the code which performs no useful function. The
jal assembly instruction related to this call is identified in

Algorithm 1 Detailed Automated Software Compile Steps
1: C code is flatten (Fig. 1(b)).
2: Flattened C code compiled using MIPS C compiler.
3: Static analysis of code using sample data sets to determine

branch points and targets.
4: Flattened C code is modified to include calls to branching

function, branch func. A “dummy” code stub is inserted
in the code for branch func.

5: Modified code is compiled using MIPS C compiler
6: For each code path, the sequence of addresses where calls

are made to branch func is determined using the static
analysis information.

Algorithm 2 Detailed Automated Hardware Compile Steps
1: The user specifies branch func in Verilog.
2: An index for each branch in each code path is generated

using the results from step 6 of Algorithm 1 and (2).
3: For each branch target in a specific code path, the branch

offset is found using the index determined in the previous
step.

4: RTL for the lookup table which associates branch offsets
with indices is generated.

5: Obfuscation hardware, including the branching function
and the lookup table, is synthesized and merged into the
remaining bitstream for the processor.

the microprocessor as it executes and a hardware branching
function (Fig. 3) is activated to determine the branch target.
As shown in Fig. 1(c), all call statements include a data
value. Although the example shows constant values as a call
argument, input values could be used instead to allow for
varying branch target assignment. The branching function uses
the address of the jal instruction in determining the target
address. Since the calls are in different locations in the code,
their resulting targets will be different.

B. Building the Branching Function in FPGA Hardware

To defend against dynamic replay attacks, not only is
the branching function implemented in FPGA hardware, but
additional hardware is included which determines the next
basic block branch target for the code (effectively, the next
case in the switch statement). Additionally, unlike the code
shown in Fig. 1(b), the next target basic block is determined
by the branching function using a combination of input data
and previous control flow (path signature) information. The
use of data allows for different control flows for the same
function based on data values This approach makes replay
attacks using varying data values more difficult to understand.

The structure of our obfuscation hardware is shown in Fig.
3 as shaded blocks. A trigger for the obfuscation hardware is
provided when a call instruction to the branching function in
software (e.g. a jal instruction to a specific branch address) is
fetched from the instruction memory. An instruction match
is identified with a comparator (e.g. the =? block) which



Control Flow 
Flatten

Branch 
Function 

Build

Insert Calls to 
Branch Func.

RTL Compiler

MIPS GCC 
Compiler

Obfuscation 
HW RTL

Modified 
C Program

Control Flow 
Information

Flattened 
C Program

FPGA Soft-
processor 
Bitstream

Binary of 
Obfuscated 
C Program

Original
C program

SPREE RTL
FPGA 

Constraints

User
Func.

Fig. 2. Flow diagram showing the steps necessary to implement hardware-based code obfuscation

Current
Addr.

Branch 
Function

Lookup 
Table

+
PC+4

=?

Instruction
Memory

PC RF
Data

Memory

Sign
Extend

Prev.
Addr.

Data

BF 
offset

PC+4

Br/Jump 
Addr

BF control

Trigger

index

BF 
control

BF 
offset

Obfuscation
Hardware

Branch 
Address

Fig. 3. MIPS datapath augmented with hardware to perform code obfuscation. Note that some details of the datapath have been omitted.

provides a trigger to start the control transfer to the obfuscation
hardware. Although virtually any combination of processor
information could be used to determine branch targets via the
branching function, we use three inputs for testing: the address
of the current call instruction (current address), the address
of the previous call instruction (previous address - which was
formerly the current address before the current call), and data
values. In our initial implementation, the branching function
generates a 32-bit output index using the 9 low-order bits
of the previous address, the 14 low-order bits of the current
address, the 7 high-order bits of the current address, and 2
data bits. In general, any ordering or function of these input
bits could be used to generate the index. Thus, our branching
function can be specified as follows:
index = {paddr[8 : 0], caddr[13 : 0], caddr[31 : 25], data[1 : 0]}

(2)
where caddr is the current address and paddr is the previous
address. Virtually any function is possible, included more
complicated ones.

Following the generation of an index, a lookup is made in a
lookup table which operates as a content-addressable memory.
Effectively, each valid entry in the lookup table generates a
branch offset for the current program counter (PC). As seen
on the right side of Fig. 3, the offset is added to PC+4
to generate a new target address. A control signal from the
branching function indicates the selection of the new target
address. The creation of the obfuscation hardware (as shown
in Fig. 2) involves the population of the branching function

and lookup table blocks. The final two steps in the automated
obfuscation process involve converting the modified code (e.g.
Fig. 1(c)) into binary code and the synthesis of the soft
processor and obfuscation hardware using a standard MIPS
GCC compiler and FPGA RTL compiler, respectively. If only
the obfuscation hardware is modified, it can be synthesized
separately into a constrained region and bitstream-merged into
the soft processor design.

IV. EXPERIMENTAL APPROACH

We have developed a complete flow which implements the
stages shown in Fig. 2, including a template for the obfuscation
hardware which can be updated on a per-application basis.
Modified RTL versions of a three-stage SPREE processor [11]
are used to implement the base processor. The obfuscation
hardware RTL is generated using scripts based on control
flow information collected from code flattening and a user-
specified obfuscation function input. Quartus II is used to
map modified processor designs to a Stratix IV EP4SGX230
located on an Altera DE4 board. The branching function and
lookup table hardware shown in Fig. 3 are isolated in a specific
set portion of the FPGA (Fig. 4). If a single soft processor
is intended to support numerous obscured applications, the
obfuscation hardware can be isolated to a specific region and
reconfigured as needed. Both Xilinx and Altera support partial
run-time reconfiguration of regions of contemporary FPGAs.
Experiments with partial reconfiguration are left as future
work. The constraints needed to guide the Quartus II compiler



Fig. 4. Isolation of obfuscation hardware in a Stratix IV FPGA

to meet placement objectives can be used once the obfuscation
hardware RTL has been created.

The control flow flattening in our flow is performed using
aCob software1. This tool converts subroutines into the format
shown in Fig. 1(b). Our software then converts the switch
statement in the flattened code into the series of basic blocks
and subroutine calls shown in Fig. 1(c). The SPREE distribu-
tion provides a modified MIPS GCC compiler which was used
to generate application binaries for the customized processors.
Validation of our system performance was performed both
using the DE4 board and via ModelSim. Results were vali-
dated both for soft processors which fetch instructions from
external DRAM and for processors which fetch instructions
from internal FPGA SRAM (for proof-of-concept testing).
Three benchmarks from the SPREE distribution were used for
testing: quant, qsort, and crc.

V. RESULTS

As mentioned in Section I, code obfuscation is used to hide
the execution flow of a program, making it difficult for an
attacker to identify the details of the algorithm (and especially
the conditional statements) which have been implemented.
Generally, effective code obfuscation results in a significantly
increased number of potential execution paths, even if in
practice only a smaller set are used. Since, unlike software-
only obfuscation, our approach hides the branch decision logic
(e.g. the branching function) in hardware which cannot be
easily examined by an attacker, the difficulty of determining
the control of execution paths is even further obscured. The
recent increased use of FPGA soft processors in a variety of
embedded and secure systems [12] increases the importance
of code obfuscation.

Table I indicates that our added hardware for hardware-
assisted code obfuscation is modest, a few hundred lookup-
tables (LUTs). The similar size of the obfuscation hardware
for all designs reinforces the idea of isolating this hardware in
a fixed region. The results include the storage for the lookup

1http://sourceforge.net/projects/acob/

TABLE I
FPGA RESOURCE UTILIZATION FOR STANDARD SPREE PROCESSOR AND
PROCESSOR AUGMENTED WITH OBFUSCATION HARDWARE. RESOURCES

ARE REPORTED IN LOOKUP TABLES (LUTS) AND FLIP FLOPS (FFS).

SPREE Obfuscation HW + SPREE
Program LUTs FFs LUTs FFs
quant 744 146 964 173
qsort 744 146 912 173
crc 744 146 867 173

table in Fig. 3 which is implemented in FPGA LUTs and
flip flops (FFs). As noted in Section I, code obfuscation is
a complementary security approach to encryption algorithms
such as AES, which in contrast, typically require 500-1,000
LUTs [13]. Encryption hides the values of instruction and data
while code obfuscation hides control flow information. The
use of code obfuscation to enhance FPGA system security
is not resource limiting if it is used with encryption. The
maximum lookup table size across all benchmarks was 33
entries. Our experiments show that the maximum clock speed
of the SPREE processor was reduced from about 160 MHz
to about 140 MHz for the obfuscated versions, although this
performance loss could likely be overcome with an optimized
hardware implementation.

Table II indicates the performance, in SPREE clock cycles,
of executing the three applications. Although a significant
slowdown for each application is noted, our hardware-assisted
obfuscation performs roughly the same as a software-only
obfuscator (aCob) and is similar to reported performance
results from other obfuscators [3]. The run time overhead for
execution from DRAM was less for quant (3.6×) and crc
(3.1×). The size of the generated code for our architecture
increased by about 70% on average versus unobfuscated code,
similar to the code size increase due to aCob (50%).

Various numerical metrics have been developed to measure
increases in program complexity [8] which measure the ef-
fectiveness of code obfuscation. Almost all of these metrics
attempt to measure the number of possible execution paths
through the code. Generally, a linear or polynomial increase in
the number of control branch points can lead to an exponential
increase in the number of possible paths, making an attacker’s
job much more difficult. One widely used metric, cyclomatic
complexity [3] (also known as the McCabe metric), is defined
as [8]:

cyclomatic = e− n+ 2p (3)

where e is the number of branch points in the code, n is the
number of code segments, and p is the number of end points.
Effectively, an increase in the number of branches e increases
complexity and the number of potential control paths. For most
code, a cyclomatic number of 10 or less indicates easy-to-
follow code. Table III shows that our approach has increased
cyclomatic complexity versus the software-only aCob obfus-
cator. Additionally, unlike previous approaches, control flow
decisions in our approach are made in hardware using the
branching function, completely opaque to potential attackers.



TABLE II
PERFORMANCE RESULTS FOR UNOBFUSCATED CODE, SOFTWARE-ONLY

(ACOB), AND HARDWARE-ASSISTED OBFUSCATION

Clock cycles
Program Unobfuscated aCob Hardware-obfusc. increase
quant 24,548 110,104 112,617 4.6×
qsort 17,790 35,553 37,104 2.1×
crc 108,771 553,590 565,895 5.2×

TABLE III
CYCLOMATIC COMPLEXITY RESULTS FOR UNOBFUSCATED CODE,

SOFTWARE-ONLY (ACOB), AND HARDWARE-ASSISTED OBFUSCATION

Program Unobfuscated aCob Hardware-obfuscated
quant 9 41 66
qsort 5 14 23
crc 2 11 20

This benefit is not reflected in the results in the table.
Another well-known code complexity metric is knot count

[8]. This metric examines the number of control flow crossings
in a program. For example, each branch can be considered
as an edge extending from the branch source address to the
target address. If edges of two or more branches cross, a
knot is formed. In general, code flattening and the insertion
of a branching function introduce a large number of knots
since control flow is centralized in one or a small number of
addresses. Table IV indicates the knot count increase of our
approach. The use of the hardware-based branching function
increases knot count versus software-only flattening. Finally,
we examine the program compile time for the three cases of
interest (Table V). Although the compile time of the FPGA-
based obfuscation hardware is a concern, its small size limits
FPGA compile time to about two minutes. As mentioned in
Section IV, this generated hardware bitstream can be combined
with the static bitstream for the remainder of the SPREE
processor.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described an FPGA-specific technique
to obscure code executed by FPGA soft microprocessors.
Our system flow allows designers to specify an obfuscation
function which is implemented with a small amount of FPGA
hardware. Our software flow generates both the obfuscated
binary (after control flattening) and the hardware necessary
to perform obfuscation. Our technique is more secure than a
software-only approach since specialized branching decisions
are made using a branching function embedded within secure
FPGA hardware. FPGA reconfigurability allows this hardware
to be customized on a per-application basis, based on program-
mer input. In the future, we will explore combining our ap-
proach with dynamic run-time compilation to further obscure
program address traces. The development of security metrics
to quantify the benefits of hardware-assisted obfuscation is
also a direction for future work.

TABLE IV
KNOT COUNT RESULTS FOR UNOBFUSCATED CODE, SOFTWARE-ONLY

(ACOB), AND HARDWARE-ASSISTED OBFUSCATION

Program Unobfuscated aCob Hardware-obfuscated
quant 0 5 11
qsort 0 22 32
crc 0 5 11

TABLE V
COMPILE TIME RESULTS FOR UNOBFUSCATED CODE, SOFTWARE-ONLY

(ACOB), AND HARDWARE-ASSISTED OBFUSCATION

Program Unobfuscated aCob Hardware-obfuscated
software (ms) software (ms) software (ms) HW (s)

quant 0.97 0.98 0.99 124
qsort 1.03 1.04 1.05 116
crc 0.94 0.96 0.97 130

VII. ACKNOWLEDGMENTS

This research was funded by the National Science Founda-
tion under grant CNS-1318497. We thank Altera for providing
the DE4 board and Quartus software.

REFERENCES

[1] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” University of Auckland, Technical Report, 1997.

[2] C. Wang, “A security architecture for survivability mechanisms,” Ph.D.
dissertation, University of Virginia, Oct. 2000.

[3] T. Laszlo and A. Kiss, “Obfuscating C++ programs via control flow
flattening,” Sectio Computatorica, Aug. 2009.

[4] A. Majumdar, “Design and evaluation of software obfuscations,” Ph.D.
dissertation, Department of Computer Science, University of Auckland,
New Zealand, Oct. 2008.

[5] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in ACM Conf. on Computer and Comm.
Security, Oct. 2003, pp. 290–299.

[6] D. Aucsmith, “Tamper resistant software: An implementation,” in Inter-
national Workshop on Information Hiding, May 1996, pp. 317–333.

[7] P. Falcarin, R. Scandariato, and M. Baldi, “Remote trust with aspect
oriented computing,” in IEEE Advanced Information and Networking
Applications, Apr. 2006, pp. 317–333.

[8] B. Anckaert, M. Madou, B. D. Sutter, K. D. Bosschere, and B. Preneel,
“Program obfuscation: A quantitative approach,” in ACM Workshop on
Quality of Protection, Oct. 2007, pp. 15–20.

[9] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static
and dynamic reverse engineering,” in International Conference on In-
formation Hiding, 2011, pp. 270–284.

[10] X. Zhuang, T. Zhang, H.-H. S. Lee, and S. Pande, “Hardware assisted
control flow obfuscation for embedded processors,” in International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, Sep. 2004, pp. 292–302.

[11] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific cus-
tomization of soft processor microarchitecture,” in Proc. Int’l Symp. on
FPGAs, Feb. 2006, pp. 201–210.

[12] J. Crenne, R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, and D. Un-
nikrishnan, “Configurable memory security in embedded systems,” ACM
Transactions on Embedded Computer Systems, vol. 12, no. 3, pp. 1–25,
Mar. 2013.

[13] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvoy,
“Implementation of the AES-128 on Virtex-5 FPGAs,” in Proceedings,
AFRICACRYPT, 2008, pp. 16–26.


