
Journal of VLSI Signal Processing 28, 7–27, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Reconfigurable Computing for Digital Signal Processing: A Survey∗

RUSSELL TESSIER AND WAYNE BURLESON
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA

Received July 1999; Revised December 1999

Abstract. Steady advances in VLSI technology and design tools have extensively expanded the application do-
main of digital signal processing over the past decade. While application-specific integrated circuits (ASICs) and
programmable digital signal processors (PDSPs) remain the implementation mechanisms of choice for many DSP
applications, increasingly new system implementations based onreconfigurable computingare being considered.
These flexible platforms, which offer the functional efficiency of hardware and the programmability of software, are
quickly maturing as the logic capacity of programmable devices follows Moore’s Law and advanced automated de-
sign techniques become available. As initial reconfigurable technologies have emerged, new academic and commer-
cial efforts have been initiated to support power optimization, cost reduction, and enhanced run-time performance.

This paper presents a survey of academic research and commercial development in reconfigurable computing for
DSP systems over the past fifteen years. This work is placed in the context of other available DSP implementation
media including ASICs and PDSPs to fully document the range of design choices available to system engineers. It is
shown that while contemporary reconfigurable computing can be applied to a variety of DSP applications including
video, audio, speech, and control, much work remains to realize its full potential. While individual implementations
of PDSP, ASIC, and reconfigurable resources each offer distinct advantages, it is likely that integrated combinations
of these technologies will provide more complete solutions.
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1. Introduction

Throughout the history of computing, digital signal
processing applications have pushed the limits of com-
pute power, especially in terms of real-time compu-
tation. While processed signals have broadly ranged
from media-driven speech, audio, and video wave-
forms to specialized radar and sonar data, most cal-
culations performed by signal processing systems have
exhibited the same basic computational characteristics.
The inherent data parallelism found in many DSP func-
tions has made DSP algorithms ideal candidates for
hardware implementation, leveraging expanding VLSI
capabilities. Recently, DSP has received increased at-

∗This article is abridged from the forthcoming Marcel Dekker, Inc.
publication,Programmable Digital Signal Processors, Y. Hu, editor.

tention due to rapid advancements in multimedia com-
puting and high-speed wired and wireless communi-
cations. In response to these advances, the search for
novel implementations of arithmetic-intensive circuitry
has intensified.

While application areas span a broad spectrum, the
basic computational parameters of most DSP opera-
tions remain the same: a need for real-time perfor-
mance within the given operational parameters of a
target system and, in most cases, a need to adapt to
changing data sets and computing conditions. In gen-
eral, the goal of high performance in systems ranging
from low-cost embedded radio components to special-
purpose ground-based radar centers has driven the
development of application and domain-specific chip
sets. The development and financial cost of this ap-
proach is often large, motivating the need for new
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Figure 1. DSP implementation spectrum.

approaches to computer architecture that offer the same
computational attributes as fixed-functionality archi-
tectures in a package that can be customized in the field.
The second goal of system adaptability is generally
addressed through the use of software-programmable,
commodity digital signal processors. While these plat-
forms enable flexible deployment due to software de-
velopment tools and great economies of scale, appli-
cation designers and compilers must customize their
processing approach to available computing resources.
This flexibility often comes at the cost of performance
and power efficiency.

As shown in Fig. 1,reconfigurablecomputers of-
fer a compromise between the performance advantages
of fixed-functionality hardware and the flexibility of
software-programmable substrates. Like ASICs, these
systems are distinguished by their ability to directly
implement specialized circuitry directly in hardware.
Additionally, like programmable processors, reconfig-
urable computers contain functional resources that may
be easily modified after field deployment in response to
changing operational parameters and data sets. To date,
the core processing element of most reconfigurable
computers has been the field-programmable gate array
(FPGA). These bit-programmable computing devices
offer ample quantities of logic and register resources
that can easily be adapted to support the fine-grained
parallelism of many pipelined DSP applications. With
current logic capacities exceeding one million gates
per device, substantial logic functionality can be im-
plemented on each programmable device. While ap-
propriate for some classes of implementations, FPGAs
represent only one possible implementation in a range
of possible reconfigurable computing building blocks.
A number of reconfigurable alternatives are presently

under evaluation in academic and commercial environ-
ments.

In this survey, the evolution of reconfigurable com-
puting with regard to digital signal processing is con-
sidered. This study includes a historical evaluation of
reprogrammable architectures and programming en-
vironments used to support DSP applications. The
chronology is supported with specific case studies
which illustrate approaches used to address implemen-
tation constraints such as system cost, performance,
and power consumption. It is seen that as technology
has progressed, the richness of applications supported
by reconfigurable computing and the performance of
reconfigurable computing platforms have improved
dramatically. Reconfigurable computing for DSP re-
mains an active area of research as the need for inte-
gration with more traditional DSP technologies such
as PDSPs becomes apparent and the goal of automated
high-level compilation for DSP increases in impor-
tance.

The organization of this paper is as follows. In
Section 2 a brief history of the issues and techniques
involved in the design and implementation of DSP sys-
tems is described. Section 3 presents a short history
of reconfigurable computing. Section 4 describes why
reconfigurable computing is a promising approach for
DSP systems. Section 5 serves as the centerpiece of
the paper and provides a history of the application of
various reconfigurable computing technologies to DSP
systems and a discussion of the current state-of-the-art.
We conclude in Section 6 with some predictions about
the future of reconfigurable computing for digital sig-
nal processing. These predictions are formulated by
extrapolating the trends of reconfigurable technologies
and describing future DSP applications which may be
targeted to reconfigurable hardware.

1.1. Definitions

The following definitions are used to describe various
attributes related to reconfigurable computing:

• Reconfigurableor Adaptive—In the context of re-
configurable computing this term indicates that the
logic functionality and interconnect of a comput-
ing system or device can be customized to suit a
specific application through post-fabrication, user-
defined programming.
• Run-time (or Dynamically) Reconfigurable—

System logic functionality and/or interconnect
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connectivity can be modified during application exe-
cution. This modification may be either data-driven
or statically-scheduled.
• Fine-grained parallelism—Logic functionality and

interconnect connectivity is programmable at the
bit level. Resources encompassing multiple logic
bits may be combined to form parallel functional
units.
• Specialization—Logic functionality can be cus-

tomized to perform exactly the operation desired.
An example is the synthesis of filtering hardware
with a fixed constant value.

2. Background in DSP Implementation

2.1. DSP System Implementation Choices

Since the early 1960’s three goals have driven the de-
velopment of DSP implementations:1. data paral-
lelism, 2. application-specific specialization, and3.
functional flexibility. In general, design decisions re-
garding DSP system implementation require tradeoffs
between these three system goals. As a result, a wide
variety of specialized hardware implementations and
associated design tools have been developed for DSP
including associative processing, bit-serial processing,
on-line arithmetic, and systolic processing. As imple-
mentation technologies have become available, these
basic approaches have matured to meet the needs of
application designers.

As shown in Table 1, various cost metrics have been
developed to compare the quality of different DSP im-
plementations. Performance has frequently been the
most critical system requirement since DSP systems
often have demanding real-time constraints. In the past
two decades, however, cost has become more signifi-
cant as DSP has migrated from predominantly mili-
tary and scientific applications into numerous low-cost
consumer applications. Over the past ten years, en-
ergy consumption has become an important measure as

Table 1. DSP implementation comparison.

Performance Cost Power Flexibility Design effort (NRE)

ASIC High High Low Low High

Programmable DSP Medium Medium Medium Medium Medium

General-purpose processor Low Low Medium High Low

Reconfigurable hardware Medium Medium High High Medium

DSP techniques have been widely applied in portable,
battery-operated systems such as cell-phones, CD play-
ers, and laptops [1]. Finally, flexibility has emerged as
one of the key differentiators in DSP implementations
since it allows changes to system functionality at vari-
ous points in the design life cycle. The results of these
cost tradeoffs have resulted in four primary implemen-
tation options including application-specific integrated
circuits (ASICs), programmable digital signal proces-
sors (PDSPs), general-purpose microprocessors, and
reconfigurable hardware. Each implementation option
presents different trade-offs in terms of performance,
cost, power and flexibility.

For many specialized DSP applications, system im-
plementation must include one or more application-
specific integrated circuits to meet performance and
power constraints. Even though ASIC design cycles
remain long, a trend toward automated synthesis and
verification tools [2] is simplifying high-level ASIC
design. Since most ASIC specification is done at the
behavioral or register-transfer level, the functional-
ity and performance of ASICs have become easier to
represent and verify. Another, perhaps more impor-
tant, trend has been the use of pre-designed cores with
well-defined functionality. Some of these cores are in
fact PDSPs or RISC microcontrollers, for which soft-
ware has to be written and then stored on-chip. ASICs
have a significant advantage in area and power and
for many high-volume designs the cost-per-gate for
a given performance level is less than that of high-
speed commodity FPGAs. These characteristics are es-
pecially important for power-aware functions in mobile
communication and remote sensing. Unfortunately, the
fixed nature of ASICs limit theirreconfigurability. For
designs that must adapt to changing data sets and
operating conditions, software-programmable compo-
nents must be included in the target system, reducing
available parallelism. Additionally, for low-volume or
prototype implementations, the NRE costs related to
an ASIC may not justify its improved performance
benefits.
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The application domain of programmable digital
signal processors can be identified by tracing their
development lineage. Thorough summaries of pro-
grammable DSPs can be found in [3–5] and [6]. In the
1980’s, the first programmable digital signal proces-
sors (PDSPs) were introduced by Texas Instruments.
These initial processor architectures were primarily
CISC pipelines augmented with a handful of special
architectural features and instructions to support fil-
tering and transform computations. One of the most
significant changes to second generation PDSPs was
the adaptation of the Harvard architecture, effectively
separating the program bus from the data bus. This op-
timization reduced the von Neumann bottleneck, thus
providing an unimpeded path for data from local mem-
ory to the processor pipeline. Many early DSPs allowed
programs to be stored in on-chip ROM and supported
the ability to make off-chip accesses if instruction ca-
pacity was exceeded. Some DSPs also had coefficient
ROMs, again recognizing the opportunity to exploit
the relatively static nature of filter and transform coef-
ficients.

Contemporary digital signal processors are highly
programmable resources that offer the capability for
in-field update as processing standards change. Par-
allelism in most PDSPs is not extensive but gener-
ally consists of overlapped data fetch, data operation,
and address calculation. Some instruction set modifi-
cations are also used in PDSPs to specialize for sig-
nal processing. Addressing modes are provided to sim-
plify the implementation of filters and transforms and,
in general, control overhead for loops is minimized.
Arithmetic instructions for fixed point computation al-
low saturating arithmetic which is important to avoid
overflow exceptions or oscillations. New hybrid DSPs
contain a variety of processing and I/O features in-
cluding parallel processing interfaces, VLIW function
unit scheduling, and flexible data paths. Through the
addition of numerous, special-purpose memories, on-
chip DSPs can now achieve high-bandwidth and, to a
moderate extent, reconfigurable interconnect. Due to
the volume usage of these parts, costs are reduced and
commonly-used interfaces can be included. In addi-
tion to these benefits, the use of a DSP has specific
limitations. In general, for optimal performance, ap-
plications must be written to utilize the resources avail-
able in the DSP. While high-level compilation systems
which perform this function are becoming available
[7, 8], often it is difficult to get exactly the mapping
desired. Additionally, the interface to memory may

not be appropriate for specific applications creating
a bandwidth bottleneck in getting data to functional
units.

The 1990’s have been characterized by the introduc-
tion of DSP to the mass commercial market. DSP has
made the transition from a fairly academic acronym to
one seen widely in advertisements for consumer elec-
tronics and software packages. A battle over the DSP
market has ensued primarily between PDSP manufac-
turers, ASIC vendors, and developers of two types of
general-purpose processors, desk-top microprocessors
and high-end microcontrollers. General-purpose pro-
cessors, such as the Intel Pentium, can provide much of
the signal processing needed for desk-top applications
such as audio and video processing, especially since the
host microprocessor is already resident in the system
and has highly optimized I/O and extensive software
development tools. But general-purpose desk-top pro-
cessors are not a realistic alternative for embedded sys-
tems due to their cost and lack of power efficiency in im-
plementing DSP. Another category of general-purpose
processors is the high-end microcontroller. These chips
have also made inroads into DSP applications by pre-
senting system designers with straightforward imple-
mentation solutions that have useful data interfaces and
significant application-level flexibility.

One DSP hardware implementation compromise
that has developed recently has been the develop-
ment of domain-specific standard products in both pro-
grammable and ASIC formats. The PDSP community
has determined that since certain applications have high
volume it is worthwhile to tailor particular PDSPs to
domain-specific markets. This has led to the availabil-
ity of inexpensive, commodity silicon while allowing
users to provide application differentiation in software.
ASICs have also been developed for more general func-
tions like MPEG decoding in which standards have
been set up to allow a large number of applications to
use the same basic function.

Reconfigurable computing platforms for DSP offer
an intermediate solution to ASICs, PDSPs, and gen-
eral and domain-specific processors by allowing re-
configurable and specialized performance on a per-
application basis. While this emerging technology has
primarily been applied to experimental rather than
commercial systems, the application-level potential for
these reconfigurable platforms is great. Following an
examination of the needs of contemporary DSP appli-
cations, current trends in the application of reconfig-
urable computing to DSP are explored.
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2.2. The Changing World of DSP Applications

Over the past thirty years the application space of dig-
ital signal processing has changed substantially, moti-
vating new systems in the area of reconfigurable com-
puting. New applications over this time span have
changed the definition of DSP and have created new
and different requirements for implementation. For ex-
ample, in today’s market, DSP is often found in human-
computer interfaces such as sound cards, video cards,
and speech recognition systems; application areas with
limited practical significance just a decade ago. Since
a human is an integral part of these systems, different
processing requirements can be found, in contrast to
communications front-ends such as those found in DSL
modems from Broadcom [9] or CDMA receiver chips
from Qualcomm [10]. Another large recent application
of DSP has been in the read circuitry of hard-drive and
CD/DVD storage systems [11]. Although many of the
DSP algorithms are the same as in modems, the system
constraints are quite different.

Consumer products now make extensive use of
DSP in low-cost and low-power implementations [12].
Wireless and multimedia, two of the hottest topics
in consumer electronics, both rely heavily on DSP
implementation. Cellular telephones, both GSM and
CDMA, are currently largely enabled by custom sili-
con [13], although trends toward other implementation
media such as PDSPs are growing. Modems for DSL,
cable, LANs and most recently wireless, all rely on
sophisticated adaptive equalizers and receivers. Satel-
lite set-top boxes rely on DSP for satellite reception
using channel decoding as well as an MPEG decoder
ASIC for video decompression. After the set-top box,
the DVD player has now emerged as the fastest grow-
ing consumer electronics product. The DVD player
relies on DSP to avoid intersymbol interference, al-
lowing more bits to be packed into a given area of disk.
In the commercial video market, digital cameras and
camcorders are rapidly becoming affordable alterna-
tives to traditional analog cameras, largely supported
by photo-editing, authoring software, and the Web.

Development of a large set of DSP systems has been
driven indirectly by the growth of consumer electron-
ics. These systems include switching stations for cel-
lular, terrestrial, satellite and cable infrastructure as
well as cameras, authoring studios, and encoders used
for content production. New military and scientific ap-
plications applied to the digital battlefield, including
advanced weapons systems and remote sensing equip-

ment, all rely on DSP implementation that must operate
reliably in adverse and resource-limited environments.
While existing DSP implementation choices are suit-
able for all of these consumer and military-driven appli-
cations, higher performance, efficiency, and flexibility
will be needed in the future, driving current interest in
reconfigurable solutions.

In all of these applications, data processing is con-
siderably more sophisticated than the traditional filters
and transforms which characterized DSP of the 1960’s
and 1970’s. In general, performance has grown in im-
portance as data rates have increased and algorithms
have become more complex. Additionally, there is an
increasing demand for flexible and diverse functional-
ity based on environmental conditions and workloads.
Power and cost are equally important since they are
critical to overall system cost and performance.

While new approaches to application-specific DSP
implementation have been developed by the research
community in recent years, their application in prac-
tice has been limited by the market domination of
PDSPs and the reluctance of designers to expose sched-
ule and risk-sensitive ASIC projects to non-traditional
design approaches. Recently, however, the combina-
tion of new design tools and the increasing use of
intellectual property cores [14] in DSP implemen-
tations have allowed some of these ideas to find
wider use. These implementation choices include sys-
tolic architectures, alternative arithmetic (RNS, LNS,
digital-serial), wordlength optimization, parallelizing
transformations, memory partitioning and power opti-
mization techniques. Design tools have also been pro-
posed which could close the gap between software de-
velopment and hardware development for future hy-
brid DSP implementations. In subsequent sections it
will be seen that these tools will be helpful in defining
appropriate application of reconfigurable hardware to
existing challenges in DSP. In many cases, basic design
techniques used to develop ASICs or domain-specific
devices can be re-applied to customize applications in
programmable silicon by taking the limitations of the
implementation technology into account.

3. A Brief History of Reconfigurable Computing

Since their introduction in the mid-1980’s field-
programmable gate arrays (FPGAs) have been the sub-
ject of extensive research and experimentation. In this
section, reconfigurable device architecture and sys-
tem integration is investigated with an eye towards
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identifying trends likely to affect future development.
While this summary provides sufficient background
to evaluate the impact of reconfigurable hardware on
DSP more thorough discussions of FPGAs and re-
configurable computing can be found in [15–17] and
[18].

3.1. Field-Programmable Devices

The modern era of reconfigurable computing was ush-
ered in by the introduction of the first commercial
SRAM-based FPGAs by Xilinx Corporation [19] in
1986. These early reprogrammable devices and subse-
quent offerings from both Xilinx and Altera Corpo-
ration [20] contain a collection of fine-grained pro-
grammable logic blocks interconnected via wires and
programmable switches. Logic functionality for each
block is specified via a small programmable mem-
ory, called alookup table, driven by a limited num-
ber of inputs (typically less than five) which gener-
ates a single boolean output. Additionally, each logic
block typically contains one or more flip flops for fine-
grained storage. While early FPGA architectures con-
tained small numbers of logic blocks (typically less
than 100), new device families have quickly grown
to capacities of tens of thousands of lookup tables
containing millions of gates of logic. As shown in
Fig. 2, fine-grained lookup table/flip flop pairs are fre-
quently grouped into tightly-connected coarse-grained
blocks to take advantage of circuit locality. Intercon-
nection between logic blocks is provided via a series of
wire segments located in channels between the blocks.

Figure 2. Simplified Xilinx Virtex logic block [23]. Each logic block consists of two 2-LUT slices.

Programmable pass transistors and multiplexers can
be used to provide both block-to-segment connectivity
and segment-to-segment connections.

Much of the recent interest in reconfigurable com-
puting has been spurred by the development and mat-
uration of field-programmable gate arrays. The re-
cent development of systems based on FPGAs has
been greatly enhanced by an exponential growth rate
in the gate capacity of reconfigurable devices and im-
proved device performance due to shrinking die sizes
and enhanced fabrication techniques. As shown in
Fig. 3, reported gate counts [21–23] for LUT-based FP-
GAs, from companies such as Xilinx Corporation, have
roughly followed Moore’s Law over the past decade.1

This increase in capacity has enabled complex struc-
tures such as multi-tap filters and small RISC proces-
sors to be implemented directly in a single FPGA chip.
Over this same time period the system performance of
these devices has also improved exponentially. While
in the mid-1980’s system-level FPGA performance of
2–5 MHz was considered acceptable, today’s LUT-
based FPGA designs frequently approach performance
levels of 60 MHz and beyond. Given the programm-
able nature of reconfigurable devices, the performance
penalty of a circuit implemented in reprogrammable
technology versus a direct ASIC implementation is
generally on the order of a factor of five to ten.

3.2. Early Reprogrammable Systems

Soon after the commercial introduction of the FPGA,
computer architects began devising approaches for
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Figure 3. Growth of FPGA gate capacity.

leveraging new programmable technology in comput-
ing systems. As summarized in [18], the evolution
of reconfigurable computing was significantly shaped
by two influential projects: Splash II [24] and Pro-
grammable Active Memories (PAM) [25]. Each of
these projects addressed important programmable sys-
tem issues regarding programming environment, user
interface, and configuration management by apply-
ing pre-existing computational models in the areas of
special-purpose coprocessing and statically-scheduled
communication to reconfigurable computing.

Splash II is a multi-FPGA parallel computer which
uses orchestrated systolic communication to perform
inter-FPGA data transfer. Each board of a multi-board
Splash II system contains 16 Xilinx XC4000 series
FPGA processors, each with associated SRAM. Unlike
its multi-FPGA predecessor, Splash [26], which was
limited to strictly near-neighbor systolic communica-
tion, each Splash II board contains inter-FPGA cross-
bars for multi-hop data transfer and broadcast. Soft-
ware development for the system typically involves
the creation of VHDL circuit descriptions for indi-
vidual systolic processors. These designs must meet
size and performance constraints of the target FPGAs.
Following processor creation, high-level inter-FPGA
scheduling software is used to ensure that system-wide

communication is synchronized. In general, the sys-
tem is not dynamically reconfigured during operation.
For applications with SIMD characteristics, a compiler
[27] has been created to automatically partition pro-
cessing across FPGAs and to synchronize interfaces to
local SRAMs. Numerous DSP applications have been
mapped to Splash II, including audio and video al-
gorithm implementations. These applications are de-
scribed in greater detail in Section 5.

Programmable Active Memory DECPeRLe-1 sys-
tems [25] contain arrangements of FPGA processors in
a two-dimensional mesh with memory devices aligned
along the array perimeter. PAMs were designed to cre-
ate the architectural appearance of a functional mem-
ory for a host microprocessor and the PAM program-
ming environment reflects this. From a programming
standpoint the multi-FPGA PAM can be accessed like
a memory through an interface FPGA with written val-
ues treated as inputs and read values used as results.
Designs are generally targeted to PAMs through hand-
crafting of design sub-tasks, each appropriately sized
to fit on an FPGA. The PAM array and its successor,
the Pamette [28], are interfaced to a host worksta-
tion through a backplane bus. Additional discussion
of PAMs with regard to DSP applications appears in
Section 5.
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3.3. Reconfigurable Computing Research Directions

An important aspect of reconfigurable devices is the
ability to reconfigure functionality in response to
changing operating conditions and application data
sets. While SRAM-based FPGAs have supported slow
millisecond reconfiguration rates for some time, only
recently have devices been created that allow for
rapid device reconfiguration at run-time. Dynamically-
reconfigurable FPGAs, orDPGAs [29, 30], contain
multiple interconnect and logic configurations for each
programmable location in a reconfigurable device. Of-
ten these architectures are designed to allow configu-
ration switching in a small number of system clock
cycles measuring nanoseconds rather than millisec-
onds. While several DPGA devices have been de-
veloped in research environments, none are currently
commercially available due the large overhead costs
associated with the required large configuration mem-
ory. To promote reconfiguration at lower hardware
cost, several commercial FPGA families [23, 31] have
been introduced that allow for fast, partial reconfigu-
ration of FPGA functionality from off-chip memory
resources. A significant challenge to the use of these
reconfigurables is the development of compilation soft-
ware which will partition and schedule the order in
which computation will take place and will determine
which circuitry must be changed. While some prelim-
inary work in this area has been completed [32, 33],
more advanced tools are needed to fully leverage the
new hardware technology. Other software approaches
that have been applied to dynamic reconfiguration in-
clude the definition of hardware subroutines [34] and
the dynamic reconfiguration of instruction sets [35].

While high-level compilation for microprocessors
has been an active research area for decades, devel-
opment of compilation technology for reconfigurable
computing is still in its infancy. The compilation pro-
cess for FPGA-based systems is often complicated
by a lack of identifiable coarse-grained structure in
fine-grained FPGAs and the dispersal of logic re-
sources across many pin-limited reconfigurable devices
on a single computing platform. In particular, since
most reconfigurable computers contain multiple pro-
grammable devices, designpartitioning forms an im-
portant aspect of most compilation systems. Several
compilation systems for reconfigurable hardware [36,
37] have followed a traditional multi-device ASIC de-
sign flow involving pin-constrained device partitioning
and individual device synthesis using RTL compilation.

To overcome pin limitations and achieve full logic uti-
lization on a per-device basis using this approach, ei-
ther excessive internal device interconnect [36] or I/O
counts [38] have been needed. In [39], a hardware vir-
tualization approach is outlined that promotes high per-
device logic utilization. Following design partition-
ing and placement, inter-FPGA wires are scheduled on
inter-device wires at compiler-determined time slices,
allowing pipelining of communication. Inter-device
pipelining also forms the basis of several FPGA sys-
tem compilation approaches that start at the behavioral
level. A high-level synthesis technique described in
[40] outlines inter-FPGA scheduling at the RTL level.
In [41] and [42] functional allocation is performed
that takes into account the amount of logic avail-
able in the target system and available inter-device in-
terconnect. Combined communicationand functional
resource scheduling is then performed to fully uti-
lize available logic and communication resources. In
[43], inter-FPGA communication and FPGA-memory
communication are virtualized since it is recog-
nized that memory rather than inter-FPGA bandwidth
is frequently the critical resource in reconfigurable
systems.

4. The Promise of Reconfigurable
Computing for DSP

Many of the motivations and goals of reconfigurable
computing are consistent with the needs of signal pro-
cessing applications. It will be seen in Section 6 that the
deployment of DSP algorithms on reconfigurable hard-
ware has aided in the advancement of both fields over
the past fifteen years. In general, the direct benefits
of the reconfigurable approach for DSP can be sum-
marized in three critical areas: functional specializa-
tion, platform reconfigurability, and fine-grained par-
allelism.

4.1. Specialization

As stated in Section 2.1, programmable digital signal
processors are optimized to deliver efficient perfor-
mance across a set of signal processing tasks. While
the specific implementation of tasks can be modified
though instruction-configurable software, applications
must frequently be customized to meet specific pro-
cessor architectural aspects, often at the cost of per-
formance. Currently, most DSPs remain inherently
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sequential machines, although some parallel VLIW
and multi-function unit DSPs have recently been de-
veloped [44]. The use of reconfigurable hardware has
numerous advantages for many signal processing sys-
tems. For many applications, such as digital filtering, it
is possible to customize irregular datapath widths and
specific constant values directly in hardware, reducing
implementation area and power and improving algo-
rithm performance. Additionally, if standards change,
the modifications can quickly be reimplemented in
hardware without expensive NRE costs. Since recon-
figurable devices contain SRAM-controlled logic and
interconnect switches, application programs in the
form of device configuration data can be downloaded
on a per-application basis. Effectively, this single,
wide program instruction defines hardware behavior.
Contemporary reconfigurable computing devices have
little or no NRE cost since off-the-shelf development
tools are used for design synthesis and layout. While re-
configurable implementations may exhibit a 5 to 10×
performance reduction compared to the same circuit
implemented in custom logic, limited manual interven-
tion is generally needed to map a design to a reconfig-
urable device. In contrast, substantial NRE costs re-
quire ASIC designers to focus on high-speed physical
implementation often involving hand-tuned physical
layout and near-exhaustive design verification. Time-
consuming ASIC implementation tasks can also lead
to longer time-to-market windows and increased inven-
tory, effectively becoming the critical path link in the
system design chain.

4.2. Reconfigurability

Most reconfigurable devices and systems contain
SRAM-programmable memory to allow full logic and
interconnect reconfiguration in the field. Despite a wide
range of system characteristics, most DSP systems have
a need for configurability under a variety of constraints.
These constraints include environmental factors such
as changes in statistics of signals and noise, channel,
weather, transmission rates, and communication stan-
dards. While factors such as data traffic and interference
often change quite rapidly, other factors such as loca-
tion and weather change relatively slowly. Still other
factors regarding communication standards vary infre-
quently across time and geography limiting the need
for rapid reconfiguration. Some specific ways that DSP
can directly benefit from hardware reconfiguration to
support these factors include:

• Field customization—The reconfigurability of pro-
grammable devices allows periodic updates of prod-
uct functionality as advanced vendor firmware
versions become available or product defects are de-
tected. Field customization is particularly important
in the face of changing standards and communication
protocols. Unlike ASIC implementations, reconfig-
urable hardware solutions can generally be quickly
updated based on application demands without the
need for manual field upgrades or hardware swaps.
• Slow adaptation—Signal processing systems based

on reconfigurable logic may need to be periodically
updated in the course of daily operation based on a
variety of constraints. These include issues such as
variable weather and operating parameters for mo-
bile communication and support for multiple, time-
varying standards in stationary receivers.
• Fast adaptation—Many communication processing

protocols [45] require nearly constant re-evaluation
of operating parameters and can benefit from rapid
reset of computing parameters. Some of these issues
include adaptation to time-varying noise in commu-
nication channels, adaptation to network congestion
in network configurations, and speculative compu-
tation based on changing data sets.

4.3. Parallelism

An abundance of programmable logic facilitates the
creation of numerous functional units directly in
hardware. Many characteristics of FPGA devices, in
particular, make them especially attractive for use
in digital signal processing systems. The fine-grained
parallelism found in these devices is well-matched to
the high-sample rates and distributed computation of-
ten required of signal processing applications in areas
such as image, audio, and speech processing. Plenti-
ful FPGA flip flops and a desire to achieve accelerated
system clock rates have led designers to focus on heav-
ily pipelined implementations of functional blocks and
inter-block communication. Given the highly pipelined
and parallel nature of many DSP tasks, such as image
and speech processing, these implementations have ex-
hibited substantially better performance than standard
PDSPs. In general, these systems have been imple-
mented using both task and functional unit pipelin-
ing. Many DSP systems have featured bit-serial
functional unit implementations [46] and systolic inter-
unit communication [24] that can take advantage of
the synchronization resources of contemporary FPGAs
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without the need for software instruction fetch and de-
code circuitry. As detailed in Section 5, bit-serial im-
plementations have been particularly attractive due to
their reduced implementation area. As reconfigurable
devices increase in size, however, more nibble-serial
and parallel implementations of functional units have
emerged in an effort to take advantage of data paral-
lelism.

Recent additions to reconfigurable architectures
have aided their suitability for signal processing. Sev-
eral recent architectures [23, 47] have included 2-4K bit
SRAM banks that can be used to store small amounts
of intermediate data. This allows for parallel access
to data for distributed computation. Another important
addition to reconfigurable architectures has been the
capability to rapidly change only small portions of de-
vice configuration without disturbing existing device
behavior. This feature has recently been leveraged to
help adapt signal processing systems to reduce power
[48]. The speed of adaptation may vary depending on
the specific signal processing application area.

5. History of Reconfigurable
Computing and DSP

Since the appearance of the first reconfigurable com-
puting systems, DSP applications have served as im-
portant test cases in reconfigurable architecture and
software development. In this section a wide range
of DSP design approaches and applications that have
been mapped to functioning reconfigurable computing
systems are considered. Unless otherwise stated, the
design of complete DSP systems is stressed including
I/O, memory interfacing, high-level compilation and
real-time issues rather than the mapping of individual
benchmark circuits. For this reason, a large number

Figure 4. Bit-serial adder and multiplier [42].

of FPGA implementations of basic DSP functions like
filters and transforms that have not been implemented
directly in system hardware have been omitted. While
our consideration of the history of DSP and reconfig-
urable computing is roughly chronological, some noted
recent trends were initially investigated a number of
years ago. To trace these trends, recent advancements
are directly contrasted with early contributions.

5.1. FPGA Implementation of Arithmetic

Soon after the introduction of the FPGA in the mid-
1980’s an interest developed in using the devices for
DSP, especially for digital filtering which can take ad-
vantage of specialized constants embedded in hard-
ware. Since a large portion of most filtering approaches
involves the use of multiplication, efficient multiplier
implementations in both fixed- and floating-point were
of particular interest. Many early FPGA multiplier
implementations used circuit structures adapted from
the early days of LSI development and reflected the
restricted circuit area available in initial FPGA devices
[42]. As FPGA capacities have increased, the diversity
of multiplier implementations has grown.

Since the introduction of the FPGA, bit-serial arith-
metic has been used extensively to implement FPGA
multiplication. As shown in Fig. 4, taken from [42],
bit-serial multiplication is implemented using a linear
systolic array that is well-suited to the fine-grained na-
ture of FPGAs. Two data values are input into the mul-
tiplier including a parallel value in which all bits are
input simultaneously and a sequential value in which
values are input serially. In general, a data sampling
rate of one value everyM clock cycles can be sup-
ported whereM is the input word length. Each cell in
the systolic array is typically implemented using one
to four logic blocks similar to the one shown in Fig. 2.
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Bit-serial approaches have the advantage that commu-
nication demands are independent of word length. As a
result, low-capacity FPGAs can efficiently implement
them. Given their pipelined nature, bit-serial multi-
pliers implemented in FPGAs typically possess excel-
lent area-time products. Many bit-serial formulations
have been applied to finite impulse response filtering
[49]. Special-purpose bit-serial implementations have
included canonic signed digit [50] and power-of-two
sum or difference [51].

Given the dual use of lookup tables as small mem-
ories, distributed arithmetic (DA) has also been an ef-
fective implementation choice for LUT-based FPGAs.
Since it is possible to group multiple LUTs together
into a larger fanout memory, large LUTs for DA can
easily be created. In general, distributed arithmetic re-
quires the embedding of a fixed-input constant value in
hardware, thus allowing the efficient pre-computation
of all possible dot-product outputs. An example of a
distributed arithmetic multiplier, taken from [42], ap-
pears in Fig. 5. It can be seen that a fast adder can
be used to sum partial products based on nibble look-
up. In some cases it may be effective to implement the
LUTs as RAMs so new constants can be written during
execution of the program.

To promote improved performance, several paral-
lel arithmetic implementations on FPGAs have been
formulated [42]. In general, parallel multipliers imple-
mented in LUT-based FPGAs achieve a speedup of 6X

Figure 5. Distributed arithmetic multiplier [42].

in performance when compared to their bit-serial coun-
terparts with an area penalty of 2.5X. Specific paral-
lel implementations of multipliers include a carry-save
implementation [52], a systolic-array with cordic arith-
metic [52], and pipelined parallel [49, 54, 55].

As FPGA system development has intensified, more
interest has been given to upgrading the accuracy of
calculation performed in FPGAs, particularly through
the use of floating point arithmetic. In general, floating
point operations are difficult to implement in FPGAs
due to the complexity of implementation and the
amount of hardware needed to achieve desired results.
For applications requiring extended precision, floating
point is a necessity. In [56] an initial attempt was made
to develop basic floating point approaches for FPGAs
that met IEEE754 standards for addition and multi-
plication. Area and performance were considered for
various FPGA implementations including shift-and-
add, carry-save, and combinational multiplier. Similar
work was explored in [57] which applied 18 bit wide
floating point adders/subtractors, multipliers, and di-
viders to 2D FFT and systolic FIR filters implemented
on Splash II to avoid overflow and underflow found
in fixed point formats. This work was extended to full
32 bit floating point in [58] for multipliers based on
bit-parallel adders and digit-serial multipliers. More
recent work [59] re-examines these issues with an eye
towards greater area efficiency.

5.2. Reconfigurable DSP System Implementation

While recent research in reconfigurable computing has
been focused on advanced issues such as dynamic re-
configuration and special-purpose architecture, most
work to date has been focused on the effective use of
application parallelization and specialization. In gen-
eral, a number of different DSP applications have been
mapped to reconfigurable computing systems contain-
ing one, several, and many FPGA devices. In this sec-
tion a number of DSP projects that have been mapped
to reconfigurable hardware are described. These im-
plementations represent a broad set of DSP application
areas and serve as a starting point for advanced research
in years to come.

Image Processing Applications.The pipelined and
fine-grained nature of reconfigurable hardware is a
particularly good match for many image process-
ing applications. Real-time image processing typically
requires specialized data paths and pipelining which
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can be implemented in FPGA logic. A number of
projects have been focused in this application area. In
[60] and [61], a set of image processing tasks mapped
to the Splash II platform, described in Section 3.2, are
outlined. Tasks such as Gaussian pyramid-based im-
age compression, image filtering with 1D and 2D trans-
forms, and image conversion using DFT operations are
discussed. This work was subsequently extended to in-
clude the 2D DCT implemented on the Splash II plat-
form in [62]. The distributed construction of a stand-
alone Splash II system containing numerous physical
I/O ports is shown to be particularly useful in achiev-
ing high data rates. Since Splash II is effective in im-
plementing systolic versions of algorithms that require
repetitive tasks with data shifted in a linear array, image
data can quickly be propagated in a processing pipeline.
The targeted image processing applications are gener-
ally implemented as block-based systolic computations
with each FPGA operating as a systolic processor and
groups of FPGAs performing specific tasks.

Additional reconfigurable computing platforms have
also been used to perform image processing tasks. In
[63], a commercial version of PAM, the turbochannel-
based Pamette [28], is interfaced to a CCD camera
and a liquid crystal polarizing filter is used to per-
form solar polarimetry. The activity of this appli-
cation is effectively synchronized with software on
an Alpha workstation. In [37] a multi-FPGA sys-
tem is used to process three-dimensional volume vi-
sualization data though ray casting. These imple-
mentations show favorable processing characteristics
when compared to traditional microprocessor-based
systems. In [64], a system is described in which a
two-dimensional DCT is implemented using a single
FPGA device attached to a backplane bus-based pro-
cessing card. This algorithm implementation uses dis-
tributed arithmetic and is initially coded in VHDL and
subsequently compiled using RTL synthesis tools. In
[65], a commercial multi-FPGA system is described
that is applied to spatial median filtering. In [66], the
application of a PCI-based FPGA board to 1D and
2D convolution is presented. Finally, in [67] a system
implemented with a single-FPGA processing board is
described that performs image interpolation. This sys-
tem primarily uses bit-serial arithmetic and exploits
dynamic reconfiguration to quickly swap portions of
the computation located in the reconfigurable hard-
ware. Each computational task has similar computa-
tional structure, so reconfiguration time of the FPGA is
minimal.

Video Processing Applications.Like image process-
ing, video processing requires substantial data band-
width and processing capability to handle data obtained
from analog video equipment. To support this need,
several reconfigurable computing platforms have been
adapted for video processing. The PAM system [25],
described in Section 3.2, was the first platform used
in video applications. A PAM system programmed
to perform stereo vision was applied to applications
requiring three-dimensional elevation maps such as
those needed for planetary exploration. A stereo match-
ing algorithm was implemented that was shown to be
substantially faster than programmable DSP-based ap-
proaches. This implementation employed dynamic re-
configuration by requiring the reconfiguration of pro-
grammable hardware between three distinct processing
tasks at run time. A much smaller single-FPGA sys-
tem, described in [68], was focused primarily on block-
based motion estimation. This system tightly coupled
SRAM to a single FPGA device to allow for rapid data
transfer.

An interesting application of FPGAs for video com-
putation is described in [69]. A stereo transform is
implemented across 16 FPGA devices by aligning two
images together to determine the depth between the
images. Scan lines of data are streamed out of adja-
cent memories into processing FPGAs to perform the
comparison. In an illustration of the benefit of a single-
FPGA video system, in [70] a processing platform is
described in which a T805 transputer is tightly cou-
pled with an FPGA device to perform frame object
tracking. In [71], a single-FPGA video coder, which
is reconfigured dynamically between three different
sub-functions (Motion Estimation, DCT, and Quanti-
zation), is described. The key idea in this project is that
the data located in hardware does not move, but rather
the functions which operate on it are reconfigured in
place.

Audio and Speech Processing.While audio pro-
cessing typically requires less bandwidth than video
and image processing, audio applications can ben-
efit from datapath specialization and pipelining. To
illustrate this point, a sound synthesizer was imple-
mented using the multi-FPGA PAM system [25] pro-
ducing real-time audio of 256 different voices at up
to 44.1 kHz. Primarily designed for the use of addi-
tive synthesis techniques based on lookup tables, this
implementation included features to allow frequency
modulation synthesis and/or nonlinear distortion and
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was also used as a sampling machine. The physical
implementation of PAM as a stand-alone processing
system facilitated interfacing to tape recorders and au-
dio amplifiers. The system setup was shown to be an
order-of-magnitude faster than a contemporary off-the-
shelf DSP.

Other smaller projects have also made contributions
in the audio and speech processing areas. In [72], a
methodology is described to perform audio process-
ing using a dynamically-reconfigurable FPGA. Audio
echo production is facilitated by dynamically swapping
filter coefficients and parameters into the device from
an adjacent SRAM. Third-party DSP tools are used to
generate the coefficients. In [55], an inventive FPGA-
based cross-correlator for radio astronomy is described.
This system achieves high processing rates of 250 MHz
inside the FPGA by heavily pipelining each aspect of
the data computation. To support speech processing,
a bus-based multi-FPGA board, Tabula Rasa [73], was
programmed to perform Markov searches of speech
phenomes. This system is particularly interesting be-
cause it allowed the use of behavioral partitioning and
contained a codesign environment for specification,
synthesis, simulation, and evaluation design phases.

Target Recognition. Another important DSP appli-
cation that has been applied to Splash II is target recog-
nition [74]. To support this application, images are
broken into columns and compared to pre-computed
templates stored in local memory along with pipelined
video data. As described in Section 3.2, near-neighbor
communication is used with Splash II to compare pass-
through pixels with stored templates in the form of
partial sums. After an image is broken into pieces,
the Splash II implementation performs second-level de-
tection by roughly identifying sections of sub-images
that conform to objects through the use of templates.
In general, the use of FPGAs provides a unique op-
portunity to quickly adapt target recognition to new
algorithms, something not possible with ASICs. In
another FPGA implementation of target recognition,
researchers [75] broke images into pieces called chips
and analyzed them using a single FPGA device. By
swapping target templates dynamically, a range of tar-
gets may be considered. To achieve high performance
design, templates were customized to meet the details
of the target technology.

Communication Coding. In modern communication
systems signal-to-noise ratios make data coding an im-

portant aspect of communication. As a result, convo-
lutional coding can be used to improve signal-to-noise
ratios based on the constraint length of codes without
increasing the power budget. Several reconfigurable
computing systems have been configured to aid in the
transmission and receipt of data. One of the first appli-
cations of reconfigurable hardware to communications
involved the PAM project [25]. On-board PAM sys-
tem RAM was used to trace through 214 possible states
of a Viterbi encoder allowing for the computation of 4
states per clock cycle. The flexibility of the system al-
lowed for quick evaluation of new encoding algorithms.
A run-length Viterbi decoder, described in [76], was
created and implemented using a large reconfigurable
system containing 36 FPGA devices. This constraint
length 14 decoder was able to achieve decode rates of
up to 1Mbit/s. In [77], a single-FPGA system is de-
scribed that supports variable-length code detection at
video transfer rates.

5.3. Reconfigurable Computing Architecture and
Compiler Trends for DSP

Over the past decade the large majority of reconfig-
urable computing systems targeted to DSP have been
based on commercial FPGA devices and have been
programmed using RTL and structural hardware de-
scription languages. While these architectural and
programming methodologies have been sufficient for
initial prototyping, more advanced architectures and
programming languages will be needed in the future.
These advancements will especially be needed to sup-
port advanced features such as dynamic reconfiguration
and high-level compilation over the next few years. In
this section, recent trends in reconfigurable computing-
based DSP with regard to architecture and compilation
are explored. Through near-term research advance-
ment in these important areas, the breadth of DSP ap-
plications that are appropriate for reconfigurable com-
puting is likely to increase.

5.3.1. Architectural Trends. Most commercial
FPGA architectures have been optimized to perform
efficiently across a broad range of circuit domains. Re-
cently, these architectures have been changed to better
suit specific application areas.

Specialized FPGA Architectures for DSP.Several
FPGA architectures specifically designed for DSP have
been proposed over the past decade. In [78], a fine-
grained programmable architecture is considered that
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uses a customized LUT-based logic cell. The cell is
optimized to efficiently perform addition and multipli-
cation through the inclusion of XOR gates within LUT-
based logic blocks. Additionally, device inter-cell wire
lengths are customized to accommodate both local and
global signal interconnections. In [79], a specialized
DSP operator array is detailed. This architecture con-
tains a linear array of adders and shifters connected to
a programmable bus and is shown to efficiently imple-
ment FIR filters. In [80], the basic cell of a LUT-based
FPGA is augmented to include additional flip flops and
multiplexers. This combination allows for tight inter-
block communication required in bit-serial DSP pro-
cessing. External routing was not augmented for this
architecture due to the limited connectivity required by
bit-serial operation.

While fine-grained look-up table FPGAs are effec-
tive for bit-level computations, many DSP applications
benefit from modular arithmetic operations. This need
has lead to an interest in reconfigurables with coarse-
grained functional units. One such device, Paddi [81],
is a DSP-optimized parallel computing architecture
that includes 8 ALUs and localized memories. As part
of the architecture, a global instruction address is dis-
tributed to all processors and instructions are fetched
from a local instruction store. This organization allows
for high instruction and I/O bandwidth. Communica-
tion paths between processors are configured through
a communication switch and can be changed on a per-
cyle basis. The Paddi architecture was motivated by
a need for high data throughput and flexible datapath
control in real-time image, audio, and video process-
ing applications. The coarse-grained Matrix architec-
ture [82] is similar to Paddi in terms of block struc-
ture but exhibits more localized control. While Paddi
has a VLIW-like control word, which is distributed to
all processors, Matrix exhibits more MIMD charac-
teristics. Each Matrix tile contains a small processor
including a small SRAM and an ALU which can per-
form eight bit data operations. Both near-neighbor and
length-four wires are used to interconnect individual
processors. Inter-processor data ports can be config-
ured to support either static or data-dependent dynamic
communication.

The ReMarc architecture [83], targeted to multime-
dia applications, was designed to perform SIMD-like
computation with a single control word distributed to
all processors. A two-dimensional grid of 16 bit proces-
sors is globally controlled with a SIMD-like instruction
sequencer. Inter-processor communication takes place

either through near-neighbor interconnect or through
horizontal and vertical buses. The Chess architecture
[84] is based on 4-bit ALUs and contains pipelined
near-neighbor interconnect. Each computational tile
in the architecture contains memory which can either
store local processor instructions or local data memory.
The Colt architecture [85] was specially designed as
an adaptable architecture for DSP that allows intercon-
nect reconfiguration. This coarse-grained architecture
allows run-time data to steer programming information
to dynamically determined points in the architecture. A
mixture of both 1-bit and 16-bit functional units allows
both bit and word-based processing.

While coarse-grained architectures organized in a
two-dimensional array offer significant interconnect
flexibility, often signal processing applications, such as
filtering, can be accommodated with a linear computa-
tional pipeline. Several coarse-grained reconfigurable
architectures have been created to address this class
of applications. PipeRench [86] is a pipelined, linear
computing architecture that consists of a sequence of
computationalstripes, each containing look-up tables
and data registers. The modular nature of PipeRench
makes dynamic reconfiguration on a per-stripe basis
straightforward. Rapid [87] is a reconfigurable device
based on both linear data and control paths. The coarse-
grained architecture for this datapath includes multipli-
ers, adders, and pipeline registers. Unlike PipeRench,
the interconnect bus for this architecture is segmented
to allow for non-local data transfer. In general, com-
munication patterns built using Rapid interconnect are
static although some dynamic operation is possible.
A pipelined control bus that runs in parallel to the
pipelined data can be used to control computation.

DSP Compilation Software for Reconfigurable Com-
puting. While some high-level compilation systems
designed to target DSP algorithms to reconfigurable
platforms have been outlined and partially developed,
few complete synthesis systems have been constructed.
In [88], a high-level synthesis system is described for
reconfigurable systems that promotes high-level syn-
thesis from a behavioral synthesis language. For this
system, DSP designs are represented as a high-level
flow graph and user-specified performance parameters
in terms of a maximum and minimum execution sched-
ule are used to guide the synthesis process. In [46], a
compilation system is described that converts a stan-
dard ANSI C representation of filter and FFT opera-
tions into a bit-serial circuit that can be applied to an



Reconfigurable Computing for Digital Signal Processing 21

FPGA or to a field-programmable multi-chip module.
In [89], a compiler, debugger, and linker targeted to
DSP data acquisition is described. This work uses a
high-level model of communicating processes to spec-
ify computation and communication in a multi-FPGA
system. By integrating D/A and A/D converters into
the configurable platform, a primitive digital oscillo-
scope is created.

The use of dynamic reconfiguration to reduce area
overhead in computing systems has recently motivated
renewed interest in reconfigurable computing. While
a large amount of work remains to be completed in this
area, some preliminary work in the development of
software to manage dynamic reconfiguration for DSP
has been accomplished. In [90], a method of specifying
and optimizing designs for dynamic reconfiguration is
described. Through selective configuration scheduling,
portions of an application used for 2D image processing
is dynamically reconfigured based on need. Later work
[33] outlined techniques based on bipartite matching
to evaluate which portions of an dynamic application
should be reconfigured. The technique is demonstrated
using an image filtering example.

Several recent DSP projects address the need for
both compile-time and run-time management of dy-
namic reconfiguration. In [91], a run-time manager is
described for a single-chip reconfigurable computing
system with a large FIR filter used as a test case. In
[32], a compile-time analysis approach to aid reconfig-
uration is described. In this work, all reconfiguration
times are statically-determined in advance and the com-
pilation system determines the minimum circuit change
needed at each run-time point to allow for reconfigu-
ration. Benchmark examples which use this approach
include arithmetic units for FIR filters which contain
embedded constants. Finally, in [48], algorithms are
described that perform dynamic reconfiguration to save
DSP system power in time-varying applications such as
motion estimation. The software tool created for this
work dynamically alters the search space of motion
vectors in response to changing images. Since power in
the motion estimation implementation is roughly cor-
related with search space, a reduced search proves to
be beneficial for applications such as mobile communi-
cations. Additionally, unused computational resources
can be scheduled for use as memory or rescheduled
for use as computing elements as computing demands
require.

While the integration of DSP and reconfigurable
hardware is just now being considered for single-chip

implementation, several board-level systems have been
constructed. GigaOps provided the first commercially-
available DSP and FPGA board in 1994 containing
an Analog Devices 2101 PDSP, 2 Xilinx XC4010s,
256KB of SRAM, and 4MB of DRAM. This PC-
based system was used to implement several DSP ap-
plications including image processing [92]. Another
board-based DSP/FPGA product line is theArix-C67
currently available from MiroTech Corporation [93].
This system couples a Xilinx Virtex FPGA with a
TMS320C6701 DSP. In addition to supporting several
PC-bus interfaces, this system has an operating system,
a compiler, and a suite of debugging software.

6. The Future of Reconfigurable
Computing and DSP

The future of reconfigurable computing for DSP sys-
tems will be determined by the same trends that af-
fect the development of these systems today: system
integration, dynamic reconfiguration, and high-level
compilation. DSP applications are increasingly de-
manding in terms of computational load, memory re-
quirements, and flexibility. Traditionally, DSP has not
involved significant run-time adaptivity, although this
characteristic is rapidly changing. The recent emer-
gence of new applications that require sophisticated,
adaptive, statistical algorithms to extract optimum per-
formance has drawn renewed attention to run-time re-
configurability. Major applications driving the move
toward adaptive computation include wireless com-
munications with DSP in hand-sets, base-stations and
satellites, multimedia signal processing [95], embed-
ded communications systems found in disk drive elec-
tronics [11] and high-speed wired interconnects [96],
and remote sensing for both environmental and mili-
tary applications [97]. Many of these applications have
strict constraints on cost and development time due to
market forces.

The primary trend impacting the implementation of
many contemporary DSP systems is Moore’s Law, re-
sulting in consistent exponential improvement in in-
tegrated circuit device capacity and circuit speeds.
According to the National Technology Roadmap for
Semiconductors, growth rates based on Moore’s Law
are expected to continue until at least the year 2015
[94]. As a result, some of the corollaries of Moore’s
Law will require new architectural approaches to
deal with the speed of global interconnect, increased
power consumption and power density, and system and
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Figure 6. Architectural template for a single-chip Pleiades device
[99].

chip-level defect tolerance. Several architectural ap-
proaches have been suggested to allow reconfigurable
DSP systems to make the best use of large amounts
of VLSI resources. All of these architectures are
characterized by heterogeneous resources and novel
approaches to interconnection. The termsystem-on-
a-chip is now being used to describe the level of
complexity and heterogeneity available with future
VLSI technologies. Figures 6 and 7 illustrate vari-
ous characteristics of future reconfigurable DSP sys-
tems. These are not mutually exclusive and some com-
bination of these features will probably emerge based
on driving application domains such as wireless hand-
sets, wireless base-stations, and multimedia platforms.
Figure 6, taken from [99], shows an architecture
containing an array of DSP cores, a RISC micro-
processor, large amounts of uncommitted SRAM, a
reconfigurable FPGA fabric and a reconfigurable in-
terconnection network. Research efforts to condense
DSPs, FPGA logic, and memory on a single substrate
in this fashion are being pursued in the Pleiades project
[98, 99]. This work focuses on selecting the correct

Figure 7. Distributed single-chip DSP interconnection network [100].

collection of functional units to perform an operation
and then interconnecting them for low power. An ex-
perimental compiler has been created for this system
[98] and testing has been performed to determine ap-
propriate techniques for building a low-power intercon-
nect. An alternate, adaptive approach [100] that takes
a more distributed view of interconnection appears in
Fig. 7. This figure shows how a regular tiled intercon-
nect architecture can be overlaid on a set of heteroge-
neous resources. Each tile contains acommunication
switchwhich allows for statically-scheduled commu-
nication between adjacent tiles. Cycle-by-cycle com-
munications information is held in embedded commu-
nication switch SRAM (SMEM).

The increased complexity of VLSI systems en-
abled by Moore’s law presents substantial challenges
in design productivity and verification. To support the
continued advancement of reconfigurable computing,
additional advances will be needed in hardware syn-
thesis, high-level compilation, and design verification.
Compilers have recently been developed which allow
software development to be done at a high level en-
abling the construction of complex systems including
significant amounts of design re-use. Additional ad-
vancements in multi-compilers [101] will be needed to
partition designs, generate code, and synchronize in-
terfaces for a variety of heterogeneous computational
units. VLIW compilers [102] will be needed to find
substantial amounts of instruction level parallelism in
DSP code, thereby avoiding the overhead of run-time
parallelism extraction. Finally, compilers that target
the co-design of hardware and software and leverage
techniques such as static inter-processor scheduling
[43] will allow truly reconfigurable systems to be spe-
cialized to specific DSP computations.
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A critical aspect of high-quality DSP system de-
sign is the effective integration of re-usable compo-
nents or cores. These cores range from generic blocks
like RAMs and RISC microprocessors to more spe-
cific blocks like MPEG decoders and PCI bus inter-
faces. Trends involving core development and inte-
gration will continue and tools to support core-based
design will emerge allowing significant user interac-
tion for both design-time and run-time specialization
and reconfiguration. Specialized synthesis tools will
be refined to leverage core-based design and to ex-
tract optimum efficiency for DSP kernels while using
conventional synthesis approaches for the surrounding
circuitry [1, 103].

Verification of complex and adaptive DSP systems
will require a combination of simulation and emula-
tion. Simulation tools like Ptolemy [104] have already
made significant progress in supporting heterogeneity
at a high-level and will continue to evolve in the near fu-
ture. Newer verification techniques based on logic em-
ulation will emerge as effective mechanisms for using
reconfigurable multi-FPGA platforms to verify DSP
systems are developed. Through the use of new gen-
erations of FPGAs and advanced emulation software
[105], new emulation systems will provide the capabil-
ity to verify complex systems at near real-time rates.

Power consumption in DSP systems will be increas-
ingly important in coming years due to expanding sili-
con substrates and their application to battery-powered
and power-limited DSP platforms. The use of dynamic
reconfiguration has been shown to be one approach that
can be used to allow a system to adapt its power con-
sumption to changing environments and computational
loads [48]. Low-power core designs will allow systems
to be assembled without requiring detailed power op-
timizations at the circuit level. Domain-specific pro-
cessors [98] and loop transformations [106] have been
proposed as techniques for avoiding the inherent power
inefficiency of von Neumann architectures [107]. Ad-
ditional computer-aided design tools will be needed to
allow high-level estimation and optimization of power
across heterogeneous architectures for dynamically-
varying workloads.

The use of DSP in fields such as avionics and
medicine have created high reliability requirements
that must be addressed through available fault toler-
ance. Reliability is a larger system goal of which power
is only one component. As DSP becomes more deeply
embedded in systems, reliability becomes even more
critical. The increasing complexity of devices, sys-

tems and software all introduce numerous failure points
which need to be thoroughly verified. New techniques
must especially be developed to allow defect-tolerance
and fault-tolerance in the reconfigurable components of
DSP systems. One promising technique which takes
advantage of FPGA reconfiguration at various grain
sizes is described in [108].

Reconfiguration for DSP systems is driven by many
different goals: performance, power, reliability, cost
and development time. Different applications will re-
quire reconfiguration at different granularities and at
different rates. DSP systems that require rapid recon-
figuration may be able to exploit regularity in their al-
gorithms and architectures to reduce reconfiguration
time and power consumption. An approach calleddy-
namic algorithm transforms(DAT) [109, 110] is based
on the philosophy of moving away from designing
algorithms and architectures for worst-case operating
conditions in favor of real-time reconfiguration to sup-
port the current situational case. This is the basis for
reconfigurable ASICs (RASICs) [111] where just the
amount of flexibility demanded by the application is
introduced. Configuration cloning [112], caching, and
compression [113] are other approaches to address the
need for dynamic reconfiguration. Techniques from
computer architecture regarding instruction fetch and
decode need to be modified to deal with the same tasks
applied to configuration data.

In conclusion, reconfiguration is a promising tech-
nique for the implementation of future DSP systems.
Current research in this area leverages contempo-
rary semiconductors, architectures, CAD tools, and
methodologies in an effort to support the ever-
increasing demands of a wide range of DSP applica-
tions. There is much work still to be done, however,
since reconfigurable computing presents a very differ-
ent computational paradigm for DSP system designers
as well as DSP algorithm developers.

Note

1. In practice, usable gate counts for devices are often significantly
lower than reported data book values (by about 20–40%). Gener-
ally, the proportion of per-device logic that is usable has remained
roughly constant over the years indicated in Fig. 3.
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