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Abstract: Signal processing algorithms and architectures can use dynamic reconfigu-

ration to exploit variations in signal statistics with the objectives of improved performance

and reduced power. Parameters provide a simple and formal way to characterize incre-

mental changes to a computation and its computing mechanism. This paper develops a

framework for dynamic parameterization and applies it to MPEG-4 motion estimation.

A novel motion estimation architecture facilitates the dynamic variation of parameters to

achieve power-compression tradeoffs. Our work shows that parameter variation in mo-

tion estimation helps achieve power reduction by an order of magnitude, trading off higher

compression for lower power. The magnitude of the tradeoffs depends on the input signal

variation. The monitoring of input and output signal statistics and subsequent variation of

parameters is accomplished by a hardware controller. To provide the controller with a model

of the parameter space and corresponding measures in terms of power and performance, a

configuration sample space graph is developed. This graph identifies the parameters which
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present the best power-performance tradeoffs. The controller samples the operating envi-

ronment to select the appropriate parameters. This reduces the average power consumption

by 40% for 2% loss in compression. Four other signal dependent computations : 1) 2D Dis-

crete Cosine Transform, 2) Lempel-Ziv lossless compression, 3) 3D graphics light rendering

and 4) Viterbi decoding are briefly discussed to demonstrate the applicability of dynamic

reconfiguration.
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1 Introduction

Reconfigurable computing has been proposed for signal processing with various objec-

tives, including high-performance, flexibility, specialization and most recently adaptability.

Adaptive systems attempt to balance the use of limited resources, such as processing ele-

ments, time, and power, through the use of environment-driven dynamic reconfiguration.

An adaptive system can be characterized by: 1) reconfiguration speed, 2) the amount of

reconfiguration, and 3) the number of configurations used. Microprocessors are, in general,

well suited for adaptive systems but lack the performance necessary for compute-intensive

applications. Although FPGAs provide parallelism, they may not meet the performance

and power needs of adaptive systems due to slow reconfiguration rates and high power

dissipation. ASICs provide high performance at low power consumption, although they

generally lack the flexibility needed for use in adaptive systems.

This work discusses the development of application-specific adaptable architectures for

signal processing. These consist of a partially predefined configuration architecture style to

achieve high performance, low power consumption and high application specific flexibility.

Although adaptation can be used to manage any aspect of performance, the goal of the

proposed architecture development is to reduce overall power consumption. It will be shown

that by applying adaptability at the algorithm and architecture levels it is possible to reduce

power consumption by several orders of magnitude. Specifically, power consumption can

be reduced by: 1) exploiting variations in system signals and reducing the computations

required to achieve a given level of quality, or 2) compromising the quality of the algorithm

result. Both of these methods require an understanding of the system configuration space.

The application specific architectures presented in this paper use parameters as a formal
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means for implementing dynamic reconfiguration. This process of dynamic parameterization

varies architectural parameters at run time in response to input signal variations.

In this paper, five components of large heterogeneous systems for wireless multimedia

are examined. Section 2 gives a brief description of some recent configurable architectures.

Section 3 presents a discussion on dynamic parameterization and the methodology of se-

lecting a parameter to be reconfigurable. A motion estimation architecture is described in

detail, illustrating our parameterized architectural approach in section 4. For motion esti-

mation, a test architecture is presented along with a complete parameter analysis. Based on

this analysis, a simple adaptation controller has been developed and tested achieving 40%

power savings with roughly 2% quality degradation. In Section 5, the results of multiple

parameter analyses are shown to illustrate the applicability of dynamic parameterization

across a family of multimedia applications.

2 Configurable Architectures

Recently, it has been recognized that heterogeneous, domain-specific reconfigurable

architectures achieve higher performance with lower energy consumption then FPGA’s for

DSP operations[1]. Zhang [2] proposed a similar domain specific approach and demonstrated

it with functional silicon. This system [2] focuses on reconfiguration for task and standards

specialization using domain-specific processors. These processors feature varying degrees

of configuration granularity and are connected by a reconfigurable mesh interconnect net-

work. It realizes low-energy operation through the use of a combination of architectural and

circuit-level optimizations. Kuhn [3] presents a high performance and a low power flexible

architecture for motion estimation. The work suggests a programmable processor based

implementation for an MPEG-4 encoder supporting various modes and video objects. Due
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to the disadvantages of limited flexibility and high power consumption, ASICs and micro-

processors were not used. Instead, flexible VLSI architectures were developed to support

several motion estimation algorithms.
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Figure 1 Tiled architecture for aSOC

Our work develops component subsystems for an adaptive system founded on a re-

configurable interconnect. This adaptive System on a Chip (aSoC) architecture [4] allows

diverse computing modules to be implemented in a tiled structure as shown in figure 1.

A statically scheduled interconnect fabric is used to connect the cores. These cores can

consist of general-purpose systems such as RISCs, DSPs, RAMs and FPGAs, as well as

application specific blocks like the ones discussed in this paper. In [5], aSoC is shown to

support configurable cores with minimal power and throughput overhead.

Our current work focuses on the application-specific cores needed to achieve high per-

formance levels for computations such as motion estimation (ME), discrete cosine transform

(DCT) and Viterbi decoding. A rich set of efficient algorithms and architectures already

exist for these signal processing problems [3, 6]. When implemented, these architectures

usually trade flexibility for performance and efficiency. Recently the use of ASIC “point”

systems to make a power aware composite system is discussed in [7]. In operation, a single
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point systems is activated based on the system environment. The goal is to organize the

composite system such that it operates nearly as efficiently as the optimal point system in a

given environment. This work applies similar concepts in developing special purpose tiles,

which can be dynamically reconfigured to consume the lowest possible power for a given

set of environment variables. In most cases this can be accomplished with little impact

on performance. Our focuses here is evaluating the design space to find parameters for

adaptation as well as the environment triggers, which will control the reconfiguration.

3 Dynamically Parameterized Algorithms and Architectures

Computational parameters provide a simple and formal way to characterize incremen-

tal changes in algorithms and their implementations. As such, these parameters can be

classified as either functional or architectural. Functional parameters vary the output of a

computation, and typically result in trading output accuracy for speed or power. Architec-

tural parameters keep the output constant allowing tradeoffs between area, performance,

power and reliability. Although these parameters can be bound at varying stages of the

system’s design cycle shown in figure 2, it is our goal to find and vary selected parameters

automatically at runtime.

Figure 3 shows a block diagram representation of a dynamically-parameterized system.

It consists of a signal processing block and a controller. The processing block consists of

the architecture and the algorithms being implemented. The controller sets the parameters

of the processing block based on the following inputs:

1. System requirements and constraints (power, performance, etc.)

2. Signal statistics from the input signals
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Figure 2 The spectrum of parameter binding times in a system design cycle

3. Algorithm statistics from post processing of the output signals (e.g. motion vectors

fed back into the parameter controller)

For most applications there are endless possibilities for parameterization. The decision

to allow runtime variation of a given parameter must be made by weighing the costs in

system complexity against the potential benefit of adaptation. It is important to limit the

extent of adaptation to only those parameters with the best possible performance trade-

offs. A first step in parameter selection is the observation of a wide subset of parameter

variations and their individual effects on the system’s power consumption. Although, a

software implementation can give initial insight into the parameter-power tradeoffs, only a

fully-parameterized test architecture can accurately evaluate the design space. These ob-

servations can be used to not only to develop a controller but also to constrain the required

flexibility of the processing block.

The controller represents additional overhead for a dynamically-parameterized system.

As such, excessive controller calculations can outweigh the benefit of system adaptation.

The controller should be simple and react to the most beneficial system statistics. The

key to simplicity is limiting the number and complexity of its inputs, since the controller
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Figure 3 Dynamically parameterized system approach

will have to process all the inputs in search of a reconfiguration triggering event. The best

input statistics are highly correlated indicators of specific power-performance tradeoffs. The

controller must evaluate these statistics to set the parameters and exploit these tradeoffs.

So, minimizing the overhead of this controller requires a thorough understanding of system

input and output statistics as well as the user requirements.

4 Dynamically Parameterized Architecture Example: Motion Estimation

Most of the applications targeted by MPEG video standards use lossy coding tech-

niques to meet specified storage and transmission requirements. An important compression

technique reduces temporal redundancies by transmitting only the difference between con-

secutive frames. This technique can be enhanced if the images in the frames can be aligned
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to minimize the overall difference. In this case, the information is coded as a frame difference

and a series of associated alignments, called motion vectors. These motion vectors repre-

sent the movement of image components from one frame to the next. A motion estimation

process is used to find these motion vectors.

Motion estimation compares a current frame with a previous or sometimes future search

frame. The current frame is divided into macro blocks of 16× 16 pixels. Each macro block

in the current frame is compared against a region in the search frame, referred to as a search

window. The coordinates of the best matching block in the search frame form the motion

vector for the block under consideration.

The compression aspect of motion estimation reduces the number of bits sent through

the rest of the system. Fixed bandwidth systems, which use such a lossy compression scheme

inherently trade quality for compression. Thus, compression ratio achieved during motion

estimation directly impacts video quality in fixed bandwidth systems.

4.1 Parameterized Motion Estimation Architecture

To analyze the design space, parameter flexibility is designed into a pipelined motion

estimation architecture, shown in figure 4. Although independently designed, this matrix

based architecture is similar to the GA-2D systolic array designed in [3]. Both architectures

use a matrix of processing elements to compute the absolute difference of pixels between

the two blocks. Our base architecture contains a pipeline designed primarily for speed,

and can evaluate a series of 352× 240 frames at 30 frames a second in full search mode at

106MHz. In addition to the processing array, the architecture includes an address generator

unit (AGU), which selects how to pull data from memory, and input FIFOs to arrange the

data and setup the pipeline. The block in the current frame, the current block, is stored
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in the array one pixel per processing element and the search pixels are input every clock

cycle. The differences calculated at each element are passed down the array and added to

eventually compute the Sum of Absolute Differences (SAD) for all the pixels in a current

block against a search block.

Memory

Block

FIFO FIFO FIFO

Current
Alpha

| a − b |

SAD
PipelinedLocal

Control

External to SRAM

PE Array

Address Generation Unit

Adder Array

16 x 16 PE Array

Figure 4 Parameterized motion estimation architecture

This architecture allows variation of the following parameters:

• Algorithms - Full search (FSA), 3-step search (TSS) and Spiral search Algorithm[3]
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• Search Window Size in FSA

• SAD Threshold for Spiral Search

• Pel Subsampling in FSA and TSS

• Pixel Width in FSA and TSS

All search algorithms use the processing element array and differ only in the addresses of

the search blocks fetched. The AGU implements a state machine to generate the appropriate

memory access patterns for the different search methods and sizes. The FIFOs store and

share these fetched pixels to reduce external memory accesses when possible. The SAD

thresholding is implemented at the end of the pipeline and signals the AGU to test the next

block. Both Pel Subsampling and Pixel Width variation are implemented in the processing

array.

All circuit components except the memory, are synthesized with a TSMC .18u standard

cell library and evaluated using Synopsys RTL Power Estimator. This tool takes the input

design, the TSMC technology file and our video stimulus to calculate system switching

activity and the associated power. Power for the unimplemented memory is approximated

by counting accesses generated by the AGU. Memory power ranges from 14% of the total

power during full search, when the FIFOs can most effectively share data, to 43% in three

step search, where the data for each search block must come directly from memory. The

input/output overheads of the bus were not evaluated. The motion estimation architecture

can be used in both MPEG-2 and MPEG-4 standard encoders. The present implementation,

however, does not include an MPEG-4 alpha-plane and no parameters were tested that affect

this portion of the MPEG-4 standard.
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At this stage it is important to recall that the test architecture has been developed to

evaluate the design space, not as a final low power implementation. As such, it incorpo-

rates more flexibility then will be needed or even effective in a final system. In spite of this

limitation, the test architecture, including reconfiguration overhead and the inefficiencies of

standard cell implementation, has comparable performance specifications to recent imple-

mentations by Toshiba[8]and Matsushita[9] . Table 1 compares the three implementations.

Parameters Matsushita Toshiba ME 2001
Power Consumption 90mW * 240 mW * 30 mW - 1W

Frame Size 176x144 176x144 352x240
Frame Rate 15 fps 15 fps 30 fps

Clock frequency 54 MHz 60MHz 110 MHz
Algorithms n.a. n.a. FSA, TSS, Spiral
Process 1.8u 2.5u 0.18u
Vdd 1.8V 2.5V 1.8V

Table 1 Architecture comparison with commercially available devices * Power num-
bers include components not associated with motion estimation including au-
dio processing. Motion estimation numbers and search algorithm are not
available, n.a.

It is hoped that the structures and results of this parameter space analysis can be

used to develop array based MPEG motion estimation architectures. Clearly, parameter

variations, which impact the size of the search space, will alter the power consumption for

any implementation. The relative impact of these parameters against those of Pel Subsam-

pling and Pixel Width, however, are only reasonable in similar array-based architectures.

In addition, the results are valid for technology scaling as long as leakage power does not

dominate.
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The following sections show the detailed results for variations selected parameters. Two

blocks with extreme cases of motion are pulled from the ’table tennis’ sequence shown in

figure 5. A low motion block is represented by a block from the background and a high

motion block is represented by a part of the ball in motion. The SAD value is used to

represent the reciprocal of compression ratio. In these experiments both processing speed

and voltage supply are fixed to allow the worst case parameter set to complete 352×240 pixel

frames at 30 frames per second. The architecture is in an idle state for parts of the runtime

when processing under non-worst-case parameters. The graphs in each of the following

sections compares SAD value to dynamic power predicted by Power Estimator. The graphs

represent power in mW, and show the relative effects of varying selected parameters.

Figure 5 A frame from the table tennis sequence

4.2 Algorithm Selection

The architecture uses one of three different search algorithms for motion estimation:

Full, 3-Step, and Spiral [3]. The most basic, the full search algorithm (FSA), compares

the current block with every possible block within a specified subset, or search window, of
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the search frame. The number of blocks checked in FSA depends on the size of the search

window.

3-step search (TSS) [3] starts at the coordinates of the current block. A search is

performed by comparing the current block to nine evenly spaced search blocks surrounding

the starting location. The search block with the best match is the center for the next

search stage. In this stage, a similar search is performed around this new center. The only

difference is that the radius of the search, called the step size, is now smaller. This two step

process continues until the step size is reduced to one pixel. For completion in 3 steps, the

third stage separation must be one pixel and the resulting number of comparisons is 27.

The third algorithm used is the spiral search [3]. This algorithm chooses search coor-

dinates in a spiral pattern starting at a prespecified location. The search stops when the

selected search block produces a SAD below a specified threshold. As a result, the number

of block matching operations required is not fixed.

Figure 6 shows power consumption versus the SAD value for our table tennis example

blocks and the different algorithms. A full search window size of 64 × 32 pixels is used

requiring more than 8000 block matching operations. In addition, the spiral SAD completion

threshold is fixed at 2762.

The best possible case is to minimize power consumption while reducing the SAD value

to increase compression. As expected, full search power consumption is the same for the

two macro blocks. As can be seen in figure 6, the full search algorithm always finds the

minimum SAD value. It, unfortunately, results in the largest power consumption of the

three approaches. TSS power consumption is constant since it always performs 27 SAD

calculations. This approach results in reduced power consumption when compared to FSA.

Unfortunately, TSS often misses the best match macro block for high motion images. As a
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result overall compression may be much worse than that achieved using FSA. Spiral search

appears to achieve the same compression (SAD) as FSA, but the power consumed varies

dramatically between the high and low-motion block types.
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Figure 6 SAD versus power consumption for different algorithms

While figure 6 shows initial observations the results for both FSA and Spiral methods

can depend on other parameters. The next subsections explore other parameters to clarify

the advantages of each algorithm.

4.3 Search Window Size

A search window is a range of pixels containing the candidate blocks in a search frame.

Although a large window searches many blocks, a smaller window size performs fewer search

operations and memory accesses, reducing overall power consumption. Our architecture

allows a variable search window size in the FSA, provided the size fits within the frame

dimensions.
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Figure 7 SAD versus power consumption for different window sizes

Figure 7 shows power consumption versus the inverse of compression for three different

window sizes. For the block with low motion, all three window sizes provide the same

compression, with the 8 × 8 pixel window size consuming an order of magnitude lower

power than the 64× 32 pixel window size. For small or no motion, the best match will be

located close to the corresponding current block and can be found using a smaller window

size.

For the block with high motion, the range of motion is more than eight pixels. Hence,

the 8 × 8 pixel window size is insufficient and unable to capture the best matching block.

This is shown in figure 7 by the higher SAD value achieved. The 16× 16 pixel window size

achieves the same compression as the 64× 32 pixel window size, with a reduction in power

consumption by a factor of six.

Figure 7 shows that variation of the search window size results in large changes in power

consumption. For example, a change from the size of 64 × 32 pixels to a size of 16 × 16

pixels, reduces power by nearly 84%, while a change from 16 × 16 pixels to 8 × 8 pixels
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reduces the power an additional 62% for both curves. The optimal window size depends

on the amount of motion observed in the input video block. Input signal statistics can be

used to dynamically reconfigure to the optimal search window size and achieve the power

and compression values desired.

4.4 SAD Threshold for Spiral Algorithm

As stated in section 4.2, spiral search performs a search around a starting location in

a spiral fashion until the calculated SAD value is below the set threshold. The number of

operations performed depends on the value set for the SAD threshold. A high threshold

finds a match early in the block matching process, consuming less power, but achieving low

compression. Figure 8 shows a graph for different threshold values for the low and high

motion blocks. The lowest power consumption is achieved if the threshold is met during the

first block comparison. A lower threshold value increases the required number of matching

operations and power consumption, but produces better compression (lower SAD values).

The optimal SAD threshold value for one block may not be appropriate for other

blocks that have different ranges of motion. Hence, power and compression may be traded

by dynamically varying the threshold for every block, depending on the amount of motion

expected in the block.

4.5 Pixel Element (Pel) Subsampling

This architecture supports pel subsampling at two levels. Pel subsampling 2:1 uses

every alternate pixel in a block for block matching, while 4:1 uses one for every four pixels.

This reduces the number of required operations and saves power. Figure 9 plots power

versus the SAD value for the two motion blocks using a full search algorithm with a 64×32
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Figure 8 SAD versus power consumption for different SAD thresholds

pixel search window size. Pel subsampling reduces power consumption by up to 29% when

compared to full search without subsampling. Pel subsampling 2:1 and 4:1 give negligible

compression degradation with respect to full search for both experimental blocks. This

implies that Pel subsampling 4:1 and 2:1 can always be used, removing it as a reconfiguration

parameter.

4.6 Pixel Width

A pixel typically consists of 8 bits. Least significant bit reduction reduces macro block

matching accuracy while achieving a reduction in power. Figure 10 plots power versus

SAD value for the two motion blocks using a full search algorithm with a 64 × 32 pixel

search window. Three pixel bit widths (8-bit, 4-bit and 1-bit) are plotted. While the 1-bit

configuration shows a power reduction of 32% and higher SAD values, the 4-bit configuration

reduces power by 17% with a negligible increase in SAD values over the 8 bit configuration.
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Figure 9 SAD versus power consumption for 2:1 and 4:1 Pel subsampling

Using the four most significant bits of a pixel will give good compression and low

power consumption (compared to 8 bits) for most blocks. Using less than four bits of a

pixel reduces power consumption further at the cost of significant compression degradation.

As in Pel subsampling, the effectiveness of bit width reduction shows very low dependence

on input signal statistics.

4.7 Configuration Sample Space

Figure 11 combines the results for the various parameters tested. In general, the best

operating conditions are represented by points close to the origin with both low power

consumption and low SAD values. The configuration points within the solid oval represent

the best operating conditions for high motion blocks and are characterized by a full search

algorithm with a search window size of 16 × 16 pixels. Similarly, the dashed oval contains

configuration points, which provide low power and high compression for low motion blocks.

The points are characterized by a full search algorithm with window sizes of 8 × 8 and
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Figure 10 SAD versus power consumption for different bit widths

16× 16 pixels. The 3-step and the spiral search techniques also work well with low motion

blocks and are included in the dashed oval.

4.8 Controller Variables and Adaptation Triggering

The previous parameter analysis indicates that search window size most clearly delin-

eates the operating conditions best suited for analyzing blocks with high and low motion.

This section attempts to find a control stimulus, which can be used to select one of two

possible search window sizes; large, 16× 16, or small, 8× 8. The first step involves finding

a way to identify the amount of motion expected in each block so the controller can select,

in the second step, the most power efficient window size for processing. In order to perform

this analysis, a simple signal statistic must be found to accurately predict the amount of mo-

tion without introducing significant controller overhead. Three candidate motion predictor

methods were tested for correlation with motion vector magnitude:
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Figure 11 Parameter summary versus SAD value

1. The SAD value of current block and search block with same coordinates: For this

correlation method the controller computes the SAD value for collocated blocks in

the current and search frames. If this value is larger than a specified threshold it

is assumed that the motion vector will also be large. This method introduces an

overhead of 330 block SAD calculations per 352 × 240 pixel frame. This analysis

must be performed prior to motion estimation using the existing array of processing

elements, leading to reduced pipeline throughput. Additional memory space and dada

accesses are needed to accommodate these SAD values.

2. Pixel contrast in the current block (peak to peak difference): The contrast in a block is

represented by the difference between its highest and lowest luminance values. When

the contrast value is high the block is likely to have high frequency components,

which may make the matching process more difficult. As a result, a larger search

window may be more appropriate. The controller must calculate the contrast of the

current block before attempting to find the motion vectors. The controller would have
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to contain this contrast hardware. Pixel contrast can be performed in parallel with

motion estimation and will incur no memory overhead.

3. Motion vectors from the previous frame: Motion vectors from the previous frame are

used by the controller to predict the motion in the current frame. A simple threshold

determines processing with a large or small window size. The only other overhead is

additional memory space and data accesses.

To test the correlation of each of the possible predictor methods four video sequences

were processed: table tennis, football, flower garden, and mobile. The motion vectors of

each frame were found using the immediate predecessor as the reference. Figure 12 shows

the correlation between the candidate predictor magnitude and current motion vectors. To

make this comparison the pixel contrast and SAD predictor magnitudes were scaled to match

the range of magnitudes found in the motion vectors. A candidate predictor is correlated

if its value can be used to predict the magnitude of the current motion vectors within 5

pixels. Clearly, the previous motion vectors, with a total of 90% correlation, provide the

best prediction method with the least overhead.

To complete this analysis, the predictive motion vector magnitude at which the system

would switch from a large to a small search window size was determined. A simple threshold

technique is used and our adaptive system is tested with the four sets of video data. When

a predictive vector is lager then the threshold the 16 × 16 pixel window is used. Those

predictive vectors smaller then the threshold trigger use the 8× 8 pixel window.

Figure 13 shows two sets of data. First, it shows the percentage of blocks, which find

the minimum SAD value for a given trigger threshold value. The actual minimum was

found by searching the entire frame. Second, it shows the percentage of blocks, which use

the smaller search window size for the different trigger thresholds. As this trigger point
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Figure 12 Predictor correlation with current motion vectors

approaches zero more blocks use the large window size. As a result of this larger window,

more blocks find the minimum SAD. When the trigger point gets larger more blocks fail

to find the minimum SAD. Our data indicates that when all motion vectors are calculated

using the large window, 10% of the blocks fail to find the minimum SAD. This indicates

that an even lager window is require for 10% of the blocks. Figure 13 shows that setting

the threshold at 3 reduces the percentage of minimum SAD found by less than a 1%. At

the same time this threshold enables the motion estimation architecture to calculate more

then 70% of the vectors using the smaller search window. Using the 62% power savings of

the 8× 8 pixel window as shown in section 4.3, this system saves over 40% of the power of

a static 16 × 16 pixel search window system. In this approximation, the predicted vector

magnitude and trigger point comparison operations are assumed to consume little power.

They are calculated only once per block in contrast to the 65k additions required to find

the motion vectors in an 8× 8 search window.

21



0

20

40

60

80

100

0 2 4 6 8 10 12
Predictive Motion Vector Threshold

Minimum SAD Found

Small Window Usage

3

Pe
rc

en
ta

ge

Figure 13 Search window selection and resulting performance for variations in predictive mo-
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5 Other Computations

The design methodology applied to motion estimation was also applied to four other

applications. A configurable architecture for each application was implemented in RTL.

Experimentation on these systems provide information on system behavior due to param-

eter variation. Standard low power optimizations are performed for each implementation.

All algorithm implementations, including motion estimation, were designed to occupy an

Adaptive System on a Chip (aSoC).

5.1 Discrete Cosine Transform

The two dimensional discrete cosine transform (DCT) [10], is an integral part of many

image and video compression systems. The DCT design discribed in[11] uses dynamic

parameterization in the Row-Column Classification (RCC) power saving feature. RCC
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dynamically adjusts the number of arithmetic computations per calculation based on signal

properties measured at an early stage in the pipeline. This adaptive technique shows a 35-

40% power savings for a full custom implementation. A soft core DCT design [12] recently

has been implemented to allow further design space exploration. Power for this design was

determined with the Synopsys Power Estimator. Table 2 shows that a power benefit exists

for RCC in soft core implementations.

Test Bench (Std. Dev.) Power (mW) Power Savings
( 8x8 Pel Matrix) NO RCC With RCC

Football Block587 (10.3) 743.430 633.532 14.78%
Football Block3 (61.9) 823.253 648.354 21.26%
Football Block1048 (97.8) 828.546 651.234 21.41%
Mobile Block496 (1052.1) 843.054 660.010 21.71%
Garden Block745 (2458.1) 843.736 660.675 21.69%
Tennis Block236 (2762.4) 826.153 655.954 20.60%
Mobile Block3 (7184.2) 801.535 654.584 18.33%

Football Block1297 (8602.2) 818.183 661.096 19.19%

Table 2 RCC power savings impact for a set of natural images

5.2 Lempel-Ziv Compression

Lempel-Ziv compression is a lossless compression technique that is used in a wide vari-

ety of communication and storage applications. The algorithm used to implement Lempel-

Ziv compression represents a large class of computations, which rely on variable length

matching sequences (e.g. bio-sequence matching, data mining). The parameters for the LZ

algorithm can be set depending on input data statistics and system power and compression

constraints.
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The fine-grain parallelism of LZ compression has been exploited in a variety of recent

systolic array and CAM implementations [13]. The LZ algorithm has two main parameters,

which can be dynamically configured: 1) the longest matching length, and 2) the dictionary

or sliding window length. Longest matching length can easily be tracked and used to modify

the matching length parameter in the compression hardware. The size of the dictionary

(sliding window length) can also be modified dynamically by tracking the LZ pointers to

determine how frequently remote sections of the dictionary result in matches. Each of

these parameters affect the compression ratio and speed. As a result, applications, which

can withstand a varying compression ratio, could save power. Figure 14 shows how a

small network is affected by load and compression ratio[14]. It is clear that the required

compression ratio depends on the network load.
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Figure 14 The effect of the mean compression ratio on a network of 10 nodes with probability
of bit error = 1.0e-5
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5.3 3D Graphics Light Rendering

Real-time 3D graphics will be a major contributor to power consumption in future

portable embedded systems. Fortunately, we can exploit content variation and human visual

perception to significantly reduce the power consumption of many aspects of 3D graphics

rendering. In [15] we study the impact of novel adaptive Gouraud and Phong shading

algorithms on power consumption. The adaptive algorithms exploit graphics content (e.g.

motion, scene change) and human visual perception to achieve low power operation without

noticeable quality degradation. Novel dynamically configurable architectures are proposed

to efficiently implement the adaptive algorithms in power-aware systems with gracefully

degradable quality.

There are two variable parameters considered in the 3D graphics architecture : Shading

algorithms and Specular computation. Exploiting visual sensitivity to motion, Gouraud or

Phong shading algorithm is selected, depending on the speed of an object and its distance

from the camera. The same selection criteria is also used to select the type of specular

computation to be used.

Figure 15 shows that power consumption between Phong and Gouraud shading varies

by a factor of 20 for large triangles. In situations where human visual perception permits,

using the lower quality shading algorithm (Gouraud) can save significant power. Results

based on simulations using short but realistic rendering sequences indicate power savings

up to 85%.

5.4 Adaptive Viterbi Decoding

Convolutional codes, which allow for efficient soft-decision decoding are widely em-

ployed in wireless communication systems. As convolutional codes become more powerful,
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the complexity of the corresponding decoders generally increases. The Viterbi algorithm

(VA) [16, 17], which is the most extensively employed decoding algorithm for convolutional

codes, works well for codes with short constraint length K. For more powerful codes with

large constraint lengths the Adaptive Viterbi algorithm (AVA) [18, 19] is used. It reduces

the average number of computations per decoded information bit. Our work looks at using

AVA to achieve reduced power consumption.

There are two dynamic parameters used in the architecture built for this work : con-

straint length and truncation length. The constraint length indicates the number of times

each input bit has an effect on producing output bits [20]. A trellis diagram is used to

determine the most likely transmitted data bits. The number of time steps used to identify

the most likely transmitted symbol sequence is called the truncation length.

These parameters vary depending on the noise levels in a channel and the bit error

rate (BER) requirement of the system. Table 3 shows a comparison of constraint lengths

for various ranges of channel SNR. For a large amount of channel noise, the constraint
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length must be large to achieve a low BER, but under low noise conditions, it can be kept

small. Table 3 demonstrates the speed advantages of this tradeoff, but power savings could

potentially also be achieved for constant decode rates.

K FPGA Decode Max. FPGA SNR
decode rate w/PCI clock range
(Kbps) overhead (MHz) (dB)

(Kbps)
4 333.7 186.0 40.5 6.3-6.5
5 164.2 117.7 20.1 6.1-6.3
6 162.3 116.3 19.9 5.5-6.1
7 160.8 114.2 19.7 3.9-5.5
8 143.6 109.4 17.6 3.7-3.9
9 141.1 107.8 17.3 3.1-3.7
10 101.5 NA 25.5 3.0-3.1
12 94.8 NA 24.7 2.8-3.0
14 82.3 NA 23.0 2.5-2.8

Table 3 Decode rate versus K for XC4036XL-08 (K = 4 to 9) and XCV1000-04[21] (K
= 10 to 14)

6 Conclusions

In this paper, we have described algorithmic and architectural aspects of a low power

multimedia project. Dynamic parameterization of compute intensive applications has been

proposed to improve performance and output quality. Motion estimation was used as a

demonstration application to illustrate the salient features of the proposed approach. Using

a similar design methodology, other applications were shown to be good candidates for

dynamic parameterization. A significant contribution of this paper is the outline of a design

27



and experimentation methodology for dynamic parameterization that can adapt computing

systems to varying computational environments.

The need for dynamic reconfiguration arises from non-uniform system input signal

variation. This issue is especially important for multimedia. Table 4 presents a summary

of varied computational parameters and corresponding observed tradeoffs. The tradeoffs

provide valuable information that can be used to develop a hardware controller block. The

controller block monitors input and output signal trends to subsequently vary the dynam-

ically configurable parameters. This approach satisfies the system resource constraints in

terms of power, speed and area. A preliminary prediction scheme using output motion

vectors to predict future vectors was developed for motion estimation.

Future Work

Power estimates for the motion estimation unit were derived from a very small subset of

the input sample space. To improve the confidence in these numbers, either more data must

be collected using the RTL level modeling or a method for approximating the power for a

high level model must be found. In addition, compression and SAD may not be inversely

proportional in all cases. Our system must be run to determine the actual compression and,

possibly, a measure of quality. The controller for the motion estimation system is simplistic

and a higher level of sophistication is required in the design of this block. Currently, we are

investigating a highly reduced search window size, using a directed search and our current

set of predictive motion vectors.
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Computation Parameters Range Tradeoffs
Performance Cost

Latency Compression Area Power
or Quality

Motion Full
Estimation Search Degrades Improves - Degrades

Algorithms TSS Improves Degrades - Improves
Good for SAD - Good for

Spiral Small Threshold Small
Searches Dependent Searches

Search 1× 1 Pixels
Window to Complete Degrades Improves - Degrades
Size Frame

Slight
Pel Psub 2:1 Degrades Degradation - Improves

Subsampling Slight
Psub 4:1 Degrades Degradation - Improves

Bit-Width 1-8 Bits - Improves - Degrades
SAD

Threshold 0 to 65280 Improves Degrades - Improves
DCT MSBR Bit Variation Degrades Improves - Degrades

1 to 4
RCC Clk Cycles Degrades Improves - Degrades

Improves
RAC 1 or 2 Units Improves - Degrades Vdd scaling

Lempel-Ziv Matching
Length 1-2048 Degrades Improves Degrades Degrades
Sliding
Window 256, 512, - Improves Degrades Degrades
Length 1024, 2048

3D Graphics Shading Phong Degrades Improves Degrades Improves
Algorithms Gouraud Improves Degrades Improves Improves

Exponential Degrades Improves - Degrades
Specular Iterative

Computation Multiplication Improves Degrades - Improves
Adaptive Constraint
Viterbi Length 3 to 14 Degrades Improves Degrades Degrades

Truncation 9, 18, 27,
Length 36, 45 Degrades Improves Degrades Degrades

Table 4 Dynamically reconfigurable parameters and tradeoffs
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