
A Security Approach for Off-chip Memory in

Embedded Microprocessor Systems

Romain Vaslin*, Guy Gogniat*, Jean-Philippe Diguet*,

Eduardo Wanderley**, Russell Tessier***, Wayne Burleson***

Abstract

This paper describes a complete off-chip memory security solution for embedded
systems. Our security core is based on a one-time pad (OTP) encryption circuit and
a CRC-based integrity checking module. These modules safeguard external memory
used by embedded processors against a series of well-known attacks, including replay
attacks, spoofing attacks and relocation attacks. Our implementation limits on-
chip memory space overhead to less than 33% versus memory used by a standard
microprocessor and reduces memory latency achieved by previous approaches by
at least half. The performance loss for software execution with our solution is only
10% compared with a non-protected implementation. An FPGA prototype of our
security core has been completed to validate our findings.

Key words: Embedded systems, security, hardware architecture, FPGA

∗ European University of Brittany, CNRS, UMR 3192 - Lab-STICC, Centre de
recherche - BP 92116, 56321 Lorient FRANCE∗∗CEFET-RN, Brazil∗ ∗ ∗University of Massachusetts, Dept of Electrical and Computer Engineering,
Amherst, Mass. 01003, USA

Email addresses: vaslin@univ-ubs.fr (Romain Vaslin*, Guy Gogniat*,
Jean-Philippe Diguet*,), wanderley@cefetrn.br (Eduardo Wanderley**,),
tessier@ecs.umass.edu (Russell Tessier***, Wayne Burleson***).

Preprint submitted to Elsevier 21 May 2008

1 Introduction

With the development of new wireless communication standards, the ubiqui-
tous connectivity of embedded systems is becoming a reality. Since sensitive
data, such as credit card numbers, passwords, etc., are often exchanged be-
tween these components, these transfers must be protected. As system use has
become more diverse, security has become a substantial performance bottle-
neck, especially since embedded systems are often resource limited. More and
more systems are facing hardware and software attacks (Dagon, 2004). As a
consequence, various cryptographic solutions have emerged to improve system
protection.

Often, existing system protection solutions require significant overhead to
achieve adequate protection. It is essential that protection solutions for embed-
ded systems meet tight constraints on memory size, performance and power
consumption. In the following sections, we describe a solution to fully protect
the confidentiality and integrity of embedded system external memory. The
paper is organized as follows. Section 2 describes the threat model and state-
of-the-art for existing memory protection solutions. Section 3 details one-time
pad (OTP) protection and necessary extensions for integrity checking. In sec-
tion 4, an example implementation of our solution, which uses an Altera NIOS
II embedded processor (ALTERA, 2007), is described. Finally, section 5 offers
conclusions and directions for future work.

2 State of the art

2.1 Threat model

The external memory of an embedded system can face a variety of attacks
(Elbaz, 2006), including the probing of the bus between the processor core
and memory. Since the bus is exposed, an adversary can easily examine data
and address values with little effort. If the bus data is sensitive, it must be
ciphered with an encryption algorithm, such as 3DES (3DES, 1995) or AES
(AES, 2003). By using encryption, the confidentiality of the data is guaranteed.
For several bus attacks, data ciphering alone does not provide a sufficient level
of security. A spoofing attack (Figure 1(a)) occurs when an attacker provides a
random data value on the bus, causing the system to malfunction. A relocation
or splicing attack (Figure 1(b)) occurs when an instruction is copied from one
memory location to a different location, overwriting an existing instruction. If
the whole memory is encrypted with the same key, the swapped instruction
will be executed instead of the original instruction. For example, a swapped

2

Fig. 1. (a) Spoofing attack (b) Relocation attack (c) Replay attack

instruction could make a program jump to malicious code stored in a non-
ciphered part of memory. A replay attack (Figure 1(c)) is similar to a relocation
attack since an existing instruction is overwritten with a new one. In this case,
the new instruction is a copy of one which previously occupied the memory
location, but was subsequently overwritten.

2.2 Existing solutions

Three techniques have been developed to enhance the memory protection of
processor systems. Two of these approaches, XOM (Lie, 2003) (Lie, 2000)
and AEGIS (Suh, 2008) (Suh, 2005) (Suh, 2003a) (Suh, 2003b), also provide
secure context switching and security level management, features which are
not considered by our research. For each of the three techniques there are
system concerns which impact the processor cores.

3

2.2.1 XOM

The eXecute Only Memory (XOM) (Lie, 2003) (Lie, 2000) memory protec-
tion approach is based on complex key management. Each memory partition
is associated with a session key that is needed to decrypt its contents. En-
crypted sessions keys are stored in main memory and can be decrypted using
an asymmetric secure private key. Decrypted session keys are stored in the
XOM key table. The private key required for asymmetric decryption is stored
in the trusted zone of the architecture. The algorithm used for symmetric de-
ciphering is AES256. When the core produces a cache miss, 256 bits of data
must be read from memory and decrypted. For this case, the time required
to perform AES decryption adds to the memory latency (case (b) in Figure
2). The integrity of each data value is ensured by a message authentication
code (Krawczyk, 1997). This code consists of a hash of the data and its virtual
address. The hash is ciphered with the data and stored in the external mem-
ory with the data value. Although effective, this solution does not protect the
system against replay attacks. In (Yang, 2003), the authors replace standard
AES ciphering with encryption based on one-time pad (OTP) operations. As
described in section 3.1, OTP performs AES-based encryption of a data value
using a combination of the value, its address, and a time stamp. Time stamp
values guarantee protection against replay attacks.

2.2.2 AEGIS

AEGIS (Suh, 2008) (Suh, 2005) (Suh, 2003a) (Suh, 2003b) includes a memory
security solution which uses one-time pad (OTP) operations to provide confi-
dentiality. This encryption method has a small impact on memory latency at
the cost of memory space overhead. A cached hash tree is used by AEGIS for
integrity checking. This hashing approach is similar to a Merkle tree (Merkle,
1980) except that some hash tree nodes are stored in a cache to increase effi-
ciency. For Merkle trees, only the root of the hash tree is securely stored. All
hashes must traverse the tree until the root is reached. For cached hash trees,
a hash is only performed until the desired node is found in the tree, increasing
efficiency. Cached hash trees can only be considered secure if the hash cache
memory is in a trusted zone of the system.

2.2.3 PE-ICE

PE-ICE (Elbaz, 2006) uses the spreading feature of block ciphering algorithms
for AES to provide system confidentiality and integrity. Like XOM, a tag is
added to a data value before ciphering. For read-only values, the tag includes
the memory address to prevent relocation attacks. For read-write values, the
address and a random value are included to prevent replay attacks. Due to

4

Fig. 2. Overview of the overhead of several security solutions for long latency mem-
ory reads: (a) No protection, (b) AES, (c) & (d) Extended OTP solution

the spreading feature of AES, the deciphered value of a data value will be
greatly changed if even one memory bit is modified. During AES encryption,
the plaintext and the tag are used as input. When the system performs a
comparison between the deciphered tag and the original one concatenated
with the data, it can detect if data integrity has been maintained. Like XOM,
PE-ICE can have an impact on memory read latencies since decryption can
only be performed after the read of a full cache line from external memory.
Integrity checking is performed using a comparator for the address and the
tag, so the amount of logic needed to guarantee integrity is not significant.

3 OTP encryption with extensions for integrity checking

3.1 Standard OTP encryption

OTP encryption was initially proposed by Gilbert Vernam during World War I
(Anderson, 2001), but was only recently adapted for digital memory protection
(Suh, 2003b). This protection approach uses the delay created by memory
reads to compute a random OTP key. After key generation, it is XORed with
the ciphered data to obtain the retrieved plaintext. Each OTP is created before
a memory write and is used for encryption. The same OTP is also used for
subsequent decryption.

5

Fig. 3. Overview of the overhead of several security solutions for short latency
memory reads: (a) No protection, (b) AES, (c) Extended OTP solution

AES encryption is a vital operation in OTP protection. The memory address
of a data value is used as an AES core input for OTP generation. To prevent
replay attacks, time stamps (TS) are used. As shown in Algorithm 1, the TS
value associated with each data address is incremented by 1 after each OTP
generation. For each new cache line memory write request, the system will
compute a different OTP since the value of TS is incremented. The TS values
are stored in a memory for later use during memory read operations. During
a read, the original TS value is retrieved (Algorithm 2) and provided to AES
during the read request. The result of AES will give the same OTP as the one
produced for the write request and the encrypted data will become plaintext
after being XORed (Algorithm 2).

Read-only data does not require protection against replay attacks because
these data are never modified. No TS values are needed for these data so
the amount of TS memory space can be reduced. Read-only data may be
the target of relocation attacks but the address used to compute the OTP
guarantees protection against these attacks. If the size of the address and the
TS are not long enough to completely fill the AES encryption block input, a
padding value (PV) is used. The value used for padding has no impact on the
security of the OTP computation. Even if an attacker knows the TS, address
and padding values, he will not be able to obtain the generated OTP key since
the secret key used by the AES core is unknown.

In most systems, memory accesses require a long latency. As a result, the cache
line read latency may be long enough to perform OTP computation with AES.
As shown for cases (c) and (d) in Figure 2, the latency added by encryption
is reduced compared to case (a) which represents previous solutions (XOM,
PE-ICE). These previous solutions use the stored data as the input for AES.
In case (c) in Figure 2, the latency added by OTP encryption is the latency
of a logical XOR operation. In general, the time needed to retrieve the data
from the memory is longer than the time needed to compute the OTP with
AES.

Figure 3 illustrates the situation when data fetch time is shorter than OTP

6

computation time. Even in this case, the latency needed to obtain the deci-
phered data is shorter when OTP is used instead of AES. From a security
standpoint, it is essential that the OTP key is used only one time. The OTP
key is obtained with AES, so the AES inputs also need to be used just one
time. If an OTP key is used several times, information leakage may occur. The
attacker may be able to determine if data ciphered with a same OTP have the
same values.

Algorithm 1 - Cache memory write request:

1 − CRC (@) = CRC {plaintext}
2 − Time stamp incrementation : TS (@) = TS (@) + 1
3 − OTP computation : OTP = AES {TS (@) , @, PV }
4 − Ciphered data = plaintext ⊕ OTP

5 − Ciphered data ⇒ memory

6 − TS (@) ⇒ TS memory

7 − CRC (@) ⇒ CRC memory

Algorithm 2 - Cache memory read request:

1 − Get TS (@) ⇐ TS memory

2 − Get CRC (@) ⇐ CRC memory

3 − OTP computation : OTP = AES {TS (@) , @, PV }
4 − Get ciphered data ⇐ memory

5 − Plaintext = Ciphered data ⊕ OTP

6 − CRC (@) ≡ CRC {plaintext}
7 − Plaintext ⇒ cache memory

Highlighted operations are only available for the extended OTP
solution proposed here with integrity checking

As mentioned earlier in this section, the use of time stamps and data addresses
for OTP protects a system against replay and relocation attacks. If a data
value is replayed, the TS used for ciphering will differ from the one used for
deciphering. If a data value is relocated, its address will differ from the one
used to generate the OTP. In both cases, the deciphered data will be invalid.
To use this information, the secure memory access system must be able to
detect that the deciphered data is incorrect. Thus, we present an extension to
OTP encryption in section 3.2. Our OTP implementation is efficient because
it performs OTP computation (operation 3 in Algorithm 2) in parallel with
memory data requests (operation 4 in Algorithm 2). Figures 2 and 3 provide

7

a view of the nature of the benefit.

3.2 An integrity checking extension for OTP

The memory security circuitry must be able to detect and report an OTP
mismatch error following a data read. Our integrity checking approach uses
CRC operations to minimize resource overhead and operation latency. Prior
to OTP generation, the CRC of the cache line to be encrypted is generated
(operation 1 in Algorithm 1) and later stored in a cache (operation 7 in Algo-
rithm 1). Later, when the processor core requests a read, the CRC result of the
final XOR operation is compared with the CRC value stored in the memory
(operation 6 in Algorithm 2). If data is changed following storage, the CRC of
the retrieved value will differ from the stored value, so the attack is detected.
As shown in Figure 2, the latency added to the original OTP solution by our
extension is the latency of CRC computation and checking. This CRC com-
putation can be completed in one clock cycle. With the extended OTP, the
minimum latency added to a memory access is the time to obtain the result
of the XOR and the CRC check (case (b) in Figure 2).

If the CRC is performed on a full data cache line (CRC32), the operation can
only be performed when all the data values have been read from the memory
and XORed (case (c) in Figure 2). A way to decrease the data retrieval latency
is to perform the XOR and CRC on a 32 bit word (CRC8) and not on a full
cache line (256 bits, for example). As a result, the system does not have to wait
for a full cache line fetch from external memory. As soon as the first 32 bits have
been read, the 32 bit word is deciphered and checked for integrity. Decryption
and integrity checks for the remaining 32 bit words of the cache line can then
be pipelined (case (d) in Figure 2). This approach reduces the memory latency
caused by the extra security steps but doubles memory consumption, since the
32 bit CRC of each 32 bit word must be stored. To address this issue, we use
an 8 bit CRC to reduce the required storage for partial cache lines.

3.3 Strengths and weaknesses of this architecture

An integrity checking approach based on CRC is generally weaker than ap-
proaches based on MD5 (MD5, 1992) and SHA-1 (SHA-1, 2001) algorithms,
although our implementation mitigates this weakness. Our approach assumes
that an attacker does not have physical access to the plaintext. The CRC com-
putation is performed on a clear cache line and only ciphered data is stored in
memory. Due to the OTP-based ciphering, there is not a direct link between
the result of the CRC computation and the data in memory. In this case, the
the CRC result cannot be attacked because only the ciphered data is visible.

8

For a 32 bit CRC implementation, an attacker has one chance out of 232 of
randomly creating a data value which has the same CRC result as the original
data value. Moreover, even if two data values have the same CRC result, it
may not be possible for an attacker to extract information about the system.
A 64 bit CRC could be used to increase the security level of the architecture,
effectively doubling the required memory overhead.

For an 8 bit CRC implementation, an attacker has one chance out of 28 of
randomly creating a data value which has the same CRC result as the original
data value. For many systems, this level of integrity protection may be inad-
equate, although it may be sufficient for embedded systems. More powerful
approaches, such as MD5 and SHA-1, require a minimum input data size of
512 bits, which may be prohibitive for some processor-based embedded archi-
tectures. Many of these architectures do not support 512 bit cache lines. In
addition, the output size of the tag values generated by these algorithms is 128
or 160 bits, so the memory overhead required to store information for these
approaches is substantial (around 30%). Finally, the latency required to ob-
tain a result for MD5 and SHA-1 is substantially longer than our CRC-based
approach. Unlike CRC generation, which requires 1 clock cycle, MD5 requires
64 clock cycles and SHA-1 requires 80 clock cycles. Assuming an SDRAM la-
tency of 10 cycles, the cache miss latency associated with critical data would
be at least 74 or 90 cycles.

It is possible to trade off memory overhead, security level and system per-
formance. Table 1 shows a summary of the tradeoffs discussed in section 2.2.
For PE-ICE, the security level is 1/232, since a tag of 32 bits is added to the
data prior to ciphering with AES. AEGIS has a security level of 1/2160 since
SHA-1, which has a signature of 160 bits, is used for integrity checking. This
increased security comes at the cost of increased memory usage and decreased
system performance. For XOM, the level of integrity is determined by the hash
algorithm that is deployed (MD5 or SHA-1).

OTP + CRC32 OTP + CRC8 PE-ICE XOM AEGIS

Elbaz (2006) (Lie, 2003) (Suh, 2003b)

Performance loss low very low average very high high

Memory cost very low low high high high

Security level 1/232 1/28 1/232 1/2128 or 1/2160 1/2160

Target Embedded Embedded Embedded Workstation Workstation

system system system

Table 1
Security and performance levels for memory protection approaches

9

TRUSTED ZONE UNTRUSTED ZONE

OTP core : Write request of a cache line

Time Stamp
computation

Time

Stamp
memory

Padding
value

AES key

C
ip

h
e
re

d
c
a
c
h

e
 l
in

e

C
le

a
r

c
a
c
h

e
 l
in

e

A
E

S
 i
n

p
u

t

A
E

S
 o

u
tp

u
t

AES core

XOR

@ of
Cache line

Crc
generator

crc 32
memeory

D
a
ta

 c
a
c
h

e
In

s
tr

u
c
ti

o
n

 c
a
c
h

e

Processor
core

External

memory

Original OTP
solution

Extended OTP
solution

32 bits

32 bits

256 bits

32 bits
256 bits256 bits

Fig. 4. Write request including OTP operations

Time

Stamp
memory

Padding
value

AES key

C
ip

h
e
re

d
 c

a
c
h

e
 l
in

e

C
le

a
r

c
a
c
h

e
 l
in

e

A
E

S
 i
n

p
u

t

A
E

S
 o

u
tp

u
t

AES core

XOR

@ of
Cache line

crc
generator

crc 32
memory

D
a
ta

 c
a
c
h

e
In

s
tr

u
c
ti

o
n

 c
a
c
h

e

Processor

core

External

memory

OTP core :Read request of a cache line

Original OTP
solution

Extended OTP
solution

Time Stamp

computation

= ?

validation

TRUSTED ZONE UNTRUSTED ZONE

32 bits 32 bits256 bits256 bits

256 bits

256 bits

32 bits

Fig. 5. Read request including OTP operations

4 Example implementation with an embedded processor

4.1 Architectural features

An embedded platform based on an Altera NIOS II microprocessor was used
to validate our new memory protection approach. The NIOS II configuration
includes instruction and data caches, each with 512 total bytes, and cache
lines of 256 bits. As seen in Figures 4 and 5, NIOS caches are interconnected
to the OTP design via 32 bit connections. A 32 bit wide bus is also used to
connect the NIOS II to 4 Mbits of off-chip SDRAM.

10

For this work, it is assumed that the OTP core and TS and CRC storage
cannot be attacked using techniques such as fault injection or side channel
attacks because they are located in the trusted zone. The memory space re-
quired to store the time stamps and CRC values is summarized in Equation 1.
Consider a system configuration that has a total memory size of 512 KB and
a 32 bit CRC. Half of the memory values are read-only processor instructions
and half are read-write (RW) data. From Equation 1, OTP storage = 96 KB
(32 KB for TSstorage and 64 KB for CRC32storage with a TS SIZE and a
CRC32 SIZE of 32 bits). Time stamps are unnecessary for read-only data.

Equation 1 - OTP memory consumption

OTP storage = TSstorage + CRCstorage

TSstorage =
(

RW DATA MEMORY SIZE
CACHE LINE WIDTH

)
∗ TS SIZE

CRC32storage =
(

TOTAL MEMORY SIZE
CACHE LINE WIDTH

)
∗ CRC SIZE

For this work, a 128 bit AES core is used to minimize the hardware impact of
OTP on the overall design. Since the AES core generates 128 bit OTP values
and each cache line has 256 bits per line, each OTP value must be used twice
to encrypt a full cache line. The CRC32 module has an input width of 256 bits
(a full cache line). This module produces a 32 bit output which is stored in
the CRC32 memory (Figure 4) or compared to a stored value from the cache
(Figure 5). For the pipelined version of the design, a 32 bit AES core is used.
This CRC8 core has a 32 bit input width and an 8 bit output width. Based
on Equation 1, the memory needs for CRC storage are 160 KB if 256 KB of
instruction memory and 256 KB of data storage are used. For the pipelined
version, a 256 bit cache line will generate a 64 bit CRC result (8 bit CRC for
each 32 bit word). Thus, the CRC storage required for the pipelined version is
twice as large as the unpipelined version (64 versus 32 bits per 256 bit word).

4.2 The cost of security

The cost of adding security to the NIOS II based system is significant. Table
2 shows that the number of required look-up tables (ALUTs) is nearly tripled
(281% increase) and memory usage is increased by 18.8% versus a basic NIOS
system. These overheads were determined using Equation 1. The pipelined
version of the security circuitry requires a greater memory overhead (31.3%).

The added circuitry has an effect on the latency of data retrieval. In our case,

11

Base NIOS + OTP128 NIOS + OTP128 NIOS + OTP256

NIOS + CRC32 + CRC8 + CRC32

cost cost overhead cost overhead cost overhead

Logic (ALUTs) 2198 6193 281% 6095 277% 6767 317%

Memory (KB) 512 600 18.8% 662 31.3% 603 19.7%

Read latency 0 11 11 3 3 11 11

(cycles)

Write latency 0 12 12 12 12 12 12

(cycles)

Table 2
Cost of security for NIOS II

which is similar to example in Figure 2(c), the intrinsic memory latency is
long enough to overlap the OTP generation, which requires 12 cycles.

A total of 8 cycles are required to request the eight 32 bit cache line values
from the SDRAM. A four delay is then incurred by the SDRAM to process the
request. These 12 cycles of latency are always present in the NIOS architec-
ture, even for the base system which does not include security. Our OTP128
approach must wait 8 additional cycles to fetch a full cache line from SDRAM
before CRC computation can be performed. As soon as the cache line is fetched
from the memory, 3 additional cycles are needed to perform XOR and CRC
operations. Thus, a total of 11 cycles (8+3) are added to the read transaction
delay of the base NIOS II architecture (Table 2). This overhead is significant,
but as shown in Figure 2 and in Table 5, the overhead is less for our new ap-
proach versus non-OTP approaches, which require the retrieval of the entire
cache line before the use of AES. For CRC8, the latency is reduced to the 3
clock cycles needed to perform the XOR and CRC8 operations. Partial cache
lines of 32 bits can be immediately decoded following retrieval, reducing the
latency overhead. The latency overhead beyond the base case for a write re-
quest is 12 cycles. The 12 cycles are due to the time required to perform OTP
management (AES computation and XOR operation). Table 2 illustrates the
trade off between memory and latency overheads. This tradeoff can be tuned
based on the application using the configurability of the FPGA.

The number of AES cores used in the architecture impacts the design size,
leading to additional tradeoffs. As described in section 3.1, each OTP value
should not be used more than once. Since an AES core generates a 128 bit
result and each cache line has 256 bits per line, each 128 bit OTP must be
used twice to encrypt a full cache line (Equation 2-1). In this case, information
leakage can occur. An adversary will be able to determine that the first 128 bits
of the OTP are the same as the last 128 bits, but the unciphered values cannot
be determined (NIST, 2001). If a more secure implementation is required
or if the attacker can access some of the unciphered data, a 256 bit AES
implementation is mandatory (Equation 2-2). In this case, the architecture

12

will need to use two AES cores to create a 256 bit OTP. The overhead in logic
and memory due to this architectural modification is shown in Tables 3 and 4.
The impact of the OTP implementation on memory size is insignificant. The
small memory difference between the 128 and 256 bit AES implementations
is a result of SBOX implementation with memory blocks. The two AES cores
use the same time stamp, so TS storage is not increased for the larger OTP
implementation. The addresses used as AES input depend on the addresses
of the cache line subblocks (@1 & @2) (Equation 2-2). The latency of OTP
generation is unaffected since the two 128 bit AES cores run in parallel. For
the OTP128 core, the 128 bit AES block represents 36% of the total design
size. For the 256 bit version, the two 128 bit cores represent 42% of the total
design size. CRC size is roughly constant for both cases.

Equation 2 - Two security levels

With one AES core:
1 − OTP 128 = AES128 (TS (@base) , @base, padding)
1 − Ciphered data256 = plaintext256 ⊕ {OTP 128, OTP 128}

With two AES cores:
2 − OTP1128 = AES128 (TS (@base) , @1, padding)
2 − OTP2128 = AES128 (TS (@base) , @2, padding)
2 − Ciphered data256 = plaintext256 ⊕ {OTP1128, OTP2128}

OTP128 core OTP AES128 CRC32

+ CRC control

Logic (ALUTs) 4059 1918 1479 662

Memory (KB) 98.6 32 2.6 64

Table 3
Resource breakdown for 128 bit OTP implementation

OTP256 core OTP AES256 CRC32

+ CRC control

Logic (ALUTs) 4633 1999 1972 655

Memory (KB) 101.1 32 5.1 64

Table 4
Resource breakdown for 256 bit OTP implementation

13

4.3 Evaluation

The cost of our new security approach compares favorably with the existing
solutions described in section 2.2. A comparison of relative logic sizes is difficult
due to a lack of available data from previous approaches. In general, each
approach requires at least one AES core, although the number of cores and
method of integrity checking varies. For PE-ICE, no overhead is required for
integrity checking. For AEGIS, a time-consuming software implementation of
the SHA-1 algorithm on a cached hash tree is used for integrity checking. The
developers of AEGIS do note (Suh, 2003a) the possibility of a hardware SHA-1
implementation.

Table 5 summarizes a number of additional relevant cost values. All of these
approaches support some level of confidentiality and integrity for off-chip mem-
ory. In terms of memory, our solution consumes less space than other solutions
(Figure 6) even though an overhead of 32% is required for the CRC8 version
versus the base NIOS implementation. AEGIS also guarantees confidentiality
using OTP so it also requires space for time stamps. However, the use of a
cached hash tree for integrity checking causes a memory overhead of 33%. For
XOM, no memory overhead figures have been published. However, since the
XOM integrity check uses a MAC solution, some storage space will be needed
to store hash signatures. Memory overhead for PE-ICE results from tags (ad-
dress and random values) added to the data and from on-chip storage needed
to securely store random values.

In (Yang, 2003), the authors describe an OTP implementation which stores TS
values off-chip. A small cache of TS values is kept on-chip to improve processor
performance. This same approach could be used by our system to store TS
and CRC values off-chip. Of course, these values would require the same data
protection as other instructions and code. The area and performance cost of
such a solution would likely be high since our current OTP approach overlaps
OTP generation with data fetches.

The system latency of our new approach also compares favorably to previous
AES-based approaches (XOM and PE-ICE). For PE-ICE, the time required
to verify a tag read from memory against one stored in on-chip memory ex-
tends memory read latency. For OTP-based AEGIS, software-based integrity
checking adds significant delay, impacting the performance of the system. It
has previously been reported (Suh, 2003a) that 4715 cycles are need to execute
the SHA-1 algorithm in software. A hardware implementation of one hash cy-
cle would require 80 clock cycles. Since AEGIS integrity checking uses Merkle
trees (section 2.2.2) multiple hash cycles are required, extending the latency.
For an AEGIS write request, the hash computation is not in the critical path
since it can be performed after the data has been written to the memory. In

14

base AES XOM PE-ICE AEGIS

(no integrity) OTP + CRC32 OTP + CRC8 AES + HMAC AES OTP + hash trees

cost cost overhead cost overhead cost overhead cost overhead cost overhead

Memory (KB) 512 600 +18.8% 662 31.3% unclear unclear 776 +50.7% 768 +50%

Read latency 22 = (14+8) 11 = (8+3) -10 3 = (0+3) -19 86=(22+64) +64 25 = (17+8) +3 ≈(SHA-1) >80

(cycles) 102=(22+80) +80

Write latency 22 = (14+8) 12 -10 12 -10 86=(22+64) +64 26 = (18+8) +4 12 -10

(cycles) 102=(22+80) +80

Table 5
Overhead comparison of security approaches solutions with basic AES data encryp-
tion. Latencies include data fetch time and encryption time.

Fig. 6. Memory footprint comparison

constrast, the XOM approach (section 2.2.1) encrypts data with the hash sig-
nature requiring a significant delay during both data reads and writes. These
actions include either a 64 cycle (MD5) or 80 cycle (SHA-1) memory access
delay. Table 5 shows that our approach reduces latency compared to other
approaches. Only 3 or 11 cycles are needed for memory reads instead of the
22 cycles required by previous AES-based solutions.

Figure 7 gives an overview of the performance of our security approach and
other security approaches versus an unprotected memory implementation. Our
approach suffers about a 10% slowdown versus the unprotected case, depend-
ing on the application cache miss rate, but the approach achieves a 36% perfor-
mance improvement versus basic AES data ciphering with no integrity check-
ing. The main cost of our approach is increased on-chip memory usage. For
the pipelined version of our approach used with a NIOS II processor, a 32%
increase in memory usage is reported. This result presents a choice: a secured
system with a moderate memory footprint and an average latency or a low
security system with a small memory overhead and low latency.

15

Fig. 7. Performance comparison for memory security approaches versus an unpro-
tected case.

5 Conclusion and Perspectives

In this paper, we have evaluated the impact of a new off-chip memory security
approach for an embedded processor architecture and provided an estimation
of the memory access latency costs. A possible next step would be to assess the
impact of the approach on a range of cache line and CRC sizes. For example, it
would be interesting to evaluate implementations using 64 and 128 bit CRCs.

Since many embedded systems require battery-based operation, power con-
sumption is an important issue. A complete analysis of the power costs of our
approach is needed to evaluate the overhead of our approach on power con-
sumption. From a security standpoint, additional work is needed to protect
on-chip memory used to store TS and CRC values. This memory could be
targeted by fault injection attacks leading to incorrect system operation.

The work presented in this paper uses a reconfigurable target (FPGA). The
features of reconfigurable architectures provide interesting perspectives for se-
curity. It may be possible to adapt the security level of the architecture in
response to different threat levels. In (Gogniat, 2006), the authors propose re-
configurable mechanisms to provide for a fault tolerant AES. Another security
adaptation opportunity might involve real-time operating systems (RTOS).
An RTOS may have specific services to enable hardware security primitives.
The isolation of non-sensitive data would reduce the amount of memory needed
to store TS and CRC tags.

16

References

[Dagon, 2004] David Dagon, Tom Martin and Thad Starner, Mobile Phones as
Computing Devices: The Viruses are Coming!, IEEE Pervasive Computing,
Vol. 3, No. 4, pp 11-15

[ALTERA, 2007] http://www.altera.com/

[Elbaz, 2006] Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin,
and Michel Bardouillet and Albert Martinez, A Parallelized Way to Provide
Data Encryption and Integrity Checking on a Processor-Memory Bus, DAC
’06: Proceedings of the 43rd Annual Conference on Design Automation, pp
506-509

[AES, 2003]AES RFC 3565, ftp://ftp.rfc-editor.org/in-notes/rfc3565.txt

[3DES, 1995] 3DES RFC 1851, ftp://ftp.rfc-editor.org/in-notes/rfc1851.txt

[Lie, 2003] David Lie, Chandramohan A. Thekkath, and Mark Horowitz,
Implementing an Untrusted Operating System on Trusted Hardware, SOSP
’03: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pp 178-192

[Lie, 2000] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lin-
coln, Dan Boneh, John Mitchell and Mark Horowitz, Architectural Support
for Copy and Tamper Resistant Software, ASPLOS-IX: Proceedings of the
Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp 168-177

[Suh, 2008] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas,
Aegis: A Single-Chip Secure Processor, IEEE Design & Test of Computers,
Vol. 24, No. 6, pp 570-580

[Suh, 2003] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van
Dijk and Srinivas Devadas, AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing, ICS ’03: Proceedings of the 17th Interna-
tional Conference on Supercomputing, pp 160-171

[Suh, 2005] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev and Srini-
vas Devadas, Design and Implementation of the AEGIS Single-Chip Secure
Processor Using Physical Random Functions, ISCA ’05: Proceedings of the
32nd Annual International Symposium on Computer Architecture, pp 25-36

[Suh, 2003] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van
Dijk, and Srinivas Devadas, Efficient Memory Integrity Verification and

17

Encryption for Secure Processors, MICRO 36: Proceedings of the 36th
IEEE/ACM Annual International Symposium on Microarchitecture, pp
339-350

[Merkle, 1980] R.C. Merkle, Protocols for Public Key Cryptosystems, IEEE
Symposium on Security and Privacy, pp 122

[Krawczyk, 1997] H. Krawczyk, M. Bellare, and R. Canetti,
HMAC: Keyed-hashing for Message Authentication, RFC 2104,
http://www.faqs.org/rfcs/rfc2104.html

[Anderson, 2001] Ross J. Anderson, Security Engineering: A Guide to
Building Dependable Distributed Systems, John Wiley, New York, NY

[Gogniat, 2006] Wayne Burleson, Guy Gogniat, and Tilman Wolf, Reconfig-
urable Security Support for Embedded Systems, HICSS ’06: Proceedings
of the 39th Annual Hawaii International Conference on System Sciences,
pp 250

[MD5, 1992] RFC 1321, ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt

[SHA-1, 2001] RFC 3174, ftp://ftp.rfc-editor.org/in-notes/rfc3174.txt

[Yang, 2003] Jun Yang, Youtao Zhang, Lan Gao, Fast Secure Processor for
Inhibiting Software Piracy and Tampering, MICRO 36: Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture,
pp 351-360

[NIST, 2001] Recommendation for Block Cipher Modes of Operation, Methods
and Techniques, NIST special publication 800-38A, 2001

18

