
Floating Point Unit Generation and Evaluation for FPGAs

Jian Liang and Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

{jliang,tessier}@ecs.umass.edu

Oskar Mencer
Department of Computing

Imperial College
London, England SW7 2AZ

oskar@doc.ic.ac.uk

Abstract

Most commercial and academic floating point libraries
for FPGAs provide only a small fraction of all possible
floating point units. In contrast, the floating point unit gen-
eration approach outlined in this paper allows for the cre-
ation of a vast collection of floating point units with dif-
fering throughput, latency, and area characteristics. Given
performance requirements, our generation tool automati-
cally chooses the proper implementation algorithm and ar-
chitecture to create a compliant floating point unit. Our
approach is fully integrated into standard C++ using ASC,
a stream compiler for FPGAs, and the PAM-Blox II module
generation environment. The floating point units created by
our approach exhibit a factor of two latency improvement
versus commercial FPGA floating point units, while con-
suming only half of the FPGA logic area.

1. Introduction

With gate counts approaching ten million gates, FPGAs
are quickly becoming suitable for major floating point com-
putations. However, to date, few comprehensive tools that
allow for floating point unit trade-offs have been developed.
Most commercial and academic floating point libraries pro-
vide only a small number of floating point modules with
fixed parameters of bit-width, area, and speed. Due to these
limitations, user designs must be modified to accommodate
the available units.

The balance between FPGA floating point unit resources
and performance is influenced by subtle context and design
requirements. Generally, implementation requirements are
characterized by throughput, latency and area:

1. FPGAs are often used in place of software to take ad-
vantage of inherent parallelism and specialization. For
data-intensive applications, data throughput is critical.

2. If floating point computation is in a dependent loop,
computation latency could be an overall performance
bottleneck.

3. In typical FPGA designs, only a few floating point
units will be on the critical path. For non-critical path
units, it may be possible to trade off unit performance
for reduced resource area.

Although bit-width variation provides some flexibility,
this parameter alone cannot address all possible trade-offs.

The VLSI design community has developed a variety of
floating point algorithms, architectures, and pipelining ap-
proaches. For example, a 2-path floating point adder [6]
was introduced to trade area for latency and other architec-
tures [1, 3, 19] were designed to reduce critical path delay.
With modification, these techniques can be applied to FP-
GAs. To better evaluate the floating point unit design space
on FPGAs, we have developed a floating point unit genera-
tor which can create a large space of floating point adders,
subtractors, multipliers and dividers based on a variety of
parameters. Three trade-off levels can be explored: the ar-
chitectural level, the floating point algorithm level, and the
floating point representation level. Each of these levels re-
quires examination of FPGA-specific features:

1. Floating point units can be built using various combi-
nations of carry chains, LUTs, tri-state buffers and flip
flops to obtain different throughput, latency, and area
values. These features lead to parallel and serial ver-
sions of units.

2. The implementation of a variety of well-known float-
ing point algorithms can be considered. These include
standard 3-stage floating point addition [18], 2-path
addition [6], Leading-One-Detection (LOD) [19], and
Leading-One-Prediction (LOP) [3].

3. Floating point representations can be customized to
use different sign modes for the mantissa and the ex-
ponent. Each generated floating point unit can support
custom bit-width operands.



To ease design implementation, our floating point unit
generation tool has been integrated into ASC [16], an easy-
to-use and fully automatic design tool. This stream com-
piler allows for design specification using C++. The accu-
racy of our approach has been verified through the design
and implementation of a wavelet filter which uses floating
point arithmetic.

The remainder of this paper is structured as follows.
Section 2 provides background on floating point unit de-
sign. Section 3 describes trade-offs in implementing float-
ing point computation on FPGAs. The design flow and the
algorithms used by our approach are introduced in Section
4. Area and performance results of different trade-off op-
tions are presented in Section 5. The application of our
generator on a wavelet filter is presented in Section 6. We
summarize the paper in Section 7 and describe opportuni-
ties for future work.

2. Background

2.1. Floating Point Representation

Standard floating point numbers are represented using an
exponent and a mantissa in the following format:

(sign bit) mantissa× baseexponent+bias

The mantissa is a binary, positive fixed-point value. Gen-
erally, the fixed point is located after the first bit, m0, so that
mantissa = {m0 .m1m2...mn}, where mi is the ith bit of
the mantissa. The floating point number is “normalized”
when m0 is one. The exponent, combined with a bias, sets
the range of representable values. A common value for the
bias is −2k−1, where k is the bit-width of the exponent [10].

The base sets the granularity of shifting and rounding.
In the IEEE754 standard [9], the base is set to two. Other
units use a larger number to reduce the latency of the shift
operation, a critical part of most floating point arithmetic
units. For example, the base for the IBM S/370 [23] is 16.

The IEEE floating point standard makes floating point
unit implementation portable and the precision of the re-
sults predictable. A variety of different circuit structures
can be applied to the same number representations, offering
flexibility. The floating point unit algorithm, architecture,
and bit-width adaptation offer significant potential for opti-
mization.

2.2. Floating Point Implementations in FPGAs

Several efforts to build floating point units using FPGAs
have been made. These approaches have generally explored
bit-width variation as a means to control precision. A float-
ing point library containing units with parameterized bit-

width was described in [2]. In this library, mantissa and ex-
ponent bit-width can be customized. The library includes a
unit that can convert between fixed point and floating point
numbers. In Lienhart et al. [11], a floating point library
with variable bit-width units is presented. The floating point
units are arranged in fixed pipeline stages.

Several researchers [5, 12, 13] have implemented FPGA
floating point adders and multipliers that meet IEEE754
floating point standards. Most commercial floating point
libraries provide units that comply with the IEEE754 stan-
dard [4, 17]. Luk [7] showed that in order to cover the
same dynamic range, a fixed point design must be five times
larger and 40% slower than a corresponding floating point
design. In contrast to earlier approaches, our floating point
unit generation tool automates floating point unit creation.

2.3. Floating Point Algorithms

Our floating point unit generation tool can create
floating point multipliers, dividers, adders, and subtrac-
tors. Although floating point multipliers and dividers are
costly in terms of logic resources, their implementation
is relatively straightforward. Both units require a fixed
point multiplier/divider for the mantissa and a fixed point
adder/subtractor for the exponent. The algorithms for addi-
tion and subtraction require more complex operations due
to the need for operator alignment. Three floating point
add/subtract algorithms are briefly introduced in this sec-
tion: standard [18], leading-one predictor (LOP) [3], and
2-path [6]. The implementation of these steps defines float-
ing point unit throughput, latency, and area. To illustrate
comparisons, we consider the block diagrams of the float-
ing point adders shown in Figure 1.

Standard floating point addition requires five steps [18]:

1. Exponent difference

2. Pre-shift for mantissa alignment

3. Mantissa addition/subtraction

4. Post-shift for result normalization

5. Rounding

The area-efficient standard floating point adder is shown
in Figure 1(a). The exponents of the two input operands, Ex-
ponentA and ExponentB, are fed into the exponent compara-
tor. In the pre-shifter, a new mantissa is created by right
shifting the mantissa corresponding to the smaller exponent
by the difference of the exponents so that the resulting two
mantissas are aligned and can be added. If the mantissa
adder generates a carry output (e.g. when both mantissas
have ones as most significant bits), the resulting mantissa
is shifted one bit to the right and the exponent is increased



1−Bit
Possible

Shifter

Exponent
Correction

Result Exponent Result Mantissa

Shifter
Pre

AdderAdder Larger
Exponent

Exponent

Exponent
Comparator

ExponentA
ExponentB MantissaA

MantissaB

Far PathClose Path

Shifted Shifted

Sum

Possible
1−Bit Shifter

>1?

Sum

Larger
Exponent

Exponent Shifted Difference
Difference Mantissas

Mantissas Mantissas

Adder

Pre
Shifter

SUB Shifter

Exponent
Comparator

ExponentA MantissaA
ExponentB MantissaB

Result Exponent Result Mantissa

Exponent
Larger

Sum

Adder

Exponent
Difference Shifted

Mantissas

Pre
Shifter

Exponent
Comparator

ExponentA
ExponentB

MantissaA
MantissaB

SUB Shifter

LOD

LOP
Sum

LOD

SUBShifter

Normalizer Mantissa & Exponent
Mantissa & Exponent

1

Result Mantissa & Exponent

(c) 2−Path Algorithm(b) LOP Algorithm(a) Standard Algorithm

Normalizer 0

Figure 1. Floating Point Addition Algorithms

by one. Thenormalizer transforms the mantissa and expo-
nent into normalized format. It first uses a Leading-One-
Detector (LOD) circuit to locate the position of the most
significantone in the mantissa. Based on the position of
the leading one, the resulting mantissa is left-shifted by an
amount subsequently deducted from the exponent.

For the standard algorithm, the exponent comparator is
implemented with a subtractor and a multiplexer. The com-
parator requires about2×n LUTs, wheren is the exponent
bit-width. The size of the pre-shifter is aboutm × log(m)
LUTs, wherem is the bit-width of the mantissa. The size
of the mantissa adder depends on the adder architecture and
sign mode. If a ripple-carry adder is used for an unsigned
mantissa, aboutm LUTs are required. The normalizer LOD
is nearly the same size as the mantissa adder. The shifter is
equal in size to the pre-shifter and the subtractor (SUB) is
about the same size as the exponent comparator. Overall,
the size of the normalizer is about the sum of the sizes of
the other three components.

Figure 1(b) shows a block diagram of a Leading-One-
Predictor (LOP) floating point adder [8, 21, 22]. This adder
implementation requires more area than a standard adder,
but exhibits reduced latency. The primary difference be-
tween the adders is the replacement of the leading-one de-
tector (LOD) circuit with a leading-one predictor (LOP) cir-
cuit. Since the LOP circuit can be executed in parallel with
mantissa addition, overall latency can be reduced.

The 2-path adder [6], shown in Figure 1(c), has two par-
allel data paths. This implementation exhibits the small-
est latency of the three adders, due to the elimination of a
shifter from the critical path, at the cost of additional map-
ping area. When the exponents of the two values are larger
than 1, thefar path, on the right in Figure 1(c), is taken.
Otherwise, theclose path on the left is taken. After align-

ment, one of the mantissas is reduced and shifted by at most
one bit. This close path implementation eliminates the pre-
shifter.

3. FPGA Floating Point Unit Trade-offs

In this section, floating point unit implementation trade-
offs using FPGA architectural features are evaluated. Some
floating point unit parameters (sign mode, normalization,
and rounding) offer special opportunities for area and la-
tency reduction.

3.1. Standard Floating Point Adder

The exponent comparator of the adder shown in Figure
1(a) contains a subtractor. The normalizer requires a sec-
ond shifter to convert the resulting number into normalized
format. The mantissa adder forms the kernel of this unit. A
ripple-carry adder using an FPGA carry chain is an efficient
mantissa adder implementation. Alternately, a serial adder
can be used to minimize area.

3.2. LOP Floating Point Adder

The LOP algorithm requires the use of a leading-one pre-
dictor. Figure 2 shows the implementation of a LOP unit
using Virtex CLBs. Ai andAi−1 are consecutive bits of
the minuend, andBi andBi−1 are consecutive bits of the
subtrahend. The required LUT function is

F = (Ai ⊕Bi) & (Ai−1&Bi−1)

This implementation requires an output ripple from the
most significant bit to the least significant bit. The LOP



B
A

A
B

i−1

i−1

i

i

B n−1
A n−1
B n−1
A n−1
B n−2
A n−2

A 0

B 0

Cout
Cin

n−1O

Overflow

Cout
Cin

nO LUT
Cin

Cout

1

0

F

FF

O i

A
B n

n

Cout
Cin

0O

Figure 2. LOP Circuitry Implemented in Virtex
CLBs

S1S0

I3

I2

I1

I0

D2

D1
MUX

MUX

MUX

MUXMUX

LUT

D0

D3

Figure 3. A LUT-Based Shifter

has nearly the same delay as the mantissa adder if an em-
bedded FPGA carry chain is used. The LOP may lead to a
one-bit error in the position of the leading one. This error
is detected in the normalizer and the leading one is shifted
one position to the left during normalization.

3.3. 2-Path Floating Point Adder

As mentioned in Section 2, 2-path adder implementa-
tions shorten the critical path of floating point addition by
eliminating shift logic. Figure 3 illustrates that this critical
path savings can be substantial. The figure shows a 4-bit
shift implementation with input bits, I0,1,2,3, output bits,
D0,1,2,3, and shift index, S0,1. In Virtex FPGAs, each mul-
tiplexer bit occupies a 4-input LUT. In the case of a 32-bit
shifter, shifting will require 5 LUT delays.

3.4. Pipelining

The pipelining of floating point adders can be adjusted
to realize area and throughput trade-offs. The removal
of registers often results in a shorter pipeline with lower

I0 D0

I3

I2

I1

D3

D2

D1

Se0 Se1 Se2 Se3

Figure 4. A Tri-state Buffer Shifter

throughput. This reduction generally leads to simpler
overall control circuitry. All adders generated by our
system can be pipelined at the block level. The expo-
nent comparator requires one pipeline stage, the pre-shifter
requires log(bitwidth) stages, the mantissa add/subtract
unit requires one stage, the LOP/LOD requires one stage,
and the normalizer requires log(bitwidth) stages. The
log(bitwidth) stages of the shifter shown in Figure 3 re-
quire a pipeline register after every multiplexer. In our gen-
erator, the number of pipeline stages per unit can be tuned
through the use of input parameters.

3.5. Tri-state Buffer Usage

Tri-state buffers can be used instead of LUTs to effi-
ciently build long shifters. As shown in Figure 4, a tri-state
buffer shifter has approximately constant delay. When fully
pipelined, the tri-state buffer has only one stage, compared
with the log(bitwidth) stages of the LUT-based shifter. The
availability of tri-state buffers is generally limited in con-
temporary FPGAs.

3.6. Parameter Specialization

FPGA specialization allows for potential trade-offs in
floating point unit sign mode, normalization, and round-
ing implementation. These trade-offs are in addition to bit-
width trade-offs commonly found in floating point libraries.

3.6.1. Sign Mode

The IEEE754 standard requires that floating point num-
bers be represented in signed-magnitude format. How-



1 0

...
’1’

...

...

Mantissa
Adder

CarryOut

A B

Normalized Output

>>1

Result

Figure 5. Normalization of Unsigned Addition

ever, if addition can be restricted to unsigned values, float-
ing point adder implementations can be made smaller and
faster through specialization. The result of unsigned addi-
tion is always positive and larger than either input number.
Functionally, a normalizing post shifter requires only right
shifters. To normalize the result, at most 1-bit right shifting
is required. A multiplexer can be used to replace the LOP
and the normalizer in the unsigned adder. The optimized
architecture is shown in Figure 5. The CarryOut bit of
the mantissa is used to control the multiplexer. If the man-
tissa has a carry output, the mantissa addition result is right
shifted by 1-bit and a 1 is shifted into the most significant
bit.

3.6.2. Normalization

Output data must be represented in normalized format in
standard floating point units. This requirement maintains
the precision of floating point numbers. Some operators re-
quire normalized input data to work properly. In FPGAs,
output precision depends on operator bit-width. When all
operator output data bits are maintained, normalization is
unnecessary. In this case, the normalizer can be skipped to
speed up circuit operation and to save resources. For LOP
and 2-path adders, the LOD/LOP can also be eliminated.

3.6.3. Rounding

Five rounding options are provided by our generator: (1)
IEEE default, (2) biased round-to-nearest, (3) random, (4)
global random, and (5) truncation. The IEEE754 default
rounding scheme [9] rounds up remainders that are greater
than or equal to 0.5. The rounding unit consists of an adder
and a wide OR gate. The biased round-to-near approach
rounds up when the remainder is greater than 0.5 and elimi-
nates the wide OR. Random rounding techniques provide

random up/down rounding to increase the numerical sta-
bility of some addition algorithms [16, 20]. A random bit
generator is required for this approach. In global random
rounding, a global random bit generator provides the ran-
dom bit for all FPGA rounding operators. A truncation
scheme is the simplest rounding approach since it discards
the remainder eliminated by rounding.

3.7. Bit-Width Variation

Each floating point unit can have a variable mantissa and
exponent bit-width. It was found that adders with odd bit-
widths are slower than adders with even bit-widths. This
effect occurs because Virtex CLBs consist of an even num-
ber of LUTs. If the input bit-width is odd, the last bit will
not be placed in the carry chain, which results in a longer
delay.

3.8. Exception Handling

Floating point units created by our generation tool in-
dicate overflow via a dedicated output signal. This signal
is propagated as an input to successive units in the floating
point unit chain. Currently, no hardware support for not-a-
number (NaN) or underflow detection is provided.

4. Floating Point Unit Generation

Given a full spectrum of implementation trade-offs, it
can be difficult for users to manually pick the best parame-
ters for a specific floating point unit with defined operating
characteristics. A floating point unit generation flow was
developed to automate parameter selection. This flow has
been integrated into ASC [16], a C++-based stream com-
piler tool developed at Bell Laboratories.

4.1. ASC: A Stream Compiler for FPGAs

ASC requires a series of steps to convert C++ code into
an FPGA bitstream. Initially, the ASC programmer selects
a piece of the original program and transforms it into ASC
code. In performing this transformation, the user can trade-
off silicon area for latency and throughput to explore the
implementation space. ASC semantics are implemented as
a C++ class library consisting of user defined types and op-
erators for custom types. Custom hardware type operators
are mapped to the PAM-Blox II module generation environ-
ment [14]. PAM-Blox II uses Compaq PamDC [15], a gate
level design library, to generate hardware netlists.

ASC uses types and attributes to hook the programmer’s
algorithm description to the architectural features of the
stream architecture data path. These custom types allow the



application programmer to specify both the number repre-
sentation size and the type for each program variable. Each
variable has a set of attributes, such as an architectural at-
tribute and a sign attribute, to specify negative number rep-
resentations. Number representation types are custom types
implemented in C++. The architecture attribute and the
sign attribute are parameters stored in the hardware variable
class state. In the case of floating point variables, the type
is HWfloat, and the attributes include the bit-width of the
mantissa and the bit-width of the exponent, among others.

For example, the following ASC code creates a stream
of floating point numbers “a” as input and produces an in-
cremented stream of output numbers “b” . Each number is
incremented SIZE times:

STREAM_START;
// variables and bit-widths
HWfloat a(IN, 24, 8);
HWfloat b(OUT, 24, 8);
for (i=0; i < SIZE; i++)

b = a + 1.0;
STREAM_END;

This program is compiled with a conventional C++ com-
piler and generates an FPGA netlist. Note that the floating
point format in the example has a 24-bit mantissa and an
8-bit exponent.

4.2. Floating Point Unit Selection

For each C++ expression in ASC code, users can choose
AREA, THROUGHPUT, or LATENCY optimization options.
By selecting one of these three modes, the generator selects
the appropriate algorithm and architecture for each floating
point operator and generates the appropriately-sized unit.
Given area limitations, the tool provides the proper imple-
mentation choice based on a pre-defined cost function. Pa-
rameter galg selects the floating point algorithm from the
IEEE standard, LOP, and 2-path floating point addition al-
gorithms.

From experimentation, it was determined that area usage
for each of the three types of adders can be estimated using
a linear function:

F (x) = a · x + b (1)

where F (x) gives the number of LUTs, x is the mantissa
bit-width, and a and b are scaling constants. The exponent
can be set to a default value. The linear equation of the
curve indicates the linear growth of subcomponents such as
ripple-carry adders, comparators, and shifters. In addition
to area constraints, four additional parameters are used to
control the design of floating point operators in this library.

100
200
300
400
500
600
700
800
900

1000
1100

0 5 10 15 20 25 30 35

A
re

a 
(N

um
be

r 
of

 L
U

T
s)

Mantissa Bitwidth

2-path
LOP

Standard

Figure 6. Area of FPGA Addition Algorithms

pipelining: gpipe={PIPE,ALIGN,NORM,NONE};
tbuf: gsh ={TBUF,LUT};
normalize: gnorm={YES,NO};
rounding: ROUNDING_CHOICE;

Parameter gpipe specifies if pipelining occurs at all
stages, at the alignment stage, at the normalization stage, or
not at all. Parameter gsh specifies the low level implemen-
tation of the normalizer, using either Xilinx tri-state buffers
(TBUF) or a LUT-based shifter. Parameter gnorm indi-
cates the use of selective normalization (e.g. normalization
after every operation). Parameter ROUNDING_CHOICE in-
dicates one of the five rounding modes listed in Section
3.6.3. The default rounding mode is truncation.

Parameters are automatically determined based on the
required throughput, latency and area. Full pipelining is
used if high throughput is desired. TBUFs are used to re-
duce area. Normalization, if required, is inserted. For ad-
vanced users, parameters can be set manually to better assist
the investigation of trade-offs.

5. Results

To evaluate the performance of our floating point unit
generator, ASC was used to create a spectrum of floating
point unit designs. Resource usage and performance num-
bers were obtained using the Xilinx ISE4.1 [24] placement
and routing tool set. All results are for the Xilinx Virtex
XCV300E-6. Unless otherwise noted, all exponents follow
the 8-bit IEEE754 standard.

5.1. Floating Point Algorithms

Figures 6 and 7 present the area and unpipelined latency
of the three addition algorithms across a range of mantissa
bit-widths. As expected, the 2-path algorithm uses the most



0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

La
te

nc
y 

(n
s)

Mantissa Bitwidth

Standard
LOP

2-path

Figure 7. Latency of Addition Algorithms

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45

N
um

be
r 

of
 F

lip
-F

lo
ps

1/Throughput (ns)

2-Path
Standard

LOP

Figure 8. Throughput and Area Trade-off

programmable logic resources and has the smallest latency.
With a 24-bit mantissa and 8-bit exponent, the 2-path float-
ing point adder is 19% larger and 28% faster than the stan-
dard floating point adder. The size and performance of the
LOP algorithm falls between the two algorithms.

As previously discussed in Section 4, the size of the man-
tissa adder, exponent comparator, and LOD/LOP in FPGA
floating point adders grow linearly with bit-width. In con-
trast, shifter size complexity is O(m log(m)), where m is
the mantissa bit-width. This value is approximately linear
for small m.

Figure 8 presents the trade-off between throughput and
flip flop counts for the three algorithms. Floating point units
with 32-bit mantissas and 8-bit exponents were used to gen-
erate these results. In Figure 8, the points at the right end of
the plots are for modules optimized for latency. These mod-
ules have no internal flip flops. Fully block-level pipelined
units correspond to the points at the left. The intermedi-
ate points represent the modules obtained by selecting the

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25 30 35

A
re

a 
(N

um
be

r 
of

 L
U

T
s)

Mantissa Bitwidth

Signed
Unsigned

Figure 9. Signed vs. Unsigned Area

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

La
te

nc
y 

(n
s)

Mantissa Bitwidth

Signed
Unsigned

Figure 10. Signed vs. Unsigned Latency

partial pipelining options of gpipe. The 2-path trade-off
curve drops off more quickly than the others since there are
two data paths which require additional control circuitry.

5.2. Sign Mode Implementation

Figures 9 and 10 present area and latency comparisons
of standard signed and unsigned floating point adders. The
numbers in these figures indicate that the unsigned adder
with a 24-bit mantissa is about 26% smaller and 46% faster
than the signed-magnitude adder. These improvements are
a result of the elimination of the normalizer for unsigned
operation. The slope of the curves is a result of the linear
growth of the mantissa adder and pre-shifter.

5.3. Normalization

Figures 11 and 12 show the area and latency of signed-
magnitude standard floating point adders with and without



0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25 30 35

A
re

a 
(N

ub
m

er
 o

f L
U

T
s)

Mantissa Bitwidth

Standard
W/o Normalizer

Figure 11. Normalized vs. Un-normalized
Area

normalization. For designs with a 24-bit mantissa and 8-
bit exponent, the un-normalized adder and associated multi-
plexer are 28% smaller and 44% faster than the correspond-
ing normalized circuits.

5.4. Rounding

The affect of rounding on LUT area and design perfor-
mance is shown in Figure 13. The results were calculated
for floating point multipliers with 16-bit input values (12-bit
mantissa, 4-bit exponent). The resulting 24-bit mantissa is
rounded to a 12-bit mantissa.

5.5. Comparison with Commercial Floating Point
Units

To evaluate the performance of our generator, the cre-
ated modules were compared with modules taken from Xil-
inx [4] and Nallatech [17] FPGA floating point libraries. A
IEEE754 standard compatible module with fixed frequency,
bit-width, and pipeline stages was chosen.

For comparison, IEEE standard 24-bit mantissa and 8-bit
exponent modules were generated using our flow. Module
A was optimized for latency and module B was optimized
for throughput. Both modules use the same bit-width and
sign mode as the commercial library units. All results were
obtained for the Xilinx XCV300E-6.

It can be seen from Figure 14 that both modules A and B
consume fewer logic resources than the commercial mod-
ules. Module B has half the latency of the Xilinx core,
which is the fastest of the two commercial cores examined.
Module A has a higher throughput than the Xilinx module,
but is slower than the Nallatech module.

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35

La
te

nc
y 

(n
s)

Mantissa Bitwidth

Standard
W/o Normalizer

Figure 12. Normalized versus Un-normalized
Latency

��

��

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
��
��
��
��
��
��
��

���
���
��
��
��
��
��
��
��

�
�
�

�
�
�
�
�
�
�

380

360

340

320

0

IEEE

Global Random

Random

Biased Round−to−near

Truncation

40

30

20

10

0
(a) Area (b) Latency

Number of LUTs ns

Figure 13. Area and Delay Comparison of
Rounding Approaches

6. Performance of a Wavelet Application

To show the utility of our generation system, floating
point units generated with our system were integrated into
the design flow of a wavelet filter. As shown in Equation
2, for this application an input sequence, x, is convolved
with nine coefficients. This application consists of 9 float-
ing point multipliers and 8 floating point adders.

y[i] =
9∑

j=1

α[j] ∗ x[j + i] (2)

ASC code was created for this application. All floating
point units were based on IEEE754 standard floating point
format and were generated automatically using our flow.
The application allows for pipelined operation by sequen-
tializing operations. Application latency is the latency sum
of 9 floating point multipliers and 8 floating point adders.
The module generator automatically selected the parame-
ters for the units. Performance numbers for the application
are shown in Table 1.



0

250

200

150

100

50

0

2500

2000

1500

1000

500

0

125

100

75

50

25

����

����

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���

Nallatech Core

Xilinx Core

Module A

Module B

(a) Area (b) Latency (c) Throughput

nsNumber of LUTs MHz

Figure 14. Comparison with Commercial Floating Point Addition Cores

Optimization Choice Clock Period (ns) Slices LUTs Flip Flops
Throughput 31.7 9638 16,125 12,154

Table 1. Performance of the Wavelet Filter Application

7. Conclusion

This paper presents a floating point unit generation tool
for FPGAs, which, based on throughput, latency, and area
requirements, is able to create a range of floating point units.
Our approach implements three floating point addition al-
gorithms, the IEEE standard, LOP, and 2-path algorithms.
Through the selection of different algorithms, latency and
throughput can be traded for area. Customized sign modes
and normalization and rounding schemes can be selected to
further optimize floating point unit area and performance.
To ease design implementation, our flow is integrated into
the ASC stream compilation environment. Experimental re-
sults for floating point addition show superior latency per-
formance versus commercial core offerings.

We plan to continue this work by applying our genera-
tor to additional applications. Other future steps include the
integration of on-chip block memories into the design flow
and improved hardware support for underflow and NaN de-
tection.

References

[1] E. Antelo, M. Bóo, J. Bruguera, and E. Zapata. Design of a
novel circuit for two operand normalization. IEEE Transac-
tions on VLSI Systems, 6(1):173–176, 1998.

[2] P. Belanović and M. Leeser. A Library of Parameterized
Floating Point Modules and Their Use. In Proceedings, In-
ternational Conference on Field Programmable Logic and
Applications, Montpelier, France, Aug. 2002.

[3] J. D. Bruguera and T. Lang. Leading–one prediction with
concurrent position correction. IEEE Transactions on Com-
puters, 48(10):1083–1097, 1999.

[4] Digital Core Design, Inc. Alliance Core Data
Sheet: DFPADD Floating Point Adder, 2001.
http://www.dcd.pl/dcdpdf/xil/dfpadd ds.pdf.

[5] B. Fagin and C. Renard. Field programmable gate arrays
and floating point arithmetic. IEEE Transactions on VLSI
Systems, 2(3):365–367, Sept. 1994.

[6] M. Farmwald. On the Design of High Performance Digital
Arithmetic Units. PhD thesis, Stanford University, Depart-
ment of Electrical Engineering, Aug. 1981.

[7] A. A. Gaffar, W. Luk, P. Y. Cheung, N. Shirazi, and
J. Hwang. Automating Customisation of Floating-point De-
signs. In Proceedings, International Conference on Field-
Programmable Logic and Applications, Montpelier, France,
Aug. 2002.

[8] E. Hokenek and R. Montoye. Leading-Zero Anticipator
(LZA) in the IBM RISC System/6000 Floating-Point Ex-
ecution Unit. IBM Journal Research and Development,
34(1):71–77, 1990.

[9] Institute of Electrical and Electronics Engineers. IEEE
754 Standard for Binary Floating-Point Arithmetic, 1984.
http://standards.ieee.org/reading/ieee/std/busarch/754-
1984.pdf.

[10] I. Koren. Computer Arithmetic Algorithms. Brookside Court
Publishers, Amherst, MA, 1998.

[11] G. Lienhart, A. Kugel, and R. Ma̋nner. Using Floating-
Point Arithmetic on FPGAs to Accelerate Scientific N-Body
Simulations. In Proceedings, IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 182–
191, Napa, CA, Apr. 2002.

[12] W. B. Ligon, S. McMillan, G. Monn, F. Stivers, and K. D.
Underwood. A Re-evaluation of the Practicality of Floating-
Point Operations on FPGAs. In Proceedings, IEEE Sympo-
sium on Field-Programmable Custom Computing Machines,
pages 206–215, Napa, CA, Apr. 1998.

[13] L. Louca, W. H. Johnson, and T. A. Cook. Implementation
of IEEE Single Precision Floating Point Addition and Mul-
tiplication on FPGAs. In Proceedings, IEEE Workshop on



FPGAs for Custom Computing Machines, pages 107–116,
Napa, CA, Apr. 1996.

[14] O. Mencer. PAM-Blox II: Design and Evaluation of C++
Module Generation for Computing with FPGAs. In Pro-
ceedings, IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa, CA, Apr. 2002.

[15] O. Mencer, M. Morf, and M. J. Flynn. PAM-Blox: High Per-
formance FPGA Design for Adaptive Computing. In Pro-
ceedings, IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pages 167–174, Napa, CA, Apr.
1998.

[16] O. Mencer, M. Platzner, M. Morf, and M. J. Flynn. Object-
oriented domain-specific compilers for programming FP-
GAs. IEEE Transactions on VLSI Systems, 9(1):205–210,
Feb. 2001.

[17] Nallatech, Inc. IEEE754 Floating Point Core, 2001.
http://www.nallatech.com/products/ip/
floating point virtex 1/index.asp.

[18] S. Oberman, H. Al-Twaijry, and M. Flynn. The SNAP
Project: Design of Floating Point Arithmetic Units. In Pro-
ceedings of Arith-13, Pacific Grove, CA, July 1997.

[19] V. G. Oklobdzija. An algorithmic and novel design of a lead-
ing zero detector circuit: Comparison with logic synthesis.
IEEE Transactions on VLSI Systems, 2(1):124–128, 1993.

[20] D. S. Parker, B. Pierce, and P. R. Eggert. Monte Carlo arith-
metic: How to gamble with floating point and win. Comput-
ing in Science and Engineering, 2(4):58–68, July/Aug 2000.

[21] N. Quach and M. Flynn. Leading-one prediction, implemen-
tation, generalization and application. In Technical Report
CSL-TR-91-463, Department of Electrical Engineering and
Computer Science, Stanford University, 1991.

[22] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase,
K. Mashiko, and T. Sumi. Leading-zero anticipatory logic
for high speed floating point addition. IEEE Journal of
Solid-State Circuits, 31(8):1157–1164, 1996.

[23] S. Waser and M. J. Flynn. Introduction to Arithmetic for
Digital Systems Designers. Holt, Rinehard & Winston, New
York, N.Y., 1982.

[24] Xilinx Corporation. ISE Logic Design Tools, 2002.
http://www.xilinx.com/.


