DEVELOPMENT AND VERIFICATION OF SYSTEM-ON-A-CHIP COMMUNICATION
ARCHITECTURE

A Dissertation Presented
by

JIAN LIANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DocTOR OF PHILOSOPHY

March 15, 2004

Department of Electrical and Computer Engineering

© Copyright by Jian Liang 2004

All Rights Reserved

DEVELOPMENT AND VERIFICATION OF SYSTEM-ON-A-CHIP COMMUNICATION
ARCHITECTURE

A Dissertation Presented
by

JIAN LIANG

Approved as to style and content by:

Russell Tessier, Chair

Dennis L. Goeckel, Member

Wayne P. Burleson, Member

Charles Weems, Member

Seshu B. Desu, Department Head
Electrical and Computer Engineering

To the betterment of mankind

ACKNOWLEDGMENTS

My sincere thanks go to my adviser Professor Russell Tessier. His support and
guidance played a major role in this research. It has been a wonderful experience to
be a part of Reconfigurable Computing Group for the past five years. I appreciate the
help of Professor Dennis L. Goeckel. Weekly meetings with him helped me develop
and improve the Turbo decoding algorithm. The committee members, Professor
Wayne P. Burleson and Professor Charles C. Weems, have assisted me greatly with
their valuable feedbacks on this dissertation work.

It has been a great pleasure for me to work with the researchers on the 3th
floor of Knowles Engineering Building. Special thanks go to Andy Laffely and
Srini Krishnamoorthy for their help on my research papers. I am also thankful
to my colleagues in the Reconfigurable Computing Group for their friendship and
supports.

Finally, I would thank my wife for her support. While I was working on my
dissertation, she has manged our lives. Her selfless devotion to our family is inspi-

rational.

ABSTRACT

DEVELOPMENT AND VERIFICATION OF SYSTEM-ON-A-CHIP COMMUNICATION

ARCHITECTURE
MARCH 15, 2004
JIAN LIANG
B.E, TsINGHUA UNIVERSITY, BEIJING, CHINA
M.S., TSINGHUA UNIVERSITY, BEIJING, CHINA
PH.D, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

Recent advances in VLSI technology have led to a dramatic increase in the com-
putation capacities of a single chip. Current industry estimates [55] indicate mass
production of silicon devices containing over 1.4 billion transistors by 2013. This pro-
liferation of on-chip resources enables the integration of complex system-on-a-chip
(SoC) designs containing a wide range of intellectual property (IP) cores. To provide
high performance, SoC integration tools must consider the design of individual IP
cores, their on-chip interconnections, and application mapping approaches. In this
dissertation, the latter two design issues are addressed through the introduction of
a new on-chip communications architecture, adaptive System-on-Chip (aSoC), and
its supporting compilation software. Our communications architecture is scalable
to tens of heterogeneous cores and can be customized on a per-application basis.

In aSoC, each computation core is associated with a communication interface,
which is connected to each other as a two-dimensional mesh. Communication
between cores takes place via pipelined, point-to-point connections. The com-
munications are restricted to short wires between cores to allow high speed data

transfer and predictable delays. The interface design can be customized based

vi

on core data bandwidths and operating frequencies to allow for efficient use of
resources. The power and clock are supplied individually in each tile for diverse
working environments of heterogeneous cores.

A supporting software tool, AppMapper, was developed to map applications
onto aSoC. Built upon existing compiler infrastructure and taking advantage of user
interaction, AppMapper analyzes the high level language applications, schedules the
on-chip communications, and configures the communication interfaces in aSoC. To
augment the support for heterogeneous cores from third parties, AppMapper outputs
the core codes in high level languages format such as C or Verilog, which allows the
third-party compilers to handle the core specific optimization.

To evaluate the performance of aSoC, applications are mapped onto the aSoC
model chips. The chosen applications include MPEG-II encoder/decoder, image
smoothing filter, IIR filter, Doppler radar decoder, and orthogonal frequency division
multiplexing (OFDM) modulator. In order to further test aSoC for substantial and
complex applications, a Turbo decoding system is mapped onto aSoC devices. A
novel adaptive Soft-output Viterbi algorithm (ASOVA) is developed for the Turbo
decoder to reduce the computation complexity. By varying the number of survivor
paths, ASOVA is capable of adapting its decoding complexity to speed up the
decoding in the case of high signal to noise ratio (SNR).

These applications are mapped onto aSoC model devices and their performance
is tested. The results are compared to other on-chip communication architectures
with the same partitioning. The evaluated architectures include the hierarchical bus
modeled from IBM CoreConnect on-chip communication and a dynamic routing
model applying oblivious dynamic routing [30]. Based on the simulation results,

aSoC outperforms the hierarchical bus model by a factor of five.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . .« i ettt e e e e e e e e e e e e e e s v

ABSTRACT . o i ot o e e e e e e e e e e e e e vi

LIST OF TABLES . . . oottt e e e e e e e s xii

LIST OF FIGURES o o e et e e e e e e s e s xiv
CHAPTER

1. INTRODUCGTION . . .ottt o et e e e e e e e e e e e e e e e e e s e e 1

1.1 Motivation. v o e, 1

1.2 Scalable aSoC Architecture 4

1.3 Supporting Software 6

1.4 Applications 7

1.5 Contributionso v e, 8

1.6 OVEIVIEW . . o o o e, 10

2. BACKGROUND ot e e e e s s 12

2.1 On-Chip Communication Architectures 12

2.1.1 Fixed Point-to-Point Connection. 14

2.1.2 Arbitrated Bus 15

2.1.3 Hierarchical Bus 15

2.1.4 FPGA-Like Architecture 16

2.1.5 Network-on-Chip (NoC)o 17

2.1.6 Comparisons on Performance and Cost 19

2.1.7 Position of aSoC in the Design Space 20

2.2 SoC Supporting Softwares. 24

3. ASOC OVERVIEWt ittt e e e e e s s 28

3.1 aSoC Design Philosophy 28

3.1.1 Design Overview 28

3.1.2 Flow Control 31

3.1.3 Run-time Stream Management 32

3.1.3.1 Asynchronous Global Branching 33

3.1.3.2 Run-time Stream Creation 35

viii

3.2 aSoC Architecture 35

3.2.1 Communication Interface 37

3.2.2 Coreports: Connecting Cores to the Network 38

3.2.3 Communication Data Memory 41

. APPMAPPER COMPILER AND SIMULATOR . . .« o oo oeeee e e i i, 44
4.1 SUIF preprocessing it e . 45
4.2 Basic Block Partitioning and Assignment 47
4.3 Inter-core Synchronization 49
4.4 Communication Scheduling: Space-Time Routing 49
4.5 Core Compilation and Code Generation. 52
4.6 Comparison to Previous Mapping Tools 52

. EXPERIMENTAL METHODOLOGY . .t it ot ittt e e e e e e e e e 55
5.1 Target aSoC Devices 95
5.2 Simulation Environment 55

. TARGET ASOC APPLICATIONS . . « ¢ v o it et et e e e e e e 60
6.1 MPEG-2 Encoder. 60
6.2 Orthogonal Frequency Division Multiplexing 61
6.3 Doppler Radar Signal Analysis 62
6.4 Image Smoothing 63
6.5 IIR Filter 63

. ADAPTIVE SOVA TURBO CODE DECODER APPLICATION ON ASOC ... 64

7.1 Imtroduction 65
7.2 Turbo Codes and Decoding Algorithms 67
721 Turbo Codes i 67
7.2.1.1 Turbo Code Encoder 69

7.2.1.2 Turbo Code Decoder 71

7.2.2 Turbo Code Decoding Algorithms 71
7.2.2.1 Viterbi Algorithm 72

7.2.2.2 Soft-Output Viterbi Algorithm 75

7.2.3 Improvements on SOVA 77
7.2.4 Turbo Code Adaptations 78

7.3 Adaptive SOVA Decoding 80
7.3.1 Scaling Factor 82
7.3.2 Expectation 83

7.4 Simulation Results 84

ix

8. HARDWARE IMPLEMENTATION OF ASOVA 89

8.1 Architecture of Turbo Decoder 89
8.2 Architecture of Component Decoder 90
8.2.1 Traceback Approach 91
8.2.1.1 Behavior of Traceback SOVA 91

8.2.1.2 Architecture of Traceback ASOVA 92

8.2.2 Register Exchange Approach 95
8.2.2.1 Behavior of Register Exchange 95

8.2.2.2 Architecture of Register Exchange 96

8.3 Experimental Approach of FPGA Implementation 101
8.3.1 FPGA Implementation Parameters 101
8.3.2 Experimental System 102

9. MAp ASOVA TURBO DECODER ONTO ASOC 105
9.1 Results of FPGA Implementation 105
9.1.1 Register Exchange FPGA Turbo Decoder 105
9.1.2 Traceback FPGA Turbo Decoder 106
9.1.2.1 Traceback ASOVA Turbo Decoder Statistics 107

9.1.2.2 ASOVA Dynamic Reconfiguration 108

9.1.2.3 Comparison to Microprocessor Implementations . .. 111

9.1.2.4 Comparison to Digital Signal Processors 112

9.1.2.5 Comparison to Commercial FPGA Implementations 112

9.2 Mapping ASOVA onto aSoC 114
9.2.1 Partitioning of Functional Blocks 114
9.2.2 Obtain aSoC Turbo Decoder Parameters 117
9.2.3 Comparison to FPGA Implementation 118
10.ASOC SIMULATION RESULTS . . .t ittt ittt e et it e e e e et 122
10.1 aSoC Parameter Evaluation and Layout. 122
10.2 Performance Comparison with Alternative On-Chip Interconnects . . 125
10.2.1 Comparison to CoreConnect Architecture 125
10.2.2 Comparison to Hierarchical CoreConnect 126
10.2.3 Comparison to Oblivious Dynamic Routing 127
10.2.4 Comparison to Published Results 128

10.3 Run-time Communication Branching 129
10.4 Architectural Scalability 131

11.CoNCLUSION AND FUTURE WORK

REFERENCES

xi

Table

2.1

3.1

3.2

5.1

5.2

7.1

7.2

7.3

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

LisT OF TABLES

Page
Summary of On-Chip Architectures. 13
Communication schedules for tiles in Figure 3.2 31

Data-dependent communication control branching for Tile D in Figure

0 34
aSoC device configurations L L L 55
Component Parameters 58
Expectation of LLR 84
Parameter Default Values. 85
(31,27) Code at BER=10"% 87
Register Exchange Turbo Decoder Statistics 106
ASOVA Decoder Statistics for BER=10"% and T=-10 108
ASOVA Performance on a Stratix EP1S10 FPGA 109
Dynamic Reconfiguration L .. 112

Decoding Speed of FPGA ASOVA Decoder versus Microprocessors . . 113

Parameters of Stratix and DSPs 113
Comparison to DSPs 114
Comparison Results of (15,13) Code 114
Resources Usage of Turbo Decoder on aSoC 117

9.10 Decoding Speed of aSoC and FPGA Implementation on (31,27) Code 119

9.11 Transistor Count Comparison of Different Approaches 120

9.12 Transistor Count of aSoC Cores 120

xii

10.1 Benchmark statistics used to determine aSoC parameters 123
10.2 Comparison of aSoC and CoreConnect Performance 126
10.3 Comparison of aSoC and Hierarchical CoreConnect Performance 127
10.4 Comparison of aSoC and Dynamic Network Performance 128
10.5 Comparison to published work 129
10.6 Control branching transfer example 130
10.7 FFT application run time for N points (times in uS) 131
10.8 Scalability of the MPEG2 Encoder 132
10.9 Scalability of Turbo Decoder 133
10.10Scalability of image smoothing for 800x600 pixel image 133
10.11Doppler run time for N points (times inuS) 134

xiil

Figure
1.1
1.2
2.1
2.2

3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8
4.1
4.2
5.1
5.2
6.1

6.2

LisT OoF FIGURES

Page
Adaptive System-on-a-Chip (aSoC) 4
Flowchart of AppMapper 7
Design Space of SoC 14
[lustration of Relative Tradeoff between Architectures 19
Multi-core data streams 1 and 2. This example shows data streams

from Tile A to Tile E and from Tile D to Tile F. Fractional bandwidth
usage is indicated in italics. L. 29

Pipelined stream communication across multiple communication in-
terfaces e 30

Example of distinct stream paths for two communication schedules

which send data from a source to different destinations. 34
Core and Communication Interface 36
Detailed communication interface 37
Input and output coreport interface 38
Multiplier coreport interface 40
Flow Control Scheme 41
aSoC Application Mapping Flow 46
Inter-core synchronization 48
aSoC topologies: 9and 16 cores 56
aSoC System Simulator 57
Partitioning of MPEG-2 encoder to a 4x4 aSOC configuration 61
OFDM mapped to 16 core aSOC model 61

xXiv

6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9.1

9.2

Doppler radar signal analysis mapped to 16 core aSOC model. 62

Turbo Code System 67
Turbo Code Encoder 69
RSC Architecture and State Diagram 70
Iterative Decoder 72
Trellis Diagram 72
Hard-decision Viterbi Algorithm 73
Trellis Diagram of SOVA 76
Trellis Diagram of Adaptive SOVA (T'=1.0, Nyyoz =3) « oo oo oo .. 80
Performance with Varying Npyez - -« o oo oo oo oo 82
Performance with Varying ar. o 86
Performance of ASOVA 87
Affects of Threshold and Njap -« - v o oo oo oo 88
Block Diagram of Turbo Decoder 89
Traceback SOVA 91
Architecture of Traceback Component Decoder 92
Add-Compare-Select Components 93

Block Diagram of Register Exchange ASOVA Component Decoder .. 97

Architecture of Add-Compare-Select Unit 98
Architecture of Survivor-Memory-Unit 99
Metric Difference Memory Architecture 100
Turbo Code Experiment System 104
ASOVA Performance for a (31,27) code versus competing decoder

algorithms 106
SNR Distribution of Log-Normal Shadowing Channel 110

XV

9.3 ASoC Partitioning of Turbo Decoder. 115

9.4 System with Four Turbo Decoders 116
10.1 Layout of FPGA Core and Communication Interface 124
10.2 Non-uniform aSoC core configuration 124
10.3 Mapping Result of FFT 130

xvi

CHAPTER 1

INTRODUCTION

The increase of gate count per chip makes the IP core based System-on-a-Chip
(SoC) a feasible solution for chip design. Currently used bus-based on-chip com-
munication architecture has become the limiting factor of SoCs for its un-scalable
nature. A novel on-chip communication platform, the Adaptive System-on-a-Chip
(aSoC), is developed to fulfill this requirement. ASoC applies a core-based mesh
architecture using a pipelined, packet-switching communication network for het-
erogeneous cores. A compiler tool is developed to statically schedule the on-chip

communications in aSoC.

1.1 Motivation

The dramatic increase in the transistor capacity of a single chip has led to the
design concepts of System-on-a-Chip (SoC). Current industry estimates [55] indicate
that mass production of silicon devices containing over 1.4 billion transistors would
be possible by 2013. To reduce the exponential increase in the design complexity of
such a huge hardware resource, SoC makes use of a core-based structure, in which the
cores can be embedded processors, large soft elements and algorithmic subsystems.
These block elements are the reusable Intellectual Property (IP) cores obtained
from company libraries, prior internal designs or licensed from third parties. With
well-designed IP cores, SoC designers can focus on the system level optimizations.

In such a core-based SoC architecture with numerous of IP cores, the on-chip
communication is the focus of the whole system. One of the critical points to be

considered by the core designers is the communication bandwidth with other cores

or memory. With a highly parallelized and pipelined architecture, current processor
cores are able to issue multiple instructions per cycle. Most instructions require
two or three operands. The communication bandwidth requirements of such cores
is generally compatible with the core kernel speed. When modern VLSI techniques
allow SoC to integrate increasing number of IP cores, on-chip communication will
become the bottleneck for SoC. Other recent studies [63] indicate that on-chip
communication has already become the limiting factor in SoC performance.

Most current SoC designs apply a bus-based communication architecture [39,
78, 52, 4, 3]. In the near future, when the number of on-chip cores scales, these
architectures will soon fail to provide the demanded communication ability on
account of the following factors: dynamic allocation of communication resources,
limited data bandwidth and the clock skew and capacitance along the lone bus

lines.

e Significant amounts of dynamic arbitration for shared communication resources
across even a small number of components can quickly form a performance
bottleneck, especially for data-intensive, stream-based computation. The cen-
tralization of the arbitrary controller also restricts the number and physical

location of the cores.

e At any given time, a bus can be occupied by a single bus master. Other bus
masters have to wait until the end of the current transaction before they can
compete for the bus control, which means low communication efficiency and,

therefore, limited bandwidth.

e To operate reliably, the clock skew should be under 10%, i.e. less than 5ns in
current techniques [105]. When the chip is large and the bus line is long, the
clock speed for the bus has to be slowed down to make sure that the skew is

within the reliable range. Even though repeaters can be used to reduce the

signal skew, it is still a serious problem when the bus lines have to travel across

several cores.

e An additional, the capacitance of the interfaces, will also limit the number of

cores that a bus can drive.

The design process of SoC is made more complex by the need of heterogeneous
cores of differing applications. The heterogeneous nature of cores in terms of clock
speed, resources, and processing capability makes cost modeling difficult. Addi-
tionally, communication modeling for interconnection with long wires and variable
arbitration protocols limits performance predictability required by computation and
communication scheduling. To fulfill different cores’ requirements, modern on-chip
buses support more than one communication scheme, such as DMA, burst transfers,
split transactions, priority arbitration, and so on [54, 39]. Besides the data bus,
each core has to provide a set of control signals to the central bus controller, which
significantly degrades the communication performance.

Realizing the problems of bus-based architecture, numerous approaches has been
proposed lately for on-chip communication with differing topologies, such as 1D
array [34], 2D meshes [74, 103, 24], hierarchical network [66], hexagon mesh [70],
and so on. These architectures can be categorized by their scheduling schemes into
two classes: the static network which is scheduled at compile-time, and the dynamic
network-on-chip (NoC) architectures. The former [74, 70, 24, 104], which is named
the FPGA-like architecture, relies on the compilers to schedule the communication
which simplifies the hardware resources, but loses the flexibility to change the com-
munication pattern in run time, which is required by many applications with data
dependent communications. As a result, the SoCs with FPGA-like architectures
usually target specific function or applications with fixed communication patterns

like multi-media and DSP. The latter [12, 50, 31] presents the idea of using dynamic

North

MUL

West

FPGA FPGA

South Tile

Communication
Interface

Figure 1.1. Adaptive System-on-a-Chip (aSoC)

networks for on-chip communication. These approaches provide full flexibility for
communication, but the arbitration and scheduling totally rely on the network which
results in high hardware costs. To better solve the dynamic routing problems, such
as deadlock, congestion and buffering, more complicated circuitry will be required.

To better address the problems of prohibitive cross-chip communication on ac-
count of increasing die sizes, future SoCs will require a communication platform that
can support a variety of diverse IP cores. This platform must also be scalable in
terms of hardware resource cost, physical characteristics, application mapping, and

software support.

1.2 Scalable aSoC Architecture

Our modular communications architecture, adaptive system-on-a-chip (aSoC),
provides a platform for next generation on-chip systems. The goal of aSoC is to
build a scalable on-chip communication platform to solve the problems faced by
the current bus-based architectures. By employing a pipelined packet-switching
network, aSoC is able to achieve scalable data bandwidth. Furthermore, the static
scheduling scheme makes aSoC a low-cost architecture for on-chip designs.

As shown in Figure 1.1, an aSoC device contains a two-dimensional mesh of

computational tiles. Each tile consists of a core and an associated communication

interface. The interface design can be customized based on core data bandwidths
and operating frequencies to allow for efficient use of resources. The power and
clock are supplied individually to each tile for diverse working environments of
heterogeneous cores.

The neighboring tiles are connected using a pipelined, packet-switching network.
To address the previously mentioned limiting factors of bus-based communication

architecture, aSoC is designed with the following techniques:

e Arbitration: Static scheduling is employed in aSoC to eliminate the dynamic
arbitration of bus-based architecture. While statically-scheduled data transfer
is optimized in compile time, the software-based mechanism for data routing
has been developed to reduce the congestion overhead. While most of the
communications can be obtained by statically analyzing the codes, some data
dependent communications can be handled by dynamic communication pattern

switching of aSoC.

e Bandwidth: While the bandwidth of bus architecture is limited by the exclu-
sive occupation of the bus master, the communication between aSoC nodes
takes place via pipelined, point-to-point connections. Multiple data pieces are
transferred simultaneously on the network on different pipelined stages. The
number of stages is the number of tiles through which the data travels. As a
result, the bandwidth is scalable with the size of the system. The wire length
between cores is carefully chosen to balance the network speed, communication

latency and core size.

e Clock: By limiting inter-core communication to short wires with predictable
performance, high-speed communication can be achieved. Furthermore, the
regularity of mesh architecture allows the network to work synchronously,

which guarantees the simplicity and high speed of the communication network.

e Capacitance: ASoC has a pipelined architecture. At each stage, a commu-
nication interface drives a single core. As a result, the capacitance will not

accumulate when system scales.

Compared to other scalable networks, aSoC is a low cost, heterogeneous flexible
platform that fills the gap between the Network-on-Chip (NoC) and FPGA-like
architectures. The aSoC platform provides a communication substrate for compu-
tation dense applications in the domains of DSP, multi-media and wireless communi-
cations. Most of these applications have highly predictable on-chip communication
patterns, which enable a static scheduling network in aSoC. To reduce the hardware
cost and improve the simplicity, aSoC reuses the wires using packet-switching based
on static scheduling. Furthermore, aSoC combines the static network with certain
dynamic scheme, which enables aSoC to adapt the network dynamically to the
communication pattern changes and improves the flexibilities of aSoC. The static
scheduling scheme with limited dynamic function makes aSoC simpler than the NoC

approach.

1.3 Supporting Software

In aSoC, the static communication scheduling is applied to optimize its inter-core
communication. While this job can be done manually for two or three cores, an
automated software tool is required for larger aSoC chips. An application mapping
tool, AppMapper, has been developed to translate high-level language application
representations to aSoC devices.

The compilation is made more complicated by the heterogeneous cores. To main-
tain the flexibility of core selection, AppMapper leaves the core-related optimization
for the third-part core compilers. AppMapper outputs the instructions for IP cores
in the format of high level languages like C, Verilog or other control codes. They can

be easily translated into core specific machine codes using the compilers provided

Application
(C Codes)

Syntax Tree
Generation

Abstract Syntax Tree

Partition

Refined Task Graph

Modified Comm. Nets

Core Codes

Core Communicatio
Compilation Scheduling
Compiled
Core Codes

aSoC Configuratior
System
Evaluation

Figure 1.2. Flowchart of AppMapper

Performance Statistic

by the core vendors. As a result, users are able choose the cores appropriate for
their applications without modifying the kernel of AppMapper.

As shown in Figure 1.2, compiler steps, including syntax tree generation, code
partitioning, communication scheduling, system evaluation and core-dependent com-
pilation are part of the AppMapper flow. Although each step has been fully auto-
mated, design interfaces for manual intervention are provided to improve mapping
efficiency. Based on the performance statistics from system evaluation, manual
interventions are allowed for better aSoC partition. Novel algorithms based on
advanced cost functions have been developed for both partitioning and scheduling
based on heuristic techniques.

A system-level simulator allows for performance evaluation prior to design im-

plementation.
1.4 Applications

Key components of the aSoC architecture, including the communication inter-

face architecture, have been simulated and implemented in 0.18 micron technology.

Experimentation results show that a communication network speed of 400MHz with
a 6% communication area overhead to on-chip IP cores.

A set of applications have been developed and tested for the aSoC devices.
The applications are chosen carefully from multi-media, DSP and communication
domains, including MPEG-2 encoder/decoder, IIR filter and an image processing
kernel, Doppler radar and OFDM modulator. These applications have been mapped
to 9 and 16 core aSoC devices via the AppMapper tool.

While the above applications are relative small and regarded as DSP cores
rather than applications, a Turbo decoding system has been mapped onto the
aSoC platform. This turbo code simulation system includes a turbo encoder, a
channel simulator, and a turbo decoder. The turbo decoder employs a novel adap-
tive soft-output Viterbi algorithm (ASOVA) which reduces the complexity of the
Soft-Output Viterbi Algorithm [48] with a competitive error correction ability. In
addition, ASOVA can adapt its decoding complexity according to the input signal
to noise ratio (SNR). This Turbo decoder is mapped onto an Altera Stratix FPGA
on the Nios development board [6] to verify its functionality. After obtaining the
required parameters from the FPGA testing, the Turbo decoder is simulated on
aSoC devices. The advantages of the high data bandwidth of aSoC are depicted in
the comparison to other implementations of the same Turbo code simulation system
on FPGA and bus-based architectures.

Performance comparison between aSoC implementations and other more tradi-
tional on-chip communication platforms, such as an on-chip bus, show an aSoC
performance improvement by up to a factor of five. Simulation results also reveal

that aSoC have better scalability for systems with more cores over bus architecture.

1.5 Contributions

The contribution of this dissertation includes four major parts.

e Construct the architecture of aSoC. A novel statically scheduling packet-switching
on-chip network, aSoC, is designed for SoCs. ASOC applies a pipelined archi-
tecture which solves the problem of the inter-core communication bottleneck

of next generation SoCs.

e Develop an automated compiling software and simulator, AppMapper, for
aSoC. AppMapper is able to map high level language applications into aSoC
silicon. The simulator traces the network cycle by cycle and provides the
system performance information. Furthermore, it can also simulate other
communication architectures, such as bus, hierarchical bus, dynamic networks,

etc. with minor setting changes.

e Validate the aSoC architecture using software simulation. Based on the layout
parameters, aSoC test chips with 9 cores and 16 cores are created. DSP appli-
cations are mapped onto these aSoC test chips. For the purpose of comparison,
models are also established using the same topology with other communication
architectures, namely, bus, hierarchical bus, and dynamic network. Experi-
mental results show that the implementation using aSoC architecture runs up

to five times faster than bus architecture, and outperforms other models.

e Develop a novel Turbo code decoding algorithm, ASOVA, which simplifies the
complexity of SOVA [48] while maintaining the error correction ability. This
Turbo code system is mapped onto aSoC to demonstrate the aSoC performance

with larger applications.
Publications related to this dissertation include:

1. Jian Liang, Andrew Laffely, Sriram Srinivasan, and Russell Tessier, An Ar-
chitecture and Compiler for Scalable On-Chip Communication, Transaction of

VLSI (accepted).

2. Jian Liang, Russell Tessier, and Dennis L. Goeckel, A Dynamically-Reconfigurable,
Power-Efficient Turbo Decoder, in FCCM’04 (Field-Programmable Custom

Computing Machines) (submitted)

3. Jian Liang, Russell Tessier, Oskar Mencer, Floating Point Unit Generation and
Evaluation for FPGAs, in FCCM’03 (Field-Programmable Custom Computing
Machines), Napa, CA. Apr. 2003.

4. Jian Liang, Sriram Swaminathan, Russell Tessier, aSoC: A Scalable, Single-
Chip Communications Architecture, in Proceedings of the IEEE International
Conference on Parallel Architectures and Compilation Techniques, Philadel-

phia, PA. October 2000.

5. Andrew Laffely, Jian Liang, Wayne Burleson and Russell Tessier, Adaptive
System on a Chip (aSoC): a Backbone for Power-Aware Signal Processing
Cores, in Proceedings of IEEE International Conference on Image Processing,

Barcelona, Spain, Sep. 2003.

6. Andrew Laffely, Jian Liang, Prashant Jain, Ning Weng, Wayne Burleson and
Russell Tessier, Adaptive Systems on a Chip (aSoC) for Low-Power Signal
Processing , in Proceedings of the Asilomar Conference on Signals, Systems,

and Computers, Monterey, California, November 2001.

7. Andrew Laffely, Jian Liang, Russell Tessier, C. Andras Moritz and Wayne
Burleson, Power-Aware System on a Chip, in the Boston Area Architecture

Workshop, Boston, MA, Jan. 2003
1.6 Overview
This dissertation presents a review of SoC-related communication architectures

and the state-of-the-art SoC compiling tools in Chapter 2. Chapter 3 reveals the

10

details of our communication architecture and explains its suitability for on-chip
interconnection. Chapter 4 demonstrates the application mapping methodology
and describes component algorithms. Simulation environment and experimental
approach are described in Chapter 5, and Chapter 6 introduces the DSP applications
that are mapped onto aSoC devices. To further test aSoC, a Turbo decoding system
has been developed for aSoC. Chapter 7 reveals the adaptive Soft-output Viterbi
algorithm (ASOVA), which is developed to reduce the decoding complexity. Chapter
8 explains the architecture to implement ASOVA in hardware. Chapter 9 verifies the
FPGA implementation of the ASOVA Turbo decoder and maps it onto aSoC devices.
The required parameters for aSoC implementation and performance results obtained
from the FPGA implementation are presented. In Chapter 10, the experimental
results for aSoC devices are presented. These results are compared against the
performance of alternate interconnect approaches. Finally, Chapter 11 concludes

this dissertation and proposes the potential research directions.

11

CHAPTER 2

BACKGROUND

Various communication architectures are used on System-on-a-Chip (SoC) and
embedded system designs. This chapter briefly reviews these on-chip communication
architectures. An attempt is made to group the existing communication platforms
by their structures. The advantages and pitfalls of each group are analyzed, and
figures are shown to better illustrate the trade-offs between architecture groups and
the position of aSoC in the design space. Furthermore, the supporting softwares
for SoCs are also reviewed, and the difference from the software tool for aSoC,

AppMapper, is pointed out.

2.1 On-Chip Communication Architectures

Examination of current on-chip protocols provides insight into the requirements
of on-chip interconnect and its differences from traditional multiprocessor networks.
Notable, common threads through these on-chip interconnect architectures include
the simplicity of the required circuitry, the flexibility support for numerous inter-
connection topologies and the connectivity provided for each core. Simplicity is
the resource cost to for the hardware, and the connectivity here means the average
data bandwidth that the communication architecture can provide for each local
core. The flexibility is defined as how easy a system can change its communication
pattern to establish a new connection. For example, buses provide high flexibility for
the connected cores, while fixed point-to-point connections have a limited flexibility

since a new chip has to be designed to allowed for another connection.

12

‘ Project ‘ Cite ‘ First Pub. H Arch. ‘ Flex. ‘ Conn. ‘ Cores ‘

Coral [13] 2000 Fixed/Bus Low Low | Heter.
Daytona 2] 2000 Bus High Low | Heter.
IDT [52] 2000 Bus High Low | Heter.
AMBA [39] 1997 Hier. Bus High | Median | Heter.
CoreConnect | [54] 2000 Hier. Bus High | Median | Heter.
PI Bus [78] 1997 Hier. Bus High Low | Heter.
MATRIX [74] 1996 2D Mesh Median | Median | Homo.
CHESS [70] 1999 Hex Array | Median | Median | Homo.
DP-FPGA | [24] 1994 FPGA-like | Median | Median | Homo.
Pleiades [66] 1997 Hier. Crossbar | Median | Median | Heter.
RAW [103] 1997 2D Mesh High High | Homo.
Dally [31] 2000 2D Mesh High High | Homo.
| aSoC | [67] | 2000 | network | Media | High | Heter. |

Table 2.1. Summary of On-Chip Architectures

Since the cost of hardware resources heavily depends on the system size and
architecture choices, the simplicity will be addressed later in this section while the
trade-off between the connectivity and flexibility for the different communication
architecture designed will be first discussed.

Since Numerous on-chip interconnect approaches have been proposed as a means
to connect intellectual property (IP) cores, for better understanding this trade-
off, these approaches can be classified based on the architecture to five groups:
fixed point-to-point connection, arbitrated buses, hierarchical buses connected via
bridges, FPGA-liked static switching networks and Network-on-Chip (NoC). A few
examples and their classifications are listed in Table 2.1.

An overview of these architects on the design space of connectivity and flexibility
is shown in Figure 2.1. The circles represent the approximate location of each group
in the design space, however, due to the various trade-offs, designs in the same
group might be scattering around and not restricted by the circle. The achievable

trade-offs are given by the shaded area.

13

A Connectivity

b7

>
Flexability

Figure 2.1. Design Space of SoC

2.1.1 Fixed Point-to-Point Connection

Using the fixed point-to-point connection architectures [32, 13|, signals between
cores are transferred by dedicated wires. These architectures are most used in small
ASIC designs. All connections are decided at design time and can not be changed
later.

Fixed connections have lowest flexibility and are located in the left-top corner
in Figure 2.1. The connectivity of fixed connections is high, but it comes with
un-affordable design cost. In addition, the required number of wires for such a
system will increase exponentially when the number of cores goes up. It is unfeasible

to route such a huge amount of wires except in a very regular mesh.

14

2.1.2 Arbitrated Bus

The bus architecture connects multiple cores using long bus lines. The bus lines
are time-shared under the control of the bus arbitrator. The bus-based approaches
include [52, 81, 94, 2]. In general, all of these architectures have similar arbitration
characteristics to master/slave off-chip buses with several new features including
data pipelining [52], replacement of tri-state drivers with multiplexers [81], and
separated address/data buses due to the elimination of off-chip pin constraints.

These approaches are put in the right-bottom corner of Figure 2.1. While
flexible, they have poor connectivity due to the centralized arbitration and the

fixed bandwidth that has to be shared by all cores in a system.
2.1.3 Hierarchical Bus

Since an arbitrated bus is unable to fulfill the bandwidth requirement of multi-
ple cores, hierarchical bus architectures are employed in many designs to increase
connectivity. Hierarchical Bus combines several buses together using hierarchical
nodes or bus bridges. Cores on the same bus can communicate without interfering
with the cores on another bus, but communication across buses requires additional
delay. Several current on-chip interconnects support the connection of hierarchical
buses via bridges [4, 39], multiplexed memory/processor interconnect solutions [3],
or variable topologies (e.g. partial crossbar, tree) [54].

AMBA [39] is a hierarchical bus model that consists high speed Processor Local
Buses (PLB) and low speed On-chip Peripheral Buses (OPB). The PLB can be
dedicated to the high-speed data transfers such as CPU and caches without inter-
fering with slow peripheral IO units. A PLB can be connected to an OPB via a
PLB-OPB bridge to allow data exchanges on these two buses. Other hierarchical
bus architectures [4, 3, 54] apply similar schemes but utilize different protocols and

hardware modules.

15

In Figure 2.1, Hierarchical bus is above the arbitrated bus. It increases the
connectivity and allows the connections of more cores than a single bus architecture.
On the other hand, while it still able to coordinate on-chip data paths among
heterogeneous components as a bus architecture, certain flexibility is sacrificed since

the some of the communications have to go across a bus bridge.

2.1.4 FPGA-Like Architecture

An alternate approach allows for static scheduling and programmable intercon-
nect such as the type found in field-programmable gate arrays (FPGAs). To provide
simplicity, this architecture employs a static network, whose configuration is decided
at compile-time. With limited flexibility, the wires in such static networks are
dedicated to a given communication link and does not support wire reuse. Most
of these architectures can only change its communication network by rewriting the
configurations [74, 24]. The connectivity of many FPGA-like architectures are also
less than the fixed point-to-point connection since some nodes have to go across
a couple switches to communicate. To simplify the architecture, the network is
built for homogeneous small cores. Typical FPGA-like architectures can be found
in MATRIX [74], CHESS Array [70], DP-FPGA [24] and Wan et al. [104]. As an
exception, Pleiades [66] presents a hierarchical static crossbar-based network using
heterogeneous coarse cores.

In Figure 2.1, it can be seen that the FPGA-like circle is located between the
Fized and Bus, which indicates that this architecture is not as flexible as bus or
hierarchical bus, but better than fixed connections. On the other axle, FPGA-
like architectures have better connectivity for its mesh communication network but
weaker than fixed architectures due to the overhead of switches. This architecture

is relatively cheaper in hardware resources with less flexibility and connectivity.

16

2.1.5 Network-on-Chip (NoC)

Network-on-chip (NoC) is a network of computational, storage and I/O re-
source, interconnected by a network of switches. Resources communicate with each
other using addressed data packets routed to their destination by the switch fabric
[50]. Similarly, researchers at Stanford University propose a SoC interconnect using
packet-switching [31]. The idea of performing on-chip dynamic routing is described
and simulated but is not yet implemented. MicroNetwork [106] provides on-chip
communication via a pipelined interconnect. A rotating resource arbitration scheme
is used to coordinate inter-node transfer for dynamic requests. This mechanism is

limited by the need for extensive user interaction in design mapping.

The architecture of pipelined packet-switched interconnect has been used ef-
fectively for multiprocessor communication for over 25 years. Compile-time static
routing of communication has been used effectively in a number of parallel processing
systems. In iWarp [20], inter-processor communication patterns were determined
during program compilation and were implemented with the aid of programmable,
inter-processor buffers. This concept has been extended by the NuMesh project
[92] to include collections of heterogeneous processing elements interconnected in
a mesh topology. While pre-scheduled routing is appropriate for static data flows
with predictable communication paths such as those found in DSP, most applications
rely on at least minimal run-time support for data-dependent data transfer. Often,
this support takes the form of complicated per-node dynamic routing hardware

embedded within a communication fabric.

To reduce the affects of clock skew in large chips, the technique of Global
Asynchronous Local Synchronous (GALS) are proposed [75, 105, 56, 77]. GALS
provides asynchronous interfaces between cores which allows the cores to work on
different clock speed. When solving the problems for data to travel across clock

domain, GALS further increases the complexity of NoC architecture.

17

Recently, researcher in Fulcrum Microsystems presents the Nexus, a verified
GALS interconnect ready for commercial usage [69], which is able to efficiently
interconnect SoCs modules with different clock domains. The Nexus system features
a crossbar with the IP cores around it. While heterogeneous IPs with different
clock frequencies are allowed, clock-domain converters connect the local synchronous
modules to the asynchronous crossbar. The crossbar, which is designed with the
asynchronous-circuit techniques and based on the quasi-delay-insensitive (QDI) tim-
ing model, carry the data across the chip. All parts of the system are safely flow
controlled and arbitration is employed to resolve the contention on output ports.
The Nexus system supports 16 ports with each of 36-bit. In the 130-nm generic
logic process, it operates at a frequency of 480 MHz at 1.5V and 25°C. For a typical

2 is used. The Nexus system provides an efficient on-chip

Nexus system, 4.15 mm
interconnect architecture for SoCs with different clock domains. However, since the
asynchronous crossbar can be occupied by only one port at a time, data congestion
is unavoidable, which limits the scalability of the system.

To be applied in on-chip communications, NoC provides a highly scalable so-
lution. For this reason, NoC is located on the far top of Figure 2.1. It requires
complicated circuits for the dynamic routing, buffering, flow control and interfac-
ing. This solution is proposed for next generation large systems having over one
billion transistors [50]. To reduce the overhead of communication network, a coarse
granularity is preferred.

A recent example of this approach can be found in the Reconfigurable Architec-
ture Workstation (RAW) project [103], which provides both a static (determined
at compile-time) and dynamic (determined at run-time) network. Limiting the

dynamic routing and relying mostly on the static network, RAW simplifies its

architecture and sacrifices flexibility.

18

A A
Area Cost Design Cost Performance

6
=

Architecture Architecture Architecture

(a) Area Cost (b) Design Cost (c) Performance

Performance
Cost

Architecture
(d) Overall

Figure 2.2. Illustration of Relative Tradeoff between Architectures

2.1.6 Comparisons on Performance and Cost

As shown in Figure 2.1, both fixed point-to-point architecture and NoC have
high connectivity. The aSoC has been designed to have high connectivity in the
design space. By trading flexibility, aSoC is able to provide required communication
bandwidth with affordable circuit complexity. Further analysis has been done in the
following to reveal the the trade-offs between these architectures.

Besides connectivity and flexibility, other important aspects of hardware architec-
tures include simplicity and performance. Since quantitative comparison depends on
the detailed architecture of a module, relative analysis is used to explore their rela-
tionships. Figure 2.2 presents a relative comparison between the three architectures
of aSoC, NoC and fixed in terms of area cost, design time cost, and performance.

The fixed point-to-point architecture, as a customized design architecture, can

achieve top performance with more efficient area usage than aSoC and NoC as

19

shown conceptually in Figure 2.2(c) and Figure 2.2(a). However, as the system size
increases, this advantage will be diluted by the huge amount of wires required for
full connection. On the other hand, the design time cost of fixed point-to-point
architecture is very expensive when any change in a system is required. The whole
communication architecture has to be redesigned if a IP core is removed from or
added into a system. The prohibitive design cost violates the divide and conquer
idea of SoCs and generates poor performance to cost ratio as illustrated in Figure
2.2(d).

On the contrary, the design cost for NoC is almost ignorable. NoC employs
a regular communication network for the IP cores. Once the network and the
interfaces are set up, it costs little to put in another IP core into the system. As
illustrated in Figure 2.2(b), NoC achieves the lowest design cost among the three
architectures. As mentioned in Section 2.1.5, the NoC design comes with the cost
of complex circuitry to deal with the packets and routing, which increases the area

usage and reduces the performance.
2.1.7 Position of aSoC in the Design Space

As described above, present on-chip communication architectures have their
pitfalls while providing some useful features. The NoC requires huge area resources
to support its flexible communication network, and no physical design has been
established as far as we know. The fixed point-to-point architecture has efficient
area mapping, but its cost to design the system is prohibitive when IP cores need
to be changed. FPGA-like architectures are limited by their flexibility and the
bus architectures are limited by the bandwidth they can provide. To fulfill the
requirements of the next generation on-chip communication, a new architecture has

to be created.

20

ASoC is designed to fill in the gap between these existing communication archi-
tecture for the next generation SoCs. Compared to the above mentioned on-chip
communication methodologies, aSoC provides a better overall performance to cost
ratio. For SoCs, the cost means not only the area resources but also the design
cost. The concept of SoC is proposed to reduce the prohibitive design cost for chips
with large amount of transistors. A communication architecture for SoCs cannot
ignore the design cost and just focus on other issues. As a result, the evaluated cost
includes both the area resources and the design cost.

Several techniques are employed to guarantee aSoC a better performance to cost
ratio. A packet-switching scheme is used in aSoC to provide high connectivity,
and pipelined near-neighboring wires enable aSoC a high clock speed. By using
static-scheduling, aSoC can be implemented with a simpler circuitry than NoC.
To better understand the position of aSoC in the design space, the relationships
between aSoC and other architectures in terms of connectivity, flexibility, cost and

performance are discussed.

e Connectivity. One of most important goals for aSoC is to provide scalable
communication bandwidth for SoCs. High connectivity is necessary for aSoC
to achieve this goal. A regular 2-D mesh communication network is employed to
provide the required bandwidth. In such an mesh, each core can communicate
with its four neighbors in a clock cycle. A packet-switching scheme is used
on the aSoC network to transfer the data between local cores, which allows
wires to be shared by different communications at different time cycles so that
limited number of wires are able to provide a connectivity competitive to fixed
point-to-point architecture. As shown in Figure 2.1, aSoC is located at the

same connectivity level of NoC and fixed point-to-point.

21

o Flexribility. ASoC has a higher flexibility than the FPGA-like and fixed point-
to-point architectures. With a packet-switching scheme, the connections of the
aSoC network is changed by control instructions every cycle in every network
node. As a comparison, fixed point-to-point architecture can not change
its communication pattern once the chip is fabricated, and the FPGA-like
architecture can only modify its connecting settings once per application by
reconfiguring the entire chip. In Figure 2.1, aSoC is to the left of both fixed

point-to-point and the FPGA-like architecture.

Compared to NoC, aSoC has lower flexibility in order to reduce circuit complex-
ity. ASoC employs a static scheduling scheme, with which the communication
patterns are pre-scheduled at compile time. The changes of the aSoC network
connections are controlled by pre-set instructions, unlike the fully run-time dy-
namic changing in NoCs or buses. Further analysis indicates that the reduced
flexibility of aSoC does not affect the performance of aSoC. ASoC is designed
for the high data rate DSP applications. In many cases, the DSP applications
are running with predictable communication patterns which are able to be
determined by the static scheduling at compile time. In addition, aSoC also
supports dynamic communication pattern switching with the dynamic data
dependent control. With all the techniques, aSoC is flexible enough to support

its target applications.

e Area Cost. As mentioned above, the loss in flexibility buys aSoC a lot of
simplicity by employing a static scheduling and avoiding the dynamic arbitra-
tion. The concepts of NoC have been simulated in software to validation its
performance, but, as far as we know, no hardware implementation has been
built due to its resource requirement for arbitration and buffers. With static

scheduling, aSoC is able to achieve high connectivity with a simple architecture,

22

which will be described in detail in Chapter 3.

Simpler than NoC, aSoC is considered more expensive than a customized
fixed point-to-point architecture in small system, which is illustrated in Figure
2.2(a). However, in large systems, fixed point-to-point architectures will lose

because of their exponential increase in system size.

Design Cost. ASoC provides a communication platform for heterogeneous
SoCs. It allows SoCs to choose various IP cores from pre-designed libraries or
third-part IP core vendors. With a regular mesh architecture and well-defined
the interfaces between cores and the communication network, low design cost is
required to design a SoC containing different cores. As a result, aSoC has a low
design cost compared with the customized fixed point-to-point architecture,

which is presented in Figure 2.2(b).

While carefully compared to NoC architecture, aSoC supports heterogeneous
cores. As a result, the aSoC interface has to communicate across clock domain
to various local IP cores. It introduces some more design overhead compared
to NoC. Once a proper core interface protocol is established, this overhead
is negligible and results in a design cost very close to NoC. In addition, the
overhead is worthwhile considering the performance benefits brought by the

heterogeneous cores suitable for applications.

Performance. ASoC architecture aims to provide scalable communication
bandwidth for SoCs. Based on the common sense of scalability, aSoC should
be able to improve performance with the size of the system increases. To
achieve this goal, the packet-switching mesh network is employed to guarantee
a high connectivity, the near-neighboring pipeline wires are used for high clock
speed, and static-scheduling is designed to avoid data congestion. With all

these schemes, aSoC can achieve a better performance than the NoC since it

23

can run at a high clock speed and NoC requires the dynamic arbitration and

suffers from the data congestion.

ASoC is not designed to beat the performance of fixed point-to-point archi-
tecture, since, with a customized design, fixed architecture can be refined for
a given application with sufficient effort in designing. Figure 2.2(c) illustrates
the relationship in performance between aSoC, NoC and fixed point-to-point

architecture.

Combining the features mentioned above, aSoC achieves a better per formance/cost

and fills in the gap between the NoC, FPGA-like and fixed point-to-point architec-
tures. Asillustrated in Figure 2.2(d), aSoC has better performance to cost ratio than
fixed point-to-point architecture and NoC. The static scheduling packet-switching
architecture of aSoC avoids the prohibitive design cost required in fixed point-
to-point architectures. Compared to NoC, aSoC wins because of its smaller area

resources requirement and better performance.
2.2 SoC Supporting Softwares

Generally, an application is specified in a high-level language(HLL) such as
C/C++ or FORTRAN. A compiler converts the HLL into an intermediate represen-
tation(IR), which contains the necessary control and data dependency information.
It is then applied to a more complex and machine-dependent phase that includes
the following stages: instruction selection, scheduling, resource allocation, code
optimizations/transformations, and code generation [95]. Unfortunately, the effec-
tiveness of these stages depend heavily on the target architecture, chosen algorithm,
and optimal ordering. So, for a core-changeable SoC, pre-existing core compilers are
often applied in optimizing the codes for each core.

To date, few integrated compilation environments have been created for het-

erogeneous systems-on-a-chip. The MESCAL system [60] provides a high-level

24

programming interface for embedded SoCs. Though flexible, this system is based on
a communication protocol stack which may not be appropriate for data stream-based
communication. Several projects [62] [63] have adapted embedded system compilers
to SoC environments. These compilers target bus-based interconnect rather than a
point-to-point network. Previous work in system synthesis provides some direction
regarding compilation for SoC systems. Cost-based tradeoffs between hardware,
software, and communication were evaluated by Wan et al. [104]. In Dick and Jha
[84], partitioning was followed by a hill-climbing based task placement stage. In Lee
et al. [64], a loop-based partitioner and space-time scheduler were used to isolate
tasks to specific cores and to coordinate communication. This software system and
the system described in [104] contain front-end interfaces to high-level languages
through standard intermediate forms.

As another example, Pleiades[66] uses an energy-conscious methodology to guide
its mapping and partitioning. Most commercial SoC compilers, such as PSoC|[29]
and CSoCJ[108], allow users to specify the task for each core. In Triscend CSoC
compiler, FastChip, users can choose either software, dedicated hardware or config-
urable hardware to implement a given function. Either HLL(c,HDL) or net-lists can
be used as the input. A built-in compiler is then applied to convert the application
into configure data for CSoC.

But most compilers are unable to coordinate the inter-core communications to
reduce potential congestion, since they target a bus or hierarchical bus template.
Some compilers for packet-switched systems did reduce congestion. As mentioned
above, RAW[64]|, NuMesh|[92], and iWarp[20] support static scheduling and packet-
switched communication. Their supporting software can pre-schedule the data
communication at compile time to avoid congestion.

iWarp ConSet model schedules a phase-based communication model. The phase

means a group of pathways which can be active at the same time. Each iWarp

25

cell has 20 logic channels allowing up to 20 pathways at one time. Pathways in
different phases can share the hardware resources. Extra control circuits and time
are dedicated to phase changing. Because of the synchronization of the cells, the
time required for phase changing is quite significant. Dijkstra’s algorithm is applied
in ConSet to find the shortest path for pathways. On NuMesh, a Communication
OPerator language(COP[71]) is built to optimize the phase and data transfer orga-
nizations. The routing kernel of COP is developed from hierarchical commodities
flow routing. The RAW machine assumes that the network contention is low. Most
performance improvement focus on the scheduler. So, the dimension-ordered routing
is employed.

As a compiler for aSoC, AppMapper differs from the above compilers as explained

below:

e No congestion: Only static routing is used in AppMapper, which means that all
data communications are scheduled by AppMapper in such a way that runtime

congestion cannot happen.

e Scalability: Instead of hierarchical commodities flow algorithm, AppMapper’s
space-time routing is based on a shortest path search algorithm whose com-

plexity is associated with the number of data streams not the system size.

e Simpler: aSoC communication architecture is more compact than multi-processor
systems. All the data communication is scheduled in one loop. Without
the overhead of phase-changing as in iWarp and NuMesh, the communication

interface saves silicon area.

e Decouple with cores: Rather than being fixed, the cores in aSoC can be selected

from a group of candidates.

26

e Higher throughput: Without the congestion of bus and the phase-changing and
dynamic routing overhead of multiprocessor systems, AppMapper expects high

throughput.

27

CHAPTER 3

ASOC OVERVIEW

3.1 aSoC Design Philosophy

Successful deployment of adaptive systems-on-a-chip (aSoC) requires the ar-
chitectural development of an inter-node communication interface, the creation
of supporting design mapping software, and the successful translation of target
applications. Before discussing these issues, the basic operating model of aSoC

interconnect is presented.
3.1.1 Design Overview

As shown in Figure 1.1, a standardized communication structure provides a
convenient framework for the use of intellectual property (IP) cores. A simple core
interface protocol, joining the core to the communication network, creates architec-
tural modularity. By limiting inter-core communication to short wires exhibiting
predictable performance, high-speed point-to-point transfer is achieved. Since het-
erogeneous cores can operate at a variety clock frequencies, the communication
interface provides both data transport and synchronization between processing and
communication clock domains.

Inter-core communication using aSoC takes place in the form of data streams
[92] which connect data sources to destinations. To achieve the highest possi-
ble bandwidth, our architecture is targeted towards applications, such as video,
communications, and signal processing, that allow most inter-core communication

patterns to be extracted at compile time. By using the mapping tools, described

28

Tile A Tile B Tile C

Stream 1

Tile D Tile E Tile F

0.5

Stream 2 0.25

Figure 3.1. Multi-core data streams 1 and 2. This example shows data streams from
Tile A to Tile E and from Tile D to Tile F. Fractional bandwidth usage is indicated
in italics.

in Chapter 4, it is possible to determine how much bandwidth each inter-core
data stream requires relative to available communication channel bandwidth. Since
stream communication can generally be determined at compile time [92], our system
can take advantage of minimized network congestion by scheduling data transfer in
available data channels.

As seen in Figure 3.1, each stream requires a specific fraction of overall com-
munication link bandwidth. For this example, Stream 1 consumes % of available
bandwidth along links it uses and Stream 2 requires %. This bandwidth is reserved
for a stream even if it is not used at all times to transfer valid data. At specific
times during the computation, data can be injected into the network at a lower rate
than the reserved bandwidth, leaving some bandwidth unused. In general, the path
taken by a stream may require data transfer on multiple consecutive clock cycles. On
each clock cycle, a different stream can use the same communication resource. The
assignment of streams to clock cycles is performed by a communication scheduler

based on required stream bandwidth. Global communication is broken into a

series of step-by-step hops that is coordinated by a distributed set of individual

29

Cycle 1
= =» Cycle2
= Cycle 3

Figure 3.2. Pipelined stream communication across multiple communication inter-
faces

tile communication schedules. During communication scheduling, near-neighbor
communication is coordinated between neighboring tiles. As a result of this band-
width allocation, the dynamic timing of the core computation is decoupled from the
scheduled timing of communications.

The cycle-by-cycle behavior of the two example data streams in Figure 3.1 is
shown in Figure 3.2. For Stream 2, data from the core of Tile D is sent to the left
(West) edge of Tile E during communication clock cycle 0 of a four-cycle schedule.
During cycle 1, connectivity is enabled to transfer data from Tile E to the West
edge of Tile F. Finally, in cycle 2 the data is moved to its destination, the core of
Tile F. During four consecutive clock cycles, two data values are transmitted from
Tile A to Tile E in a pipelined fashion forming Stream 1. Note that the data stream
is pipelined and the physical link between Tile D and Tile E is shared between the
two streams at different points in time. Stream transfer schedules are iterative. At
the conclusion of the fourth cycle, the four-cycle sequence re-starts at cycle 0 for
new pieces of data. The communication interface serves as a cycle-by-cycle switch
for stream data. Switch settings for the four-cycle transfer in Figure 3.2 are shown

in Table 3.1.

30

[Cycle| TieA | TileD Tile E Tie F |

0 core to south | core to east

1 core to south | north to east | west to east

2 north to east | west to core | west to core
3 west to core

Table 3.1. Communication schedules for tiles in Figure 3.2

Stream-based routing differs from previous static routing networks [20]. Static
networks demand that all communication patterns be known at compile time along
with the ezact time of all data transfers between cores and the communication
network. Unlike static routing, stream-based routing only requires that bandwidth
be allocated but not necessarily used during a specific invocation of the transfer
schedule. Communication is set up as a pipeline from source to destination cores.
This approach does not require the ezact timing of all transfers, but rather, data only
needs to be inserted into the correct stream by the core interface at a communication
cycle allocated to the stream. Computation can be overlapped with communication
in this approach since the injection of stream data into the network is decoupled

from the arrival of stream data.

3.1.2 Flow Control

Since cores may operate asynchronously to each other, individual stream data
values must be tagged to indicate validity. When a valid stream data value is
inserted into the network by a source core at the time slot allocated for the stream,
it is tagged with a single valid bit. As a result of communication scheduling, the
allocated communication cycle for stream data arrival at a destination is predefined.
The data valid bit can be examined during the scheduled cycle to determine if valid
data has been received by the destination. If data production for a stream source
temporarily runs ahead of data consumption at a destination, data for a specific

stream can temporarily back up in the communication network. To avoid deadlock,

31

data buffer storage is required in each intermediate communication interface for
each stream passing through the interface. With buffering, if a single stream is
temporarily blocked, other streams which use the affected communication interfaces
can continue to operate unimpeded. A data buffer location for each stream is also
used at each core-communication interface boundary for intermediate storage and
clock synchronization.

The use of flow control bits and local communication interface buffering ensures

data transfer with the following characteristics:

All data in a stream follows the same source-destination path.

All stream data is guaranteed to be transfered in order.

In the absence of congestion, all stream data requires the same amount of time

to be transfered from source to destination

Computation is overlapped with communication.
3.1.3 Run-time Stream Management

For a number of real-time applications, inter-core communication patterns may
vary over time. This requirement necessitates the capability to invoke and terminate
streams at various points during application execution and, in some cases, to dy-
namically vary stream source and destination cores at run-time. In developing our
architecture, we consider support for the following two situations: (1) all necessary
streams required for execution are known at compile-time but are not all active
simultaneously at run-time and, (2) some stream source-destination pairs can only

be determined at run-time.

32

3.1.3.1 Asynchronous Global Branching

For some applications, it is desirable to execute a specific schedule of stream
communication for a period of time, and then in response to the arrival of a data
value at the communication interface, switch to a communication schedule for a
different set of streams. This type of communication behavior has the following

characteristics:
e All stream schedules are known at compile time.

e The order of stream invocation and termination is known, but the time at

which switches are made is determined in a data-dependent fashion.

e A data value traverses all affected communication interfaces (tiles) over a
series of communication cycles to allow for a global change in communication

patterns.

This asynchronous global branching technique [64] across predetermined stream
schedules has been shown [9] to support many stream-based applications, such as
FFT, that exhibit time-varying communication patterns. The aSoC communication
interface architecture supports these requirements by allowing local stream schedule
changes based on the arrival of a specific data value at the communication interface.
Depending on the value of the data, which is examined on a specific communication
cycle, the previous schedule can be repeated or a new schedule, already stored in
the communication interface, can be used. This technique does not require the
loading of new schedules into the communication interface at run-time. Although
our architecture supports run-time update of the schedule memory, our software
does not currently exploit this capability. As a result, all required stream schedules
must be loaded into the interface prior to run-time via an external interface and a

shift chain.

33

Instruction | interface next possible | comment

No. connection instruction | branch?

0x0 core to north 0x1/- N data transfer north
0x1 core to interface control | 0x0/0x2 Y test count value
0x2 core to east 0x3/- N data transfer east
0x3 core to interface control | 0x2/0x0 Y test count value

Table 3.2. Data-dependent communication control branching for Tile D in Figure
3.3

Figure 3.3. Example of distinct stream paths for two communication schedules
which send data from a source to different destinations.

The use of these branching mechanisms can be illustrated through the use of a
data transfer example. Consider a transfer pattern in which Tile D in Figure 3.3 is
required to first send a fixed set of data to tile A and then send a different fixed set
of data to Tile E. To indicate the need for a change in data destination, the Tile
D core iteratively sends a value to its communication interface. When this value is
decremented by the core to a value of 0, control for the communication schedule is
changed to reflect a change in data destination. The two communication interface
schedules for Tile D which supports this behavior are shown in Table 3.2. Each

communication cycle is represented in the interface with a specific communication

34

instruction. For cycles when data dependent schedule branching can take place, the
target instruction for a taken branch is listed second under next instruction. In these
cycles, data is examined by the interface control to determine if branching should
occur. The Tile D - Tile A stream schedule uses instructions 0 and 1. The Tile D -

Tile E stream schedule uses instructions 2 and 3.

3.1.3.2 Run-time Stream Creation

Given the simplicity of routing nodes and our goal to primarily support stream-
based routing, communication hardware resources are not provided to route data
from stream sources to destinations that have not been explicitly extracted at
compile time (dynamic data). However, as we will show in Chapter 10, often streams
extracted from the user program require only a fraction of the overall available
stream bandwidth. As a result, a series of low-bandwidth streams between all nodes
can be allocated at compile time via scheduling in a round robin fashion in otherwise
unused bandwidth. Cores can take advantage of these out-of-band streams at run
time by inserting dynamic data into a stream at the appropriate time so that data

is transmitted to the desired destination core.

3.2 aSoC Architecture

The aSOC architecture augments each IP core with communication hardware to
form a computational tile. As seen in Figure 3.4, tile resources are partitioned into
an IP core and a communication interface (CI) to coordinate communication with
neighboring tiles. The high level view of the communication interface reveals the

five components responsible for aSOC communications functionality:

e Interface Crossbar - allows for inter-tile and tile-core transfer.

e Instruction Memory - contains schedule instructions to configure the inter-

face crossbar on a cycle-by-cycle basis.

35

Coreport
— | {[com
)
CcDM CDM
West ﬂ East
BN
Interface
Crossbar Schedule

Instruction

PC logic
Flow Control

HH ‘ ‘ ‘Flow Control Bits
South NSEW NSEW

—

to Coreport
to CDM

Interconnect
Memory

Figure 3.4. Core and Communication Interface

e Interface Controller - control circuitry to select an instruction from the

instruction memory.
e Coreport - data interface and storage for transfers to/from the tile IP core.

e Communication Data Memory (CDM) - buffer storage for inter-tile data

transfer.

The interface crossbar allows for data transfer from any input port (North,
South, Fast, West, and Coreport) to any output port (five input directions and
the port into the controller). The crossbar is configured to change connectivity every
clock cycle under the control of the interface controller. The controller contains a
program counter and operates as a microsequencer. If, due to flow control signals,

it is not possible to transfer a data word on a specific clock cycle, data is stored

36

Coreport

|
Crosshar
lout[31:0] ”” Cin[31:0]
Coni] &] Nin[31:0]
Nout(31.0]-— s Sin[31:0]
Coreport ~ SOUt[3L:0]=— \------ Lo I
Control Eout[31:0] ~—— | 10T Ein[31:0]
Wout[31:0}+—— Win[31:0]
Branching ! L~
Control CDM
Addr
N[STEIWC] | | {
PC Logic _PC | Instruction i, OQC
Memory Decoder

Figure 3.5. Detailed communication interface

in a communication data memory (CDM). For local transfers between the local IP
core and its communication interface, the coreport provides data storage and clock

synchronization.

3.2.1 Communication Interface

A detailed view of the communication interface appears in Figure 3.5. The
programmable component of the interface is a 32-word SRAM-based instruction
memory that dynamically configures the connectivity of the local interface crossbar
on a cycle-by-cycle basis based on a pre-compiled schedule. This programmable
memory holds binary code that is created by application mapping tools. Instruction
memory bits are used to select the source port for each of the six interface destination
ports (Nout, Souts Eout, Wout, Cour for the core, I, for the interface control). CDM
Addrindicates the buffer location in the communication data memory (CDM), which
is used to store intermediate routed values as described in Section 3.2.3. A program

counter PC'is used to control the instruction sequence. Branch control signals from

37

From Core To Core
From Interconnect Flow Control

Input Coreport _ Memory Bits Output Coreport
D Valid CPO CPI NSEW NSEW Vali
ata Bit Data gitd
c ALLIIR i

A D |ADL ‘ D A D A

D A |DAE SoccBes| | DeMux ‘ A D A D

D T DT A w T D T D

R A |R AR E AR A R
C%_f co cl } | CPI
3 B o S =

3

Interface Crossbar

32 1
33 i
33 1
33 _
33

smwnz
smwnz

Figure 3.6. Input and output coreport interface

the instruction memory determine when data dependent schedule branching should
occur. This control can include a comparison of the I, crossbar output to a fixed

value of 0 to initiate branching.
3.2.2 Coreports: Connecting Cores to the Network

The aSoC coreport provides a synchronization and buffering resource between a
core and an associated communication interface. Coreport architecture is designed
to permit interfacing to a broad range of cores with a minimum amount of additional
hardware, much like a bus interface. Both core-to-interface and interface-to-core
transfer are performed using asynchronous handshaking to provide support for
differing computation and communication clock rates.

Figure 3.6 shows a high-level view of the coreport interface. Both input and
output coreports contain dual-port memories (one input port, one output port).
Each memory contains an addressable storage location for each individual streams,
allowing multiple streams to be targeted to each core for both input and output.

The structure of the ports allows other streams to continue transfer if an individual

38

stream is blocked. Each data value in the input and output coreports is tagged with
a valid bit to indicate valid data.

Coreport writes from the interface crossbar to the input coreport memory require
two communication clock cycles. During the first transfer cycle the coreport input
stream C'PI is driven from the interconnect memory shown in Figure 3.5 to select
the valid bit for the designated stream shown at the right in Figure 3.6. During the
same cycle, the coreport source select bits (C' in Figure 3.5) are used to select the
source port and configure the interface crossbar. If the flow control bit attached to
the source port data is valid and the valid bit in the input coreport memory is invalid,
indicating available storage space, a successful coreport write can be completed on
the following communication clock cycle. During the second transfer cycle the valid
bit from the input coreport is used in conjunction with the flow control valid bits
from the source to latch in the data. The control input bit CI is generated by
the demultiplexer and conditioned by a decoded input stream indicator C'PI to
generate a write enable. After the write occurs, the input coreport valid bit is used
to indicate successful transfer to a neighboring tile or CDM sending data. Note
that, although not shown, a write to the input coreport will set the corresponding
valid bit. Although coreport writes require two cycles, consecutive writes can be
pipelined.

Reads from the output coreport also require two communication clock cycles.
During the first clock cycle the data and the valid bit are read from the output
coreport based on the coreport output stream indicator C'PO from the interconnect
memory. As shown in Figure 3.6, the data value is latched in the crossbar regis-
ter at the start of the second communication clock cycle. During this cycle, the
source select bits for the target destination port and associated flow control bits are
demultiplexed to generate control output bit C'O. This value indicates if storage

space is available at the destination port. The control output C'O is conditioned by

39

; Data
Vgijt'd Clear| State Data \/5)ig
Addr Machine Addr Bt
To ClI
FromCl | Dat ‘—> En —
N Data
Data LA Data

BN L

Input Coreport 5 = * Output Coreport

L
D
AN
Multiplier Core

Figure 3.7. Multiplier coreport interface

a decoded stream indicator C'PO to specify if the output coreport valid bit should
be reset on the next rising clock edge, indicating a successful transfer.

The portion of the coreport closest to the core has been designed to be simple
and flexible, like a traditional bus interface. This interface can easily be adapted to
interact with a variety of IP cores. An example interface appears in Figure 3.7 for
a multiplier core. Since coreport reads and writes occur independently, the network
can operate at a rate that is different than that of individual cores. As shown in the
figure, a state machine can control coreport/core interaction. A set of state machine

operations that allow for the multiplication of the two data values includes:

e State 0: The valid bit of input data value A is accessed in the input coreport

along with input data.

e State 1: If data is valid, data value A is latched into an input register and

clear valid bit signal is asserted. If invalid, return to state 0.

e State 2: The valid bit of input data value B is accessed in the input coreport

along with input data.

e State 3: If data is valid, data value B is latched into an input register and

clear valid bit signal is asserted. If invalid, return to state 0.

40

Communication Communication

Interface CI (sender) Interface CI (receiver)
D%a frtom Input F/F
es
_ 2 Data from
- 0 Interconnect West Input F/F
1 = 3 . 0 A’B‘#
33
33 ValidBit DEMU+, From North 1
West E = |« From West
Flow Control s el Mg s e
f <L From East ¢ Flow Contral . ValidBit
Bit J_ ClearAddr g &‘ || From Core Bit

DCA L

AL TCrossbar Config Data ValidBit
A é R [: Data)

° Wr Addr Write Addr
Data | Valid Bit CDM Addr| L CDM
Read Addr PC
~CLK . Read Addr
-—
CDM Interconnect Memory CLK

(for input from West)

Figure 3.8. Flow Control Scheme

e State 4: The result from multiplication is latched and the valid bit at the
stream location in output coreport is checked. If the location is full, a jump is

made to State 4.

e State 5: The result is stored and the output coreport valid bit is set. A jump

is made to state 0.

The sequenced nature of the data access prevents port data from being accessed
out of order, even if network congestion delays data transfer. To maintain flexibility,
the number of ports per coreport can be changed based on core requirements.
While the above simple example provides an overview of coreport/core interfacing
to illustrate transfer coordination, specific interfacing depends on the core. For
example, as described in Section 5.2, a microprocessor can be interfaced to the

coreport, via a microprocessor bus.

3.2.3 Communication Data Memory

Due to network congestion or unequal source and destination core operating
frequencies, it may be necessary to buffer data at intermediate communication in-

terfaces. As shown in Figure 3.8, the communication data memory (CDM) provides

41

one storage location for each stream that passes through a port of the communication
interface. To facilitate interface layout, the memory is physically distributed across
the N, S, E, W ports. On a given communication clock cycle, if a data value cannot
be transfered successfully, it is stored in the CDM. The flow control bits that are
transfered with the data can be used to indicate valid data storage. A full valid bit
for a stored CDM value inhibits further transfer for the corresponding stream to the
tile communication interface.

In aSoC devices, near-neighbor flow control and buffering is used. Figure 3.8
indicates the location of the communication data memory in relation to inter-tile
data paths. On a given communication clock cycle, the C DM Adr for each port (2
bits) indicates the stream that is to be transfered in the next cycle. Concurrently,
the crossbar is configured by interconnect memory signals (N..C) to transfer the
value stored in the crossbar register. This value is transfered to the receiver at the
same time the receiver valid bit is sent to the transmitter. This bit indicates if the
CDM at the receiver already has a buffered value for the transmitted stream. If
a previous value is present at the receiver, the transmitted value is stored in the
transmitter CDM using the write signals shown in the CDM at the right in Figure
3.8. A multiplexer at the input to the crossbar register determines if the transmitted
or previously-stored value is loaded into the crossbar register on subsequent transfer
cycles.

An example of inter-tile transfer from a sender tile to a receiver tile can be seen
in Figure 3.8 for a two cycle transfer involving a data value stored in the CDM
of the sender. During the first communication cycle stream data and valid bit are
loaded in to the sender crossbar register. On the subsequent cycle this value is
transfered to the receiver at the same time as the flow control bit from the receiver
is sent to the sender. If this bit indicates that the CDM in the receiver is empty,

the stream location in the sender is cleared. Note that the flow control (valid) bit

42

also configures the multiplexer before the crossbar register in the receiver.

The use of stream based storage for the communication data memory allows
for storage flexibility at the expense of increased communication data memory size.
The decoupling of communication interface PC from the CDM allows for easier
management of stream data across control jumps. Additionally, this approach is

scalable with interconnect memory size.

43

CHAPTER 4

APPMAPPER COMPILER AND SIMULATOR

The aSoC application mapping environment, AppMapper, builds upon existing
compiler infrastructure and takes advantage of user interaction and communication
estimation during the compilation process. The mapping software contains a series
of steps: front-end processing, basic block partitioning, computation and communi-
cation scheduling, and back-end device-specific compilation. Notable aspects of the
mapping software include support for high-level language (C), an estensible library
of compiler optimizations, a cost-based basic block partitioner, and output to a
range of back-ends targeting a variety of cores. AppMapper tools and methodology
follow the flow shown in Figure 4.1. Individual steps include:

e Preprocessing/conversion to SUIF - Following parsing, high-level C con-
structs are translated to a unified abstract syntax tree format (AST). After
property annotation, AST representations are converted to a graph-based
intermediate format (SUIF) [86] that represents functions at both high and low
levels. This representation allows for rapid evaluation for both partitioning and
communication cost estimation and the use of standard preprocessing passes

such as dead-code elimination.

e Basic block partitioning and assignment - An annealing-based partitioner
operates on basic blocks based on core computation and communication cost
models. The partitioner isolates intermediate-form structures to locate inter-
core communication. The result of this phase is a refined task graph where

the nodes are clustered branches of the syntax tree assigned to available aSoC

44

cores and the inter-node arcs represent communication. The number and the
type of nodes in this task graph match the number and type of cores found in
the device. Following partitioning and assignment to core types, core tasks are
allocated to individual cores located in the aSoC substrate so that computation

load is balanced.

e Inter-core synchronization - Once computation is assigned to core resources,
communication points are determined. The blocking points allow for synchro-

nization of stream-based communication and predictable bandwidth.

e Communication scheduling - Inter-core communication streams are deter-
mined through a heuristic space-time scheduler. This list-scheduling approach
minimizes the overall critical path while avoiding communication congestion.
Individual interconnect memory binaries are generated following communica-

tion scheduling.

e Core-based compilation - Core compilation and communication scheduling
are analyzed in tandem through the use of feedback. Core functionality is
determined by native core compilation technology (e.g. FPGA synthesis,
RISC compiler). Communication calls between cores are provided through

fine-grained send/receive operations.

e Code generation - As a final step, binary code for each core and communi-

cation interface is created.

These steps are presented in greater detail in subsequent subsections:
4.1 SUIF preprocessing

The AppMapper front-end is built upon the SUIF compiler infrastructure [86].

SUIF provides a kernel of optimizations and intermediate representations for high-

45

Annotate Preprocess
Front-end
parse

Graph-based IF

Basic Block

e : Run-time
Partition/Assignment

Estimation

Run time

Inter-core
Stream assignment Synchronization Enhanced IF
Communication) __ _ _Dependencies Core
Scheduling Compilation

Code Core IF

Generation \

. Communication
insﬁiﬁ%ﬁgns Bitstreams instructions

Stream schedules

Figure 4.1. aSoC Application Mapping Flow

level C code structures. High-level representations are first translated into a language-
independent abstract syntax tree format. This approach allows for object-oriented
representation for loops, conditionals, and array accesses. AST representations are
then converted into a graph-based intermediate form that represents functions at
both a high and low level. Prior to partitioning, AppMapper takes advantage of
several scalar SUIF optimization passes including constant propagation, forward
propagation, constant folding, and scalar privatization [86]. The interprocedural
representation supported in SUIF facilitates subsequent AppMapper partitioning,
placement, and scheduling passes. SUIF supports interprocedural analysis rather
than using procedural inlining. This representation allows for rapid evaluation of
partitioning and communication cost and the invocation of dead-code elimination.

Data references are tracked across procedures.

46

4.2 Basic Block Partitioning and Assignment

Following conversion to intermediate form, high-level code is presented as a
series of basic blocks. These blocks represent sequential code, loop-level parallelism,
and subroutine functions. Based on calling patterns, dataflow dependency between
blocks is determined through both forward and reverse tracing of inter-block paths
[10]. As a result of this dependence analysis, coarse-gained blocks can be scheduled
to promote parallel computation. As shown in Figure 4.2b for an IIR filter, sub-
function dependency forms a flowgraph of computation that can be scheduled. The
most difficult part of determining this dependency is estimating the computation
time of basic blocks across a range of cores to determine the core best suited for
evaluation. The run time of each basic block is determined by parameters of the

computation. These include:

e 3 - run time - execution time of a basic block on a specific core. Value
is based on the number of clock cycles, the speed of the core clock, and the

amount of available parallelism.

e) - invocation frequency - the number of times each basic block is invoked.

The parameters lead to an overall core run time of 5 x A for each function.
Core run-time estimates, 3, are determined through instruction counts or through
simulation, prior to compilation using techniques described in Section 5.2. Clock
rates, which vary from core to core, are taken into account during this determination.
A goal of design mapping is to maximize the throughput of stream computation
while minimizing cse, the inter-core transport time for basic block data. For a

specific core, this value measures the shortest distance to another core of a different

type.

47

MEML @D giger 00 vEm2
RISC1() {

for (i=0; i<Length; i=i+1) \wz)
data = RECEIVE MEM1;
x= RECEIVE FPGAL,;
y = data + x*a;
CompBlock (20); L

Sendy To MACY,;
Send y To MEM2;
}
}
(a) Codes for RISC1 with communication primitives (b) Data streams of IIR application

Figure 4.2. Inter-core synchronization

Assignment of basic blocks to specific cores requires a cost model which takes
both computation and communication into account. For AppMapper, this cost is

represented as:

cost =2 X Teompute + Y X + 2 X Ciotal- (4.1)

Toverlap

where Tiompute indicates combined computation time of all streams, T,yeriqp in-
dicates computational parallelism, c¢;y, indicates combined stream communication
time and z, y, and z are scaling constants. Minimization of this cost function
forms the basis for basic block assignment. The value T¢mpyuze is determined from
B parameters for each core. Prior to basic block assignment, small code blocks
are clustered using Equation 4.1 in an effort to minimize inter-core transfer. To
support placement, a set of N bins are created, one per target core. During the
clustering phase, communication time is estimated by the distance of the shortest
path between the two types of target cores. At the end of clustering, a collection
of N block-based clusters remains. Dataflow dependency is tracked through the
creation of basic block data predecessor and successor lists.

For core assignment, clustered blocks are assigned to unoccupied cores so that
the cost expressed in Equation 4.1 is minimized. AppMapper provides a file-based

interface for users to manually assign basic blocks to specific cores, if desired. Fol-

48

lowing greedy basic block assignment to cores, a swapping step is used to exchange
tasks across different types of cores subject to the cost function in Equation 4.1. This
step attempts to minimize system cost and critical path length by load balancing
parallel computation across cores. Load balancing is supported by the second
term in Equation 4.1. Basic block assignment is complicated by the presence of
multiple cores with the same functionality in an aSoC device. Following basic block
assignment to a specific type of core, it is necessary to match the block to a specific
core at a fixed location. Given the small number of each type of core available
(typically less than 5), a full enumeration of all core assignments is possible. For
later generation devices it may be possible to integrate this search with the basic

block to core assignment phase.

4.3 Inter-core Synchronization

Synchronization between cores is required to ensure that data is consumed based
on computational dependencies. Once basic blocks have been assigned to specific
cores in the aSoC device, communication primitives are inserted into the interme-
diate form to indicate when communication should occur. These communications
are blocking based on the transfer rate of the communication network. As shown
in Figure 4.2a, the data transfer call to multiply-accumulate unit MAC1 follows
an assignment to y. As a result, RISCI processing can be overlapped with MAC1
processing. Each inter-core communication represents a data stream, as indicated

by w-labeled arcs in Figure 4.2b.

4.4 Communication Scheduling: Space-Time Routing

Following basic block assignment, the number of streams and their associated
sources and destinations are known. Given a set of streams, communication schedul-
ing assigns streams to communication links based on a fixed schedule. Inter-tile

communication is broken into a series of time steps, each of which is represented by

49

a specific instruction in a communication interface instruction memory. Schedule
cycle assignment is made so that the schedule length does not exceed the instruction
storage capacity of each communication interface instruction memory (32 instruc-
tions). Each unidirectional inter-tile channel can transmit one data value on each
communication clock cycle. Only one stream can use a channel during a specific clock
cycle. In general, the length of a schedule must be at least as long as the longest
stream Manhattan path. During schedule execution, multiple source-destination
data transfers may take place per stream. For example, two stream transfers take
place per schedule in the example shown in Figure 3.2. To allow for flow control, all
transfers for a stream must follow the same source-destination path.

Our communication scheduling algorithm forms multi-tile connections for all
source-destination pairs in space through the creation of multi-tile routing paths.
Sequencing in time is made by the assignment of data transfer to specific communica-
tion clock cycles. This space-time scheduling problem has been analyzed previously
[64] in terms of static, but not stream-based scheduling. For our scheduler, the
schedule length L is set to the longest Manhattan source-destination path in terms
of tiles. Streams are ordered by required stream bandwidth per tile. The following
set of operations are performed to create a source-destination path for each stream

prior to scheduling transfers along the paths:

e The shortest source-destination path for each path is determined via maze
routing using a per-tile cost function of g; = ¢;_1 + ¢;. In this equation, ¢; is
the cost of using a tile communication channel, g;_; is the cost of the route
from the path source to tile 7, and g; is the total cost of the path including
tile . The ¢; cost value represents a combination of the amount of channel
bandwidth required for the path in relation to the bandwidth available and

the distance from the channel to the stream destination.

50

e For multi-fanout streams, a Steiner tree approximation is used to complete
routing. After an initial destination is reached, maze routes to additional

destinations are started from previously-determined connections.

Following the assignment of streams to specific paths, the assignment of stream
data transfers to specific communication clock cycles is performed. Each transfer
must be scheduled separately within the communication schedule. Scheduling is

performed via the following algorithm:

1. Set the length of the schedule to the length of the longest Manhattan path

distance, L. Specific schedule time slots range from 0 to L — 1.
2. Order streams by required channel bandwidth.

3. For each stream:

(a) Set start time slot s to 0.
(b) For each transfer:

i. Determine if inter-tile channels along source-destination path are avail-
able during n consecutive communication clock cycles, where n is the
stream path length.

ii. If bandwidth available, schedule transfer communication, increment

start time s, and go to step 3.b to schedule next transfer.

iii. Else increment start time s and go to step 3.b.i.

If any stream cannot fit into the length of the stream schedule L, the schedule

length is incremented by one and the scheduling process is restarted.

In Section 3.1.3.1, a technique is described which allows run-time switching
between multiple communication schedules. To support multiple schedules, the com-

munication scheduling algorithm must be invoked multiple times, once per schedule,

o1

and the length of the combined schedules must fit within the communication interface

instruction memory.

4.5 Core Compilation and Code Generation

Following assignment of basic blocks to cores and scheduling, basic block inter-
mediate form code is converted to representations that can be compiled by tools
for each core. Back-end formats include assembly-level code (R4000 processor) and
Verilog (FPGA, multiplier). These tools also provide an interface to the simulation
environment described in Section 5.2. The back-end step in AppMapper involves
the generation of instructions for the R4000 and bitstreams for the FPGA. Each
communication interface is configured through the generation of communication

instructions.

4.6 Comparison to Previous Mapping Tools

To date, few integrated compilation environments have been created for het-
erogeneous systems-on-a-chip. The MESCAL system [60] provides a high-level
programming interface for embedded SOCs. Though flexible, this system is based on
a communication protocol stack which may not be appropriate for data stream-based
communication. Several projects [62] [63] have adapted embedded system compilers
to SOC environments. These compilers target bus-based interconnect rather than a
point-to-point network. Cost-based tradeoffs between on-chip hardware, software,
and communication were evaluated by Wan et al. [104]. In Dick and Jha [84], on-chip

task partitioning was followed by a hill-climbing based task placement stage.

Our mapping system and these previous efforts have similarities to software
systems which map applications to a small number of processors and custom de-
vices (hardware/software co-design [33]), and parallel compilers which target a
uniform collection of interconnected processors. Most codesign efforts [33] involve

the migration of operational or basic block tasks from a single processor to custom

92

hardware. The two primary operations performed in hardware/software codesign
is the partitioning of operations and tasks between hardware and software and the
scheduling of operations and communications [33]. The small number of devices
involved (usually one or two processors and a small number of custom devices)
allows for precise calculation of communication and timing requirements, facilitating
partitioning and scheduling.

Our partitioning approach, which is based on task profiling and simulated an-
nealing, extends earlier task-based codesign partitioning approaches [35, 37| to
larger numbers of tasks and accurately models target processors and custom chips.
Although all of these efforts require modeling of execution time, our approach
addresses a larger number of target models and requires tradeoffs between numerous
hardware/software partitions. This requires high-level modeling of both perfor-
mance and partition size for a variety of different cores. Our approach to partition
assignment of basic block tasks is slightly more complicated than typical codesign
assignment. In general, the bus structure employed by codesign systems [35] limits
the need for cost-based assignments. In contrast, our swap-based assignment ap-
proach for heterogeneous targets is simpler than the annealing based technique used
to assign basic blocks to a large homogeneous array of processors [103]. Since blocks
are assigned to specific target cores during partitioning, the assignment search is
significantly more constrained and can be simplified.

Our stream-based scheduling differs from previous codesign processor/custom
hardware communication scheduling [33]. These scheduling techniques attempt to
identify exact communication latency between processors and custom devices to en-
sure worst-case performance across a variety of bus transfer modes (e.g. burst/non-
burst) [62]. Often instruction scheduling is overlapped with communication schedul-
ing to validate timing assumptions [33]. In contrast, our communication scheduling

approach ensures stream throughput over a period of computation. Unlike parallel

93

processing stream compilers for homogeneous multiprocessors [9, 45], the exact
communication time of each piece of data is not required. Since heterogeneous
devices with different clock speeds are used for our system, the scheduled reservation

of bandwidth is sufficient to ensure required throughput.

54

CHAPTER 5

EXPERIMENTAL METHODOLOGY

5.1 Target aSoC Devices

To validate the aSoC approach, target applications have been mapped to imple-
mented aSoC devices and architectural models containing up to 49 cores. Param-
eters associated with the models are justified via a prototype aSoC device layout,
described in Chapter 10. Examples of 9 and 16 core models are shown in Figure
5.1. The models consist of R4000 RISC microprocessors [27], FPGA blocks, 32Kx8
SRAM blocks (MEM), and multiply-accumulate (MAC) cores. The same core
configurations were used for all benchmarks. The FPGA core contains 121 logic
clusters, each of which consists of four 4-input look-up tables (LUTs) and flip flops

[18]. The core population of all aSoC configurations are shown in Table 5.1.
5.2 Simulation Environment

To compare aSoC to a broad range of alternative on-chip interconnect approaches,
including flat and hierarchical buses, a timing-accurate interconnect simulator was

developed. This simulator is integrated with several IP core simulators to provide

‘ Core Array Configuration ‘ R4000 ‘ FPGA ‘ Mem ‘ MAC ‘

3x3 2 3 2 2
4x4 4 4 2 6
&) 9 2 4 10
6x6 13 2 6 15
=7 18 3 8 20

Table 5.1. aSoC device configurations

95

0 1 2 3
MEM FPGA FPGA MEM
4 5 6 7

R4000 FP FPGA R4
8 9
R4000Q R4
2

GA 000
10 11

MAC MAC 00Q
13 15

i 14
MAC MAC MAC MAC

Figure 5.1. aSoC topologies: 9 and 16 cores

a complete simulation environment. The interaction between the computation and
communication simulators provides a timing-accurate aSoC model that can be used
to verify a spectrum of SoC architectures.

A flowchart of the simulator structure appears in Figure 5.2. For our modeling
environment, simulation takes place in two phases. In phase 1, simulation determines
the exact number of core clock cycles between data exchanges with the communi-
cation network coreport interface. In phase 2, core computation time is determined
between send and receive operations via core simulation which takes core cycle time
into account. Data communication time is simultaneously calculated based on data
availability and network congestion. Both computation and communication times
are subsequently combined to determine overall run-time.

During the first simulation phase, core computation is represented by C files
created by AppMapper or user-created library files in C or HDL (Verilog). This
compute information is used to determine the transfer times of core-network inter-
action. The execution times of core basic blocks are determined by invocation of
individual core simulators. Cycle count results of these simulators are scaled based

on the operating frequency of the cores. Specific simulators include:

e Simplescalar - This processor simulator [21] models instruction level execu-

o6

Core code from AppMapper

C code Verilog Core
Config

Core
Config

R4000 architecture

; i FPGA simulation) . . .
Phase 1 R4000 simultion (Quartus) MEM simulation MAC simulation

(SimpleScalar)

l l l '

Computation delays

aSoC System Simulator

Phase 2 Core spee
Topology Configuration Network Core C representation
Qore Ioc_atlo simulation | €vents | simulation of cores
Cl instructions

Simulator Lib. |
Combined
evaluation

System activity

System
statistics

'

System performance

Figure 5.2. aSoC System Simulator

tion for the R4000 MIPs architecture. The simulator takes C code as input and
determines the access order and number of execution cycles between coreport
accesses. Cycle counts are measured through the use of breakpoint status

information.

FPGA block simulation - Unlike other cores, FPGA core logic is first created
by the designer at the register-transfer level. The Verilog-XL simulator is then
used to determine cycle counts between coreport transfers. To verify timing
accuracy, all cores have been synthesized to four-input LUTs and flip flops

using Synplicity Synplify.

Multiply-accumulate - The multiply-accumulate core is modeled using a
C-based simulator. Given the frequency of an input stream, the simulator

determines the number of cycles between coreport interactions.

57

| | Speed | Area (A?) | CI Overhead |

Comm. interface 2.5ns | 2500 x 3500 -
MIPs R4000 (w/o cache) | 5ns | 4.3 x 107 [27] 16.9%
MAC o ns 1500 x 1000 48.6%
FPGA 10 ns | 27500 x26500 1.0%
MEM dns | 7500 x 6500 8.8%

Table 5.2. Component Parameters

¢ SRAM memory cores (MEM) - SRAM cores are modeled using a C-based

cycle-accurate simulator.

Layouts, described in Chapter 10, were used to determine per-cycle performance
parameters of the FPGA, multiply-accumulate, and memory cores.

The second stage of the simulator determines communication delay based on
core compute times and instruction memory instructions. Following core timing
determination, aSoC network communication ordering and delay is evaluated via the
communication simulator. The instruction memory instructions are used to perform
simulation of each tile’s communication interface. This part of the simulator takes
in multiple interconnect memory instruction files. High-level C code represents
core and communication interfaces. As shown in Figure 4.2a, core compute de-
lay is replaced with compute cycle (CompBlock) delays determined from the first
simulation stage. The second input file to the simulator is a configuration file,
previously generated by AppMapper. This file contains core location and speed
information, the details of the inter-core topology and the interconnection memory
instructions for each communication interface. These files are linked with a simulator
library to generate an executable. When the simulator is run, multiple core and
communication interface processes are invoked in an event-driven fashion based on
data movement, production, and consumption. For aSoC, the CDM and coreport

storage is modeled to allow for accurate modeling of inter-tile storage.

o8

The simulator can model a variety of communications architectures based on
the input parameter file. This includes the aSoC interconnect architecture, the
CoreConnect on-chip bus [54], a hierarchical CoreConnect bus, and a dynamic
router. Parameters associated with aSoC, such as the core type, location, speed,
and the communication interface configuration, can be configured by the designer

to explore aSoC performance on applications.

99

CHAPTER 6

TARGET ASOC APPLICATIONS

Four applications from communications, multimedia, and image processing do-
mains have been mapped to the aSOC device models using the AppMapper flow
described in Chapter 5. Mapped applications include MPEG-2 encoding [43], or-
thogonal frequency division multiplexing (OFDM) [61], Doppler radar signal analysis

[79], and image smoothing (IMG). An IIR filter kernel was used for initial analysis.

6.1 MPEG-2 Encoder

An MPEG-2 encoder was parallelized from sequential code [43] to take ad-
vantage of concurrent processing available in aSOC. Three 128128 pixel frames,
distributed with the benchmark, were used for aSOC evaluation. For the 4x4
aSOC configuration, MPEG-2 computation is partitioned as shown in Figure 6.1.
Thick arrows indicate video data flow and thin arrows illustrate control signal flow.
Frame data blocks (16x16 pixels in size) in the Input Buffer core are compared
against similarly-sized data blocks stored in the Reference Buffer and streamed
into a series of multiply-accumulate cores via an R4000. These cores perform
motion estimation by determining the accumulated difference across source and
reconstructed block pixels, which is encoded by the DCT quantizer, implemented in
an adjacent R4000. The data is then sent to the controller and Huffman coding is
performed in preparation for transfer via a communication channel. Another copy of
the DCT encoded data is transferred to the IDCT circuit, implemented in an R4000

core. The reconstructed data from the IDCT core is then stored in the Reference

60

Difference:

Input Ref.

Source D(0)

Reconst D(0) Buffer Buffer
RISC
gource MACO
oo || ||| |]|icT)
ourceData, — \AC1 -
RISC Reconstructe Motiol
V| lsce | (s | et
Frame Reconst D(2
MAC2
Source D(3) ‘ MACS‘ ‘ MAC4‘ ‘ MACO‘ ‘ ‘
RISC Reconst D(3
(@) Flow MAC3 (b) Mapping Results

Figure 6.1. Partitioning of MPEG-2 encoder to a 4x4 aSOC configuration

Stage 1 Stage 2 Stage 3 Stage 4

/ MEM

R4000

Core3 [x©6) (7
RA000

Core4 [x(@) Q-+
FPGA

CoreS[X(5) O{\\O\

FPGA

[1
ul
o
®
>
Lhy |

ﬂFPGAd ‘ MEM
‘ !

‘FPGA]L ‘PROC*
L

‘ MACL[PROC

oo]

(b) Mapping of the 4th stage

¥

FPGA

Core7 [1) (Of=====-= \q)/

FPGA y(7)

(a) Flow of OFDM

Figure 6.2. OFDM mapped to 16 core aSOC model

Buffer core for later use. Data transfer is scheduled so that all computation and

storage is pipelined.
6.2 Orthogonal Frequency Division Multiplexing

OFDM is a wireless communication protocol that transmits data over a set of
narrowband channels [61]. OFDM provides high communication bandwidth and
is resilient to RF interference. Multi-frequency transmission using OFDM requires
multiple processing stages including IFFT, normalization, and noise-tolerance guard
value insertion. As shown in Figure 6.2, a 2048 subcarrier complex-valued OFDM
transmitter has been implemented on an aSOC model. The IFFT portion of the

computation is performed using four R4000 and four FPGA cores. Resulting com-

61

Stage 1 Stage 2 Stage 3 Stage 4

|
x@ Q20— 0 0 O O
w0 00X /O——0 O 0

Core0

(] frod—Feedd |
1

‘PROC?—_—*FPGA%:‘FPGA PROC

Core3

‘PROC# ‘ ‘ ‘ ‘ ‘PROC

w0 0 PYO. 0 0\ 0

Core4

¥(4)

L

|
|
d
|

o S XB—0 0 \ 0

Core5

Core7

1
)
5 y(2)]
o OO ep—0——% 0] e ; «
X X y(3) J |::>
]
1
J

M Y Y) Y Y Y)

(a) Flow of Doppler radar signal analysis

Figure 6.3. Doppler radar signal analysis mapped to 16 core aSOC model

plex values are normalized with four MAC and four R4000 cores. A total of 512
guard values are determined by R4000 cores and stored along with normalized data
in memory. The OFDM application exhibits communication patterns which change
during application execution, as shown in the four stages of computation illustrated
in Figure 6.2. The run-time branching mechanism of the communication interface

is used to coordinate communication branching for the four stages.
6.3 Doppler Radar Signal Analysis

A stream-based Doppler radar receiver [79] was implemented and tested using an
aSOC device. In a typical Doppler radar system, a sinusoidal signal is transmitted
by an antenna, reflects off a target object, and returns to the antenna. As a result
of the reflection, the received signal exhibits a complex frequency shift. This shift
can be used to determine the speed and distance of the target through the use of a
Fourier analysis unit. As shown in Figure 6.3, the main components of the analysis
include an FFT of complex input values, a magnitude calculation of FF'T results and
the selection of the largest frequency magnitude value. For the 16 core aSOC model,

a 1024 point FFT, magnitude calculation, and frequency selection were performed

62

(b) Mapping of the 4th stage

by four R4000 and four FPGA cores. All calculation was performed on 64 bit
complex values. Like OFDM, the Doppler receiver requires communication patterns
which change during application execution. The run-time branching mechanism of
the communication interface is used to coordinate communication branching for the

four stages.
6.4 Image Smoothing

A linear smoothing filter was implemented in multi-core aSOC devices for images
of size 800x600 pixels. The linear filter is applied to the image pixel matrix in
a row-by-row fashion. The scalar value of each pixel is replaced by the average
of the current value and its neighbors, resulting in local smoothing of the image
and reducing the effects of noise. To take advantage of parallelism, each image is
partitioned into horizontal slices and processed in separate pipelines. Data streams
are sent from memory (MEM) cores to multiple R4000s, each accepting a single
data stream. Inside each MAC, each pixel value is averaged with its eight neighbor
values resulting in nine intermediate values. Later in the stream, an FPGA-based
circuit sums the values to generate averaged results. These results are buffered in a
memory core. This application was mapped to aSOC models ranging in size from 9

to 49 cores by varying the number of slices processed in parallel.
6.5 IIR Filter

A three-stage and a six-stage IIR filter were implemented using the 9 and 16
aSOC models, respectively. The data distribution and collection stages of the filter
are implemented using R4000s. MACs and FPGA cores execute middle stages of
multiplication and accumulation. SRAM cores (MEM) buffer both source data and
computed results. The overall application data rate is limited by aSOC communi-

cation speed.

63

CHAPTER 7

ADAPTIVE SOVA TurBO CODE DECODER
APPLICATION ON ASOC

In the previous chapter, several DSP and multi-media applications have been
mapped onto aSoC. While these applications are small and mostly the computation
kernels of systems, it is necessary to further test the practicability of aSoC with
large and practical systems.

Fully testing aSoC requires the mapping of an integral application system onto
aSoC. ASoC targets a heterogeneous System-on-Chip for next generation techniques.
A partial kernel core may not be able to fully reveal the ability of aSoC. Therefore,

the target application should be a full system with the latest techniques.

To fulfill these requirements and better illustrate the performance of aSoC, an
application system, the turbo codes simulator, is chosen from the wireless commu-
nication domain.

The turbo codes simulator includes the turbo encoder, channel simulator, turbo
decoder and system evaluator. As a wireless communication system, it has a high
data rate and its decoding throughput is an important parameter to be tested in
aSoC.

In this dissertation, an adaptive soft-output Viterbi algorithm (ASOVA) was
developed for the turbo decoder, which reduced the computation of the traditional
SOVA [48], and could change its decoding complexity based on the input signal to
noise ratio (SNR).

This turbo codes simulation system is mapped onto aSoC, FPGAs and other
on-chip architectures. The performances on these architectures will be compared to

each other to reveal the advantages of aSoC.

64

7.1 Introduction

The recently introduced turbo code [15], an error-correction code, is attractive
because of its excellent performance. The turbo encoder is formed by two recursive
systematic codes (RSC) [72] joined by an interleaver. The proposed decoder applies
an iterative algorithm whose core is a maximum a posteriori (MAP) [11] decoder.
Since the MAP decoding algorithm is complicated and difficult to pipeline, efforts
are made to reduce the decoding complexity, thereby reducing the power dissipation
and improving decoding speed.

Extended from MAP, a sub-optimum decoding algorithm, the Max-Log-MAP
algorithm [85], reduces the complexity by sacrificing some performance. Another
sub-optimum decoding algorithm, the soft-output Viterbi algorithm (SOVA) [48]
has been shown to be a very efficient algorithm for turbo decoding. It has been
shown that SOVA is about half as complex as the Max-Log-MAP algorithm, and
the decoding ability of SOVA is close to that of MAP and Max-Log-MAP. The
input signal to noise ratio (SNR) for SOVA to achieve a bit error rate (BER) of
10~* is about 0.7dB more than the SNR for MAP [85]. The error correction ability
of Max-Log-MAP is roughly between that of MAP and SOVA. The performance of
SOVA can be further improved by taking the secondary errors into account [40],
or scaling the outputs [80]. Furthermore, SOVA can be designed using a pipelined
architecture, which improves the decoding throughput and reduces the memory

requirement.

Some improvements are done in a higher level than the decoding algorithms.
Since turbo decoder employs iterative decoding, the number of iterations plays an
important role in the decoding speed and BER performance. Recent work has
investigated exploiting the effects of the iteration termination schemes [65, 91].
The similar trade-off between decoding speed and error-correcting ability can also

be achieved by varying the encoder and interleaver length [100, 101]. A soft-

65

output adaptive Viterbi algorithm (SAVA) [22], which applies the scheme of adaptive
Viterbi Algorithm [23] in the SOVA decoder, reduces the complexity by sacrificing
certain Bit Error Rate (BER) performance.

The turbo decoder has been built in VLSI [14, 51], and has also been mapped
onto FPGAs and reconfigurable resources for flexibility [49]. These implementations
achieve some trade-offs by adapting the code parameters. However, the decoding
complexity of the code is still high. Furthermore, while the VLSI implementation
achieves high data rate with a fixed pipelined architecture and the FPGA is flexible
to make use of adaptive algorithms, it is difficult for FPGA or VLSI substructure to
support both the high data rate and reconfigurability concurrently, which restricts
the code’s performance.

In this dissertation, an Adaptive SOVA (ASOVA) is created to further reduce
the decoding complexity in addition to allowing full range adaptation. The ASOVA
will be mapped onto aSoC, which provides a very good platform for high bandwidth
data transmission and adaptability.

The decoder complexity of ASOVA is reduced compared with that of SOVA.
While SOVA traces all the possible survivor paths in decoding, ASOVA keeps only
part of the survivor paths by introducing a threshold value and limiting the number
of survivor paths. Pruning the survivor paths results in inaccurate or lost outputs of
the ASOVA decoder. To compensate for this loss, the outputs apply a scaling factor
and the lost data will be estimated using its expectation. Software simulation shows
that the BER performance of ASOVA is better than Max-Log-MAP [36] and very
close to Log-MAP algorithm [111], with about 1/4 of the computational complexity
of SOVA.

To evaluate the adaptability and trade-off between performance and power, the
ASOVA will be mapped onto an FPGA first. Given a BER requirement, the

decoding speed can be reduced to trade for decreased power dissipation or smaller

66

Channel

u u n

~| Turbo Code pl 1 Turbo Code

Encoder p2 : @ q : Decoder

Figure 7.1. Turbo Code System

<

-

©

area. When the input SNR is high, the threshold and N, can be adapted to
reduce the complexity and speed up the decoding. Or, while maintaining a certain
fixed decoding speed, some hardware resources can be freed for other usage or shut
down to reduce power dissipation.

Finally, the ASOVA turbo codes system will be mapped onto an aSoC example
chip to test its decoding speed. As mentioned previously in Chapter 3, aSoC
consists of a high-bandwidth, adaptive communication network. When partitioned
to separate IP cores in aSoC, the turbo codes system can be fully parallelized. Since
the IP cores are connected with the high speed network, high decoding speed can
be achieved.

In addition, the adaptive nature of aSoC will be able to ease the reconfiguration
of ASOVA. The IP cores of aSoC are reconfigurable, which allows the aSoC imple-
mentation to perform the same adaptation as the FPGA implementation. While
working in a SNR-changing channel, the adaptation allows the ASOVA to switch to
a simpler scheme quickly. As a result, a high decoding rate will be guaranteed.

To test the performance with a high data rate, the aSoC implementation of
ASOVA will be compared with systems using other communication architectures:

bus, hierarchical bus and dynamic networks.

7.2 Turbo Codes and Decoding Algorithms
7.2.1 Turbo Codes

Turbo codes [15] are error-correction codes that are attractive for their superior

error-correcting ability. By adding redundant information in the form of parity bits,

67

turbo codes allow the receiver to correct some of the errors when the data signals
are influenced by channel noise. Figure 7.1 presents a turbo codes system. Funda-
mentally, given an input sequence u, the turbo encoder generates two sequences of
parity bits, pl and p2, where p1 is based on u and p2 is based on the sequence u’,
which is a permutation of u. The sequences u, p1l and p2 become y, p and q when
they are received by the decoder through the communication channel. In decoding,
two component decoders are applied to decode the u or u’. These two component
decoders interact for several times to improve the decoding ability. The parameters
employed and the algorithm are explained as follows. For clarity, the variables in

bold represent data vectors in this document.

e Input data sequence u = {ug, k =1, ..., B}.
e u’: the sequence which is randomly permuted from u.

e Block Length B. It is the length of the input sequence. In the encoder, the
B-bit u is permuted to generate the B-bit u’. Since the permutation unit is

named Interleaver, the Block Length is also called the Interleaver Length.

e The parity bit sequences in Turbo Encoder, pl and p2. The sequence pl is
generated from u and the sequence p2 is generated from u’. Both p1 and p2

are B-bit sequences.

e Channel noise n. An additive white Gaussian noise (AWGN) channel is as-
sumed. Let random variable n ~ N(0,0?) represents the channel noise,
where N(0,0?%) is a zero-mean Gaussian random number with a variance of

0'2 = N0/2

e Received sequences y = {yx},p = {px} and q = {q@},k € [1,B]. In the

turbo encoder, three B-bit sequences, u, pl and p2 are sent to the channel.

68

Component Encoder
T e | u

From Input To Channe

_________ parity bits

Component Encoder

Figure 7.2. Turbo Code Encoder

After the channel noise is applied, the turbo decoder receives three sequences

respectively from the communication channel: y, p and q.

7.2.1.1 Turbo Code Encoder

A typical turbo codes architecture can be found in [87]. The turbo encoder, as
described in Figure 7.2, consists of two Recursive Systematic Convolutional (RSC)
[72] encoders that are connected by an interleaver. The RSC encoders, D1 and
D2, are termed the component encoders of turbo codes. The interleaver permutes
the input data sequence u to generate another data sequence u’. Taking the u
and u’ as inputs, the two component encoders generate the parity bits p1 and p2
respectively. The code rate is defined as the ratio of the number of information bits
and the number of bits sent to the channel, which is the total length of u, pl and
P2 in turbo codes. In some systems, a puncturer is used to increase the code rate
by skipping some of the parity bits in p1 and p2. Without the puncturer, the code
rate of turbo codes shown as Figure 7.2 is 1/3.

Figure 7.3 presents a typical RSC encoder [72] and its state diagram. The RSC
encoder can be regarded as a state machine, which starts from state 0, takes the
input bit ug, and outputs the parity bit p; together with the original input bit uy

at each step. Figure 7.3 shows a RSC encoder with memory M=2 bits, s; and so,

69

__gl2 Uk

— gl1
. o
Uk sO 1

T
: -

(a) RSC Encoder Arcitecture (b) State Diagram of (g1,92)=(7,5)

Figure 7.3. RSC Architecture and State Diagram

which are a series of shift registers. The constraint length of the convolutional code
is defined as (M + 1) = 3, which is the number of output bits affected by a given
input bit.

The generator of RSC code is defined as G = (g1, 92) or (1,91/g2), where g; =
{910, 911, ---» g1ar } and go = {920, 921, ---, g2ar }- The generator defines the functionality
of the RSC encoder. The input to the first register, sq, is given by Eq. 7.1 in
which the binary coefficient g; decides if the state s; is taken into account. The @

represents XOR operation. Similarly, the output py is given by Eq. 7.2.
s0 = (g10&ur) Siep,m (91:854) (7.1)

DPx = Dicjo,m) (g2:&si) (7.2)

Generally, (gl,g2) is ezxpressed as an octal number. In Figure 7.3, if g;; = 0 when
the others are 1, it forms a RSC code of (g1,92) = (7,5). The state diagram is
shown in Figure 7.3(b), where the blocks represent the states with the number of
(s189) inside, and the edges represent the stage transmission with the corresponding
(ukPr)-

Generally, in a code, the larger the minimum Hamming distance of any two

codewords is, the better the code will be. Some (g1, g2) can generate good codes,

70

which have strong error correction ability. The problem of constructing good codes
is addressed in [68]. In this dissertation, the experiments will apply the codes which
have been shown to have good performance: (7,5),(15,13),(31,27), and (65, 57)
(68, 107, 48].

7.2.1.2 Turbo Code Decoder

The architecture of the turbo decoder is shown in Figure 7.4. After data is
transmitted through the channel, the three received sequences y, p and q correspond
to the data sequences u, pl and p2 from the encoder. In a system using a puncturer,
a de-puncturer is employed to recover the sequence by putting the received bits into
the proper positions of y, p and q. Two identical component decoders, D1 and D2,
are used, which correspond to the RSC1 and RSC2 in the encoder. D1 takes y and
p as input, and D2 takes y’ and q, where y’ is interleaved from y. Their output
sequences, Li; and Ly, are soft outputs, whose signs are the decoded sequences of u
and u’ in Figure 7.2, and absolute values represent the reliability of their decoding
decisions. The soft output from one decoder is fed into the other as the a-priori
information through an Interleaver/De-Interleaver to help the latter decoder make
a better decoding decision. The interleaver is the same as that in the encoder of
Figure 7.2, and the de-interleavers are used to convert a sequence permuted by
the Interleaver back to the original sequence. After a given number of decoding
iterations, the final decision is made in the Decide block by combining the outputs

from both decoders.

7.2.2 Turbo Code Decoding Algorithms

The MAP [11] algorithm was the first algorithm used in the component decoder
of turbo codes. It is optimum with respect to bit error probability and it computes a

cost value for each bit. However, it is too complicated for most practical uses. Max-

71

ey , Baesse

\ \ \
—— 1 De-Puncturer ! P ; D1
I

From Channel | q ’—N_”””””j ,,,,,,,,,,,)

i |

| 1 1) Output
Interleaver Camponent i . | p

1 » Betoder 1 Decide ——=

,,,,,,,,,

time

Figure 7.5. Trellis Diagram

Log-MAP [36] and soft-output Viterbi algorithm (SOVA) [48] significantly reduce
the complexity, but they are sub-optimum in terms of Bit Error Rate (BER).

We focus on SOVA because it has half the complexity of Max-Log-MAP [85]
and maintains competitive performance. A brief review of the SOVA decoding

architecture is given in the next section. A more detailed explanation can be found

in [48].

7.2.2.1 Viterbi Algorithm

Since the Viterbi Algorithm (VA) [102] is the kernel of SOVA, it will be described
first. In the VA, the decoder takes the received sequences from the channel, and
generates the decoded bit sequence for convolutional codes. For example, in Figure

7.4, if D1 is a VA decoder, the sequence y, p would be its inputs.

72

Figure 7.6. Hard-decision Viterbi Algorithm

To better understand the VA decoding, a trellis diagram is constructed. Taking
the RSC encoder in Figure 7.3 as the example, when the state diagram of Figure
7.3(b) is evaluated successively over time, it leads to a trellis diagram as shown in
Figure 7.5. The four states of 00,01,10 and 11 in Figure 7.3(b) are mapped onto
the vertical nodes of 0,1,2 and 3 in Figure 7.5, and the nodes in a horizontal line
represents the state at different stages over time. Sy represents the states at stage
0, S} represents the states at stage 1, and so on. The edges and associated numbers

in Figure 7.5 have the same meaning as in Figure 7.3(b).

To distinguish them from the variables (uy, px) in the encoder, the source bit and
parity bit on each edges of the decoder are represented using variables with a hat,
(k> Pr)-

In the trellis diagram, a path is defined by a series of connected edges which
represent stages transitions over time. For example, a path i, {S; = 0,5, = 2,5, =
3,...,81=1,8; = 0}, is shown using dark lines in Figure 7.5. The bit sequence of
{at,k =0,1,...,t} associated with the sequence of edges in path i is the decoded bit

sequence of this path.

Given an input sequence u, the RSC encoder has a corresponding path in the
trellis diagram. The VA decoder tries to reconstruct this path, from which a decoded

sequence 1 can be obtained, by evaluating the received sequences y and p.

73

For ease of exposition, the hard-decision decoding [58] VA is introduced, in
which the data {y,p} received from the channel have been converted to binary
numbers before the decoder. As shown in Figure 7.6, the received sequence (y,p) =

{00,11,11,00} are shown on top of each trellis stage.

To reconstruct the input path, an accumulated cost value named path metric is
determined at each stage to measure the distance between the possible paths and the
received sequence. At a given stage k, the (ug, px) of each edge is compared with the
received (yx, pr) in Hamming distance to obtain the branch metric. The path metric,
which is shown on top of each node in Figure 7.6, is the accumulated branch metrics
of the edges on this path. In Figure 7.6, at stage Sy, the received (yo,po) = 00, and
the edge from Sy = 0 to S; = 2 has (ug, po) = 11. The branch metric for this edge
is 2, which is shown on the node S; = 2. Given a path {Sy; = 0,5; = 2,5, = 3},
the path metric is the number on node S; = 2, which is 2, plus the branch metric
of edge {S; = 2, S, = 3}, which is 1. The result path metric 3 is shown in the node
Sy = 3. A formula is shown as Eq. 7.3 for the path metric, where the M (Sk) is the

path metric at node S.

M (Sk) = M(Sx_1) + HammingDistance({yx_1,Pc-1}, {0x_1,Pr_1}) (7.3)
When multiple paths converge into the same node, the path with the minimum
path metric is the survivor and its path metric is marked on the node. The other
paths is the competitive paths and their path metrics are discarded. It is easy to see
that the possible later stages of the survivor and discarded path are the same after
they merge. If a discarded path has a good metric after a few stages, the survivor
along these stages must have a better metric; thus, it is impossible for a discarded
path to become the best path later. Since the VA looks for only the path with the

lowest metric, discarding the un-optimal paths will not harm its performance.

After a series of stages, where the number of stages is the truncation length of VA,

the path with the lowest path metric is named as the Maximum Likelihood (ML)

74

path, and its associated bit sequence 47 is the decoded output. For example, the

ML path in Figure 7.6 is highlighted in bold.

7.2.2.2 Soft-Output Viterbi Algorithm

The SOVA uses the same idea as the VA except that it generates soft outputs,
which represent the reliability of the bit decisions. For accurate computation, the
input data of SOVA, y, p, is not hard-decoded. That is, each number of y, p is a
continuous value. When used in turbo codes, the SOVA has another input L(uy)
which is termed the a-priori information, and, in this turbo code model, it is the
output from the other component decoder through a Interleaver or De-Interleaver.
While VA uses Eq. 7.3, The path metric of SOVA is calculated using Eq. 7.4 [48].
This is a recursive transfer formula using the y, and p, which are received from the

channel at stage k and the pair (u, px) associated with this edge.

1 L,

M(Sk) = M(Sk_l) + EﬂkL(uk) + 5 (ykak +pkﬁk) (7.4)

where the L. is the channel reliability measure and is given by Eq. 7.5, and L(uy)
is the a-priori information.

L.=2/o? (7.5)

In SOVA, the path metric represents the likelihood that a path is the decoded path,
and a larger metric implies an increased likelihood. As a result, when multiple paths
converge, the highest metric path is preserved as the survivor, and other paths are
discarded. Similarly, the ML path is defined as the path with the highest metric
value.

Identifying the ML path, the decoded bit sequence 1 is obtained by tracing back
the edges along the ML path for the bit 4L associated with the edges.

In addition to obtaining the decoded bit sequence, the SOVA needs to find the

soft output. Without losing generality, we assume that the path represented by dark

75

Sk-1 Sk Skl Sk+2 Sk+3 Sk+a
00 pathO

Figure 7.7. Trellis Diagram of SOVA

edges in Figure 7.7 is the ML path. The bit sequence ML = {aME k = 1, B} is the
decoded sequence for this ML paths. Now we need to find the reliability of the bit
decisions for ap'".

Observations of the Viterbi algorithm have shown that all survivor paths at stage
[would have come from the same path at some point before [. This point is generally
within ¢ stages before [, where ¢ is the truncation length of the Viterbi Algorithm,
which is usually set to five times the constraint length of the convolutional code [72].

The bit decision 1y associated with the edge from Sy to Si1 may be different, if,
instead of the ML path, the Viterbi algorithm had selected a path ¢ in those paths
that would merge with ML path up to ¢ stages later. Taking the path ¢ will result in
a wrong 1 only when the decoded bit of path i at stage k, which is 4%, is different
from the original 7. Based on this discussion, the reliability of 4, depends on the
paths merging into the ML path from stage t = k to t = k + . For the ease of
exposition, a set of paths P is defined such that any path ¢ belonging to set P must
merge with the ML path and 4} # .

It has been shown in [46] that this soft-output of SOVA can be approximated by
Eq. 7.6.

Lo(ug) ~ iy, - . f.l}cii}s p Al (7.6)

where A! is the metric difference between the ML path with the path 4, which is

the path merging with ML path at stage ¢, and the @ is the decoded bit of path ¢

76

at stage k. The minimization of Eq. 7.6 is over the paths in P only.

In the example shown in Figure 7.7, the difference between path 0 and the ML
path, which is A}_,, is not taken into account for the output at stage k, where path
0 has the same decoded bit as the ML path, i.e., @i, = 42 = 0. As the result, the

soft-output of stage k is given by Eq. 7.7.

Lo(u1) ~ d - min{AF 5, Ay 5} (7.7)
7.2.3 Improvements on SOVA

The performance of SOVA has been improved since its publication. Robertson
has pointed out the difference between SOVA and Max-Log-MAP in [85]. At a
given stage k, while the Max-Log-MAP keeps trace of the ML path and its closest
competitor, the SOVA can find the ML path but may not guarantee the closest
competitor survived, where the closest competitor is the highest-metric path j whose
decoded bit at stage k, a{;, is different than the decoded bit of ML path .

It has been shown that a modified SOVA [40] can be equivalent with the Max-
Log-MAP algorithm. While SOVA considers only those paths merging with the
ML paths, which is termed the first-level paths for convenience, the modified SOVA
takes the second-level paths into account, where the second-level paths are those
paths that merge with the first-level paths. The first-level paths can be categorized
into two path sets their its decoded bits at the evaluated stage k. The first set is P
as defined in the previous section: {pathi € P|i # 4}, and the second set Q is
defined as {pathj € Q|u} = i}

In the original SOVA (as shown in Eq. 7.6), only the paths in P are taken into
account. To consider the second-level paths, the output of SOVA is modified as in
Eq. 7.8. The A! and A/ are the metric differences between the ML path and the

paths 7 and j, respectively.

7

Given a path j € @), a path set O is defined such that any path [€ O must merge
with path j and its decoded bit 4} # ;. The variable Al is the metric difference
between path j and path [when they merge.

Lo(u) = _min (AL A+ Al (7.8)

iEPJEQ,IE0

From the above discussion, it is obvious that the SOVA output should be smaller
when considering the second-level paths. In [80], it is found that the output of SOVA
can be normalized with a scaling factor, which depends on the BER. With such a
scaling factor, the performance can be improved by about 0.4 dB.

While the performance can be improved with complexity cost, a Soft-output
adaptive Viterbi algorithm [22] is presented to reduce the computation complexity
while yielding a little degradation in BER performance. Similar to the Adaptive
Viterbi Algorithm [23], a threshold is introduced. At each stage, only those paths
whose path metrics are higher than the threshold are preserved. As a result, the
number of survivor paths is smaller, and therefore, it requires smaller memory
storage and less computation. Using a 64-state code with (g1, 9.) = (115, 147),
when the average survivor number is 31, the BER performance of SAVA is very
close to that of the Viterbi Algorithm.

Similar reduced metric scheme are also presented in the MAP decoder for turbo
codes [41]. Two strategies are explored. The M-BCJR algorithm keeps a fixed small
number M of the best paths alive; the T-BCJR keeps all the paths above a certain
threshold T alive. The results show that the latter is more efficient, in which the

number of alive paths decrease at later iterations.

7.2.4 Turbo Code Adaptations

As mentioned above in Section 7.2.3, the metric states (survivor numbers) can be

changed at run time. More adaptations can be done at the system level by varying

78

the system parameters to realize the trade-offs in power, decoding speed and resource
usage. An approach shown in [100] adapts the interleaver size to control the quality
of service (QoS) in multimedia communications. Similar work involves changes in
other system parameters, such as the iteration stop criterion, interleaver length,
sliding window size, and puncturing rate [91, 100, 48]. The configuration of system
parameters can be combined with other techniques for power savings. In [65, 44],
Voltage Scaling is controlled by an iteration stopping criterion to save power. Other
work [59] shows that the metric states can be made adaptive to conserve power.

The above adaptation algorithms have been mapped to silicon. A chip [14] built
using 0.8um, 2-metal CMOS technology is able to decode turbo codes with varying
puncture rates. A low-complexity multi-stage pipeline turbo encoder and decoder
[51] are implemented in 0.6um technology. For a 1Mbps data rate, the decoder
power dissipation is 70mW with the supply voltage of 3.3V .

A flexible turbo decoder was implemented in a ReConfigurable Processor Board
(RCP) [49], a PCI board consisting six Altera FLEX 10K70 FPGAs and SRAM
units. The implementation approximately uses 70,000 gates. It is able to configure
the number of encoder states, interleaver length, sliding window size, decoding
iterations and the quantization precision in software.

While it is easy to configure the system parameters, adapting the metric states
inside the component decoder is more complicated. The reduced-search MAP algo-
rithm was implemented using a Register Transfer Level (RTL) model for power
saving [99]. It is synthesized using Synopsys Design Compiler with a 0.20um
standard cell library. The dynamic algorithm is compared with an iteration control
strategy. It is shown that the latter approach is more efficient because it can power
down the whole system or scale the system voltage. The dynamic algorithm can only

reduce the memory power dissipation. Another approach to reduce memory power

79

Sk-1 Sk Skl Sk+2 Sk+3 Sk+a

Figure 7.8. Trellis Diagram of Adaptive SOVA (T = 1.0, Nppaz = 3)

was presented in a SOVA turbo decoder using a novel orthogonal access memory
structure [42].

All these implementations apply MAP-based decoders except [42]. Compared
with SOVA, the hardware implementations of MAP-based algorithm were regarded
as more efficient for its superior performance. With the presenting of ASOVA,
the BER performance of ASOVA is competitive with Log-MAP, and it will be the
preferred choice due to its lower complexity. While the previously mentioned param-
eter configuration schemes are still available, ASOVA allows further exploration in

adapting the number of survivor paths to realize simpler and faster implementation.

7.3 Adaptive SOVA Decoding

In this section, an Adaptive SOVA (ASOVA) turbo decoder, whose performance
is close to that of the Log-MAP algorithm, is described. The complexity of ASOVA
is reduced, versus SOVA, by pruning the metric states. When compensated for the
loss using the expectation and scaling factor, ASOVA loses little performance in

terms of BER with about half complexity.
The ASOVA is developed based on the decoding trellis of SOVA [48]. As SOVA,

the path metric of ASOVA, M(Sk), is computed using Eq. 7.4 at each stage, and
the reliability is given as Eq. 7.6. Two new parameters, 7" and N,,,,, are introduced
in ASOVA to prune the metric paths. At each trellis stage, only those paths whose

metric value satisfies Eq. 7.9 will be preserved. In the case that the number of

80

preserved paths is more than N, only the best N,,,, paths will be kept. The
Nz is defined as the maximum number of survivor paths allowed in the decoding

trellis.

An example is given in Figure 7.8, where the numbers on the node represent
the paths metric of the survivor paths. Assume that T = —2, N,,.., = 3 and
M(Sk—1 = 0) = 0. At stage (k + 1), basing on the Eq. 7.9, the M(Sk41) must
be larger than max{M(Sg)} + 7 = 1.8 — 2.0 = —0.2. As a result, the path S, =2
is pruned, whose path metric is —2.1. As shown in Figure 7.8 stage (k + 2), all four
paths satisfy the threshold requirement, but only the paths at Sx,o = 0,2,3 are
kept and the path at Sxy o = 1 is pruned since only the best N,,,, = 3 paths are
allowed.

Since it is unlikely for a low metric path to become the ML path later, pruning
the bad paths has only small possibility to change the ML path. As a result, the
ASOVA still generates correct decoding sequence 1t with a smaller number of metric
paths, which reduces the decoding complexity and memory usage.

The soft output of ASOVA is generated by the metric difference between ML
path and its closest competitor. When the paths with low metric are pruned,
the competitors have higher possibility to be discarded because of its smaller path
metrics than the ML path. Losing the closest competitors results in inaccurate soft
outputs. In later decoding iterations, these soft outputs are the L(uy) when Eq.
7.4 is used to calculate the path metrics. The inaccurate soft outputs will result in
incorrect path metrics and finally wrong decoding decisions.

The performance of a turbo decoder using reduced-state SOVA is shown in Figure

7.9. The experiment applies a (31,27) code which can 16 survivor paths at each stage

81

Adaptive SOVA decoder
Block=1024, (g1,92)=(31,27)
Truncation=30, lteration=8

E N_{Imax}zloi—»— 3
N_{max}=13 ---x—--
01 N_{max}=16 ---*--
0.01
o
w 0.001 g
m Eo:
0.0001
le-05
1e-06 | | | | | | | | |
0.8 1 1.2 14 1.6 1.8 2 2.2 2.4 2.6 2.8

EbN

Figure 7.9. Performance with Varying Ny,

without pruning. It can be seen that more than 0.8dB will be lost when the survivor

number is restricted to Nyer = 13.

To compensate the loss, two schemes are applied. The first scheme is to apply
a scaling factor @ < 1 on the soft output, and the second scheme is to make use of

the expectation of the soft outputs.

7.3.1 Scaling Factor

Generated using Eq. 7.6, the soft output is the minimum metric difference
between ML path and the paths in set P. While pruning some paths, it must be
Pasova € Psoyva, where Pasova is the path set of ASOVA, and Psoy 4 is the path
set of SOVA. At a result, Eq. 7.10 is correct, i.e., the absolute value of ASOVA soft
output is no smaller that that of the SOVA. A scaling factor o < 1 is then used to

compensate this error.

82

. S .. (7.10)

When so many paths are pruned that no paths converge with the ML path
within the truncation length, the set Pssoyv 4 is empty. Since the competitor is not
available, the SOVA is unable to generate a soft output. While the decoded bit

is still available, the expectation of the absolute soft output, is used as its reliability

value.

7.3.2 Expectation

The SOVA output is the Log Likelihood Ratio (LLR) of the received value y
from the channel [80]. The LLR is given as Eq. 7.11.

Ply|z =1}
Lo, =Iln————— 7.11
=Pl =1 (711
In an AWGN system, the received value y can be represented by the following
formula:

y=u+n (7.12)

where u is the input source with equal probability of {1,-1}, and n is the white
Gaussian noise N(0,0?).

It is easy to see that:

Plylu=1} = e 207 (7.13)

Plylu=—1} = e 5% (7.14)
u=—1}= e 2 .
Y V2mo?
Make use of Eq. 7.11:
2
Lo, = gt (7.15)
When it is decoded that u = 1, the expectation of LLR is
2 2 2
E{Loy|u=1} = ﬁ(u +n) = E(E{u} + FE{n}) = = (7.16)

83

Eb/N,

2/(72

a?/2

1.000000

1.678567

0.595746

1.200000

1.757676

0.568933

1.400000

1.840512

0.543327

1.600000

1.927253

0.518873

1.800000

2.018082

0.495520

2.000000

2.113191

0.473218

2.200000

2.212783

0.451920

2.400000

2.317068

0.431580

2.600000

2.426268

0.412156

2.800000

2.540615

0.393606

Table 7.1. Expectation of LLR

Otherwise, when u = —1,

B{Lou=—1} = -2 (7.17)

o2

Without losing generality, we discuss the absolute value of E{Lo,} only.
In my SOVA model, Ej is 3 since its bit rate is 1/3 and E; = 1. We know that

o? = Ny/2 (7.18)

So the o2 can be calculated from the input signal noise ratio Ej/Ny, which is in

dB, using the the following formula:

3
2 __
o = L0/ /10 5 2 (7.19)

2 4
[B{Loylu=+1}[= 5 = 2+ 10(B»/No)/10 (7.20)

Some example expectation numbers are calculated in Table 7.1.

7.4 Simulation Results

A software turbo codes simulator was developed to test the performance of

ASOVA using C++. The simulator consists of a turbo encoder, an AWGN channel,

84

‘ Parameter H Default Value ‘

Interleaver Length 1024 bit
Simulation Bit Number 5% 107 bit
Channel Noise 1.5dB
Iteration Number 8
RSC Generator Formula (31,27)
Niaz 16
Threshold -10
Truncation Length ! 30
Code Rate 1/3

Table 7.2. Parameter Default Values

a turbo decoder and a performance evaluator. The turbo decoder is allowed to
choose from six decoding algorithms, namely, Log-MAP, Max-Log-MAP, Adaptive
MAP (AMAP, which prunes the state of Log-MAP), SOVA, Reg-SOVA, (which is
SOVA using register exchange), and ASOVA.

Most key system parameters can be configured in this system. The default values
used in the experiments are shown in Table 7.2.

The first set of experiments reveal the affect of the scaling factor, a;, on the BER
performance. A 107-bit randomly generated sequence is tested in each experiment to
allow for enough BER accuracy. The performances of a (31,27) code with different o
are tested and the results are shown in Figure7.10. The best BER is achieved when
the scaling factor a is about 0.5. Similar values are obtained when other codes, such
as (65,57), are used. As a result, the default value of « is set to be 0.5.

The BER values of ASOVA for different SNRs are shown in Figure 7.11. Similar
values for the Log-MAP and MAX-LOG-MAP algorithms are also presented for
comparison. It can be seen that the performance of ASOVA is between that of
Log-MAX and Max-Log-MAP. When the Threshold increases, the average survivor
number of ASOVA decreases. Generally, the higher the threshold is, the larger the
BER will be.

85

ASOVA Decoder
Block=1024, (g1,92)=(31,27)
Code Rate=1/3, Iteration=8, Truncation=30

BER

N Ey/Ng=1.0dB]
OF © Ep/Ng=1.1dB ---x--- 3
: © E/Ng=1.2dB ---x---]

) E,/Ng=1.3dB @]
' CUmT e EING=1.40B]

10'6 1 1 | | . | |

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaling Factor: a

Figure 7.10. Performance with Varying «

The Figure 7.11 also shows that, when the average survivor states is reduced
from full states (16 survivors) to 10, the BER numbers are very close. When the
BER is 107, the Ej/N of Log-MAP is 0.9dB, that of Max-Log-MAP is 1.4dB, and
those of ASOVA range ranges within 0.1dB from 1.15dB to 1.25dB.

The BER of ASOVA with varying Threshold and N,,,; is shown in Figure 7.12.
It can be seen that, when T'hreshold is greater than -8 and N, is greater than 12,
the BER is smaller than 10~%.

The values of Threshold and N,,,,; to achieve a BER of 10~* are obtained for
other input SNR values through similar experiments. The resulting numbers are
shown in Table 7.3. Awerage States is the average number of states per stage that
have a survivor path. This number measures the actual computations required

during decoding. It can be seen from Table 7.3 that, when E,/N; is 1.5dB, the

86

ASOVA Decoder .
Block=1024, (g1,92)=(31,27), 10" testing bits
Code Rate=1/3, lteration=8, Truncation=30

BER
B
o

10* £ Max-Log-MAP —+—
E: T=-6,Avep=8.0 ---x-

T=-12,Ave=13.0 ---%--

10'5 L T=-16,AVGN=14.6 I
E T=-20,Ave=15.4 --m
[Full-State ASOVA ---o

10-6 i LOg-NlIAP ,,,,.,I,, 1 1 1 1 1 1

0.4 05 0.6 0.7 0.8 0.9 1 11 12 13 14
SNR=E/N, (dB)

Figure 7.11. Performance of ASOVA

average states is around 6.55, which means that the computation is only 6.55/16 ~
41% of SOVA, which has to deal with 16 survivor paths every stage. When Ej;/N
is 5.0dB, the number decreases to 1.67/16 ~ 10%.

Ey/Ny(dB) | Threshold | Ny,q, | Average States
1.5 -8 12 6.55360
2.0 -6 10 5.68129
2.5 -5 10 4.11785
3.0 -6 8 4.04745
3.5 -9 8 2.79940
4.0 -5 8 2.32015
4.5 -5 6 1.94780
5.0 -5 8 1.67064

Table 7.3. (31,27) Code at BER=10"*

87

ASOVA Threshold and N,

égl 02)=(31,27), Interleaver=1024, total 5+10 bits
Codé Rate=1/3, Itération=8, Truncation=30, E/Ny=1.5dB

BER

102 ¢

10
10%
10%
-8
-10 10
Threshold

I max

Figure 7.12. Affects of Threshold and N,,,;

88

CHAPTER 8

HARDWARE IMPLEMENTATION OF ASOVA

To analyze the performance of aSoC for substantial applications with high data
rate, a Turbo decoder using ASOVA is mapped onto aSoC. The theorem of ASOVA
has been described in Chapter 7. In this chapter, the hardware implementation
architecture is presented, especially, the trade-off between architectural choices and

detailed construction of logic circuitry are revealed.

8.1 Architecture of Turbo Decoder

As shown in Figure 8.1, a typical turbo decoder [15] consists of two identical
component decoders, D1 and D2, interleaver/de-interleaver blocks, and an output
decision block. The interleaver permutes the data bits to support the error correction
algorithm. The output from one decoder is fed into the other as the a-priori
information through an interleaver/de-interleaver to help the latter decoder make a

better decoding decision in subsequent decoding iterations. Multiple iterations are

From Channel

y D1
p | Component| L1
q = Decoder - Interleaver
B =
Y
Interleaver D2 : Decide Outpu
y1 — -
;: Component L2 De-
| Decoder | |Interleaver |~
2

Figure 8.1. Block Diagram of Turbo Decoder

89

required before the decoder converges to a final result. After a pre-specified number
of decoding iterations, the final decision is made in the Decide block by combining
the outputs from both decoders.

To allow for pipelined decoding and achieve a high data rate, the interleaver and
de-interleaver each include two data buffers. While one buffer receives new data,
stored data can be read from the other. An entire block of code word can be stored

in each buffer.
8.2 Architecture of Component Decoder

The component decoder is the key unit of the turbo decoder. Traditionally, a
component decoder using SOVA was implemented using either register-exchange
[47] or memory traceback [19]. The register-exchange approach employs a two-
dimensional array to store the bit decisions of all possible paths over a certain
time steps and constantly moves the bits through a pipeline. On the contrary, the
memory traceback trades throughput, latency and memory size for circuit complexity
by storing the decision bits into an SRAM in a constant position. Accessing only one
data from the memory per clock cycle, it requires multiple cycles to complete the
processing for each input data. With a slower throughput, traceback brings certain
power benefits. However, in the case of a small number of states, little power
advantage will be obtained because of the overhead of the peripheral circuitry and
standard word addressing [19].

Since ASOVA stores only N, paths when decoding, which results in a sub-
stantial difference path storage architecture than traditional SOVA, both register-
exchange and traceback have to be re-evaluated. In the following two subsections,

the architectures for both approaches are described.

90

«— Update—=}=~————— Traceback——— Write
[) [§ R J

¢ * L e —— ML Path
. . . .] \,vy\o\ S | .
el OO, Tl Il Competitive Pat
o. [] t\\ [] [] [/\/ [L
o e o e -9 TCe---e - Survivor Path
%i—TL—U %i—TL i—llr i$

Figure 8.2. Traceback SOVA

8.2.1 Traceback Approach
8.2.1.1 Behavior of Traceback SOVA

The behavior of the traceback ASOVA component decoder can be described using

Figure 8.2. The completion of a time step requires three phase as following:
1. Write the new path metric and metric difference A into path storage memory.
2. Traceback to locate the ML path.
3. Update the reliability information for the ML path.

As shown in Figure 8.2, without losing generality, assume that the new path
metrics are written into column ¢ of the path storage memory. Among the new path
metrics, the largest path metric is determined to identify the Maximum Likelihood
(ML) path. In Figure 8.2, the M L path is shown with solid lines. This ML path is
obtained by a Traceback along the truncation length (TL) edges back to column
(i-TL). A typical value of the truncation length is five times the constraint length
(82].

In addition to obtaining the decoded bit sequence, the SOVA algorithm deter-
mines reliability information A (also called soft output) for each decoded bit. Each
A is determined by calculating the difference between the two path metrics that
converge at each state node. An important phase of the SOVA algorithm is the

dynamic Update of A in earlier trellis stages as later stages are reached [48]. As

91

Next — Write/
State[Traceback/
Cotrol — Update
1 control
P BRtk i
BM selec'g path valid ‘
y bm00,. " Deb(_:ision
bmo1,| Add= its
P ~ Comparet = ° Soft outpu
F BMU | bm10,| “sajeet |2 v§lue§ . | 20T OUtRY
— bm1l path index

Figure 8.3. Architecture of Traceback Component Decoder

shown in Figure 8.2, after tracing back 7T'L stages along the ML path from trellis

state 4, the next U stages are checked for A update via the following equation.

At = min (Ai,TL,At),t:i—TL,...,i—TL— U (81)

'aML(t) #’acmp(t)

where ¢ is the stage index, and, @, and 4y, are the decoded bit of ML path
and the competitive path at the trellis stage and U is a parameter. It has been
shown that U can be considerately less than T'L without performance degradations
[57].

To improve throughput, multiple Write, Traceback and Update phases can be
used for one time step. Such scheme has been implemented for Viterbi algorithm

38].

8.2.1.2 Architecture of Traceback ASOVA

As shown in Figure 8.3, the component decoder consists of four parts: the branch
metric unit (BMU), the add-compare-select (ACS) block, the survivor memory, and
the control path. BMU and ACS are used to generate the new path metrics for
each trellis stage. The survivor memory stores decoded bit u; and soft output Ay

values and performs write, traceback, and update operations. The control path

92

Pesent State | Index from gy
Path Metrics | SUNVIVOT | ygjyes 44
1 Memory
2 . PMO— (s Threshold ___| Subtract A
| B ot T
. Block [pmout 5
E e L CompareT
: PMO —@
Nmax [BMO — PMout
Index from Look-Up Nmax PM1 *@
Survivor | Table Next State BM1 —
Memory Path Metrics
(a) Architecture of ACS unit (b) ACS Block

Figure 8.4. Add-Compare-Select Components

determines next state values and controls data flow between the other three units.

Detailed architectural descriptions are provided in the following sections.

e Branch Metric Unit

The BMU generates the branch metrics for all four possible encoder output
pairs g, pr. Received decoder input values y, and p, and the soft output
feedback F' from the alternate component decoder, (e.g. F'1 and F2 in Figure
7.4) are used to generate the branch metric for each iy, pr combination. For
soft output decoders, channel values ¥y, and p; are quantized to multi-bit values
while i, and py are single bits. For ASOVA, the branch metric of a given uy,py

at trellis stage k£ with a soft output feedback F is:

o 1, L., .
bm(tpr) = §ukF + ?(ykuk + prPr) (8.2)

where L, is equivalent to %, and o is the standard deviation of the transmission
channel noise. Since i and p are binary numbers, each BMU output requires

two adders and a multiplier.

e Add-Compare-Select Unit

93

The goal of the add-compare-select unit is to add the branch metric for a trellis
edge to the path metric of the present trellis state to create a new path metric
for a next state in the next trellis stage. This metric is then compared to the
computed path metric from the competitive path to determine the survivor
for the next state. The ACS operation must be performed for at most Nyaz

present state path metrics for each trellis stage.

The hardware architecture used to perform the ACS computation for each path
is shown in Figure 8.4a. The correct index into the present state path metric
array is obtained from the survivor memory and is used to select path metric
PMO0. This index is also used as an input to a pre-programmed look-up table
to select the path metric PM1 for the competitive path. As shown in Figure
8.4b, the branch metric BM0, BM1 for each path is added to the appropriate
path metric to create new path metrics for the next state. A subtractor takes
the difference of the new metrics to generate the needed soft output A value
for the next state. A comparator selects the larger of the two path metrics as

P Mout for survival.

As shown in Figure 8.4, the ACS block employs the threshold d,, + T to
prune low cost paths. Only those paths whose metrics fulfill the threshold
requirement are subsequently stored in the next state path metric array. The
array index used to store the next state path metric is stored in the survivor
memory. If more than N,,,, paths survive, the threshold 7" is dynamically

increased and ACS computation is re-performed with the new 7.

Survivor Memory Unit

The survivor memory is a two dimensional memory array with N,,., rows
and 2*T'L columns. The memory uses traceback pointers [25] so that data

movement is limited. Each word in the survivor memory stores the decoded

94

bit iy, metric difference A, and pointers to the previous trellis stage survivor
memory values along the saved and competitive paths. As described above,
the survivor memory supports three operations for up to Np,,, trellis states for
each decoded input value: write, traceback and update. For a single trellis
stage, a memory write requires a write port, traceback requires a read port,
and the update phase requires two read ports to read ML and competitive
path A values, and a write port for new A values. As a result, the survivor

memory requires a total of 2 write ports and 3 read ports.

To facilitate FPGA implementation, our ASOVA memory is partitioned into
banks. As shown in Figure 8.2, survivor memory traceback and write op-
erations occur in portions of the memory that are isolated from the update
phase. As a result, the survivor memory is partitioned vertically into eight
separate banks. Four banks store the two path indexes and 4y values and
the other four banks store the A values. The former four banks of memory
requires two read-ports and one write-port since the update phase has to read
the index for both the ML path and the competitive path. The memory of
latter four banks can be implemented using general two-port RAM blocks. A

single memory read and write operation is performed in one clock cycle.
8.2.2 Register Exchange Approach
8.2.2.1 Behavior of Register Exchange

In the traceback approach, the centralized memory architecture allows only a
single read and write operation per clock cycle. As a result, it takes at least T'L
cycles to complete all operations for a time step. The register exchange approach
employs a parallelized architecture, so that a time step can be completed in one

clock cycle.

95

While traceback generates one path metric per cycle, the register exchange com-
putes all the 2 X N4, path metrics in one cycle using a Add-Select-Compare (ACS)
Unit consisting of 2 X N, ACS blocks.

The 2 X N,,.; new obtained path metrics and As are pruned down to N,,,, and
then written into the path storage memory in a clock cycle. To complete multiple
write operations in one cycle, a register array is used, with N, rows and TL
columns. The path metrics and A of a path are stored in the same row. As a result,
indexes to previous path metric are not required to obtain the history of a given
path. The traceback operation can access the whole row in one clock cycle.

With the register storage, the Update can happen the same time as the new
metrics are written. When up to N, survivor paths are determined by the ACS
unit, each path is assigned to a row in the register array. The historical metrics and
A of each path are copied from their old locations to the new row. That is the how
the name of register exchange comes. During the exchanging, all the As of each
path are updated following the Eq. 8.1.

The register exchange approach parallelizes and pipelines the ACS and update
operation. It is able to achieve a data rate as high as one data per clock cycle.
On the other hand, it requires a large amount of multiplexing circuitry between the
registers to choose the metric and A data. In addition, all the storage registers are
active during the decoding procedure, which consume a lot of power and become a

drawback for power-constrained systems.

8.2.2.2 Architecture of Register Exchange

The architecture of the register exchange component decoder follows the blocks
shown in Figure 8.5. It consists of four parts: the Branch Metric Unit (BMU),
the Add-Compare-Select (ACS) Unit, the Survivor Memory Unit (SMU), and the
Metric Difference Memory (MDM).

96

MDM
= Next — >
2 Cotrols .7 1 |Softoupu
A . °
PEgsat Bext .
BM selec;’ path vaIidA SMU
y bmQO0,. =
T bmo01,| ACS . . Decision
P - BMU [bm10| Unit ~—= : Bt
F | bm11_ . .
Metrics

Figure 8.5. Block Diagram of Register Exchange ASOVA Component Decoder

The component decoder has a pipelined architecture, with BMU on the first
stage, ACS on the second stage, and the third stage of SMU and MDM. For each
decoding step, new branch metrics are generated by BMU. Combining the branch
metrics with the path metrics obtained at the previous step, the ACS chooses the
survivor paths and stores its decisions into the SMU. Assuming that the decoder is
currently working on level i, the SMU stores the trellis array from level (i — T'L) to
level 7. For each step, the SMU shifts one level right to empty the last column for
the new in-coming data from ACS. MDM, which stores the metric difference for the
same part of trellis as the SMU, also shifts one level to the right. At the same time
with shifting, it uses the ith level metric difference data from ACS to update the old
metric difference for each path. The data shifted out from the right of MDM is the
reliability information of the (i-TL)th level.

The SMU and MDM store T'L levels of decision bits and metric differences. At
each level, while traditional SOVA uses 2(5K—1 states, where K is the constraint
length, only N,,.. states are required for ASOVA.

The detailed architecture of BMU, ACS, SMU and MDM are introduced as

following:

97

Branch Metric
00 ACS Threshold

More than
Nmax?

Increase
T

o

‘« ACS -‘ T

Branch Metric

M(0,i)

. Memory
M(O,i 1)‘())
M(,s) bm(O0i-1— + M(©.0)
M(1.|_—1)—® M)
M(S,i—l) bm(11,i-1y—— '
(a) ACS Array (b) Add—Compare-Select Block 0 (c) Threshold and Nmax Control

Figure 8.6. Architecture of Add-Compare-Select Unit

1. Branch Metric Unit

The BMU is the same as the BMU in traceback approach. It generates the
branch metric for all (dgpy). It consists of four outputs, since there are four
possible combinations of (ugpy). As described as Eq. 8.2, bm(dgpy) is the
Branch Metric of a given (4ypx) at level k, which is actually the last three

terms of Eq. 7.4.

2. Add-Compare-Select Unit

Given the branch metrics from BMU, the ACS blocks are applied to decide
the survivors and the metric differences A between the survivor path and the
discarded path. Unlike traditional SOVA, a threshold 7' is applied in the ACS

of ASOVA to prune the bad paths and keeps at most NV,,q, survivors.

Figure 8.6(a) presents an ACS unit with 4 states and Nyu, = 3. M(s,i — 1)
represents the path metric of state s level (i-1). An ACS block computes the
path metrics of the two paths that merge into the same state, and selects
the survivor path for the next level. Each block consists of three adders and
a multiplexer. Figure 8.6(b) shows the architecture of ACS Block 0, which
compares the two paths merging into state (. Since the two paths come from
state 0 and state 1 with (4p) = 00 and 11 respectively, M(0,i—1),bm(00,7—1)
and M (1,9 —1),bm(11,7 — 1) are used as inputs.

98

’ LM) y u@10) ¢ ¢ ¢ u(i-TL,0)

ASCO ’j» e o o o }» L -
u(i,1) | UL L u(i-TL,)

ASC1 _— j—» e o o o }» .
u(i,2) | uiL2) L u(i-TL,2)

ASC2 _— j» e o o o }» .

t(ij) \ L ou(L) | ui-TL3)
ASC3 - ¢ & o o j—» -

|
Lﬂ

Figure 8.7. Architecture of Survivor-Memory-Unit

To find the best N,.. paths and avoid the area-costly sorting circuit, an
architecture was proposed in [96]. As shown in Figure 8.6(c), all the paths
have to pass a pre-set threshold 7. If the number of survivors is more than
Npaz, T will be increased until the survivor number is no greater than N,,,,.

In ASOVA, the memory records N,,,, states and each state can branch to two

paths, s0 up t0 2N, comparers are used if 2N,,4, < 21,

. Survivor Memory Unit

Figure 8.7 shows a 4-state SMU. At each step, the ACS decision will be
propagated to the whole row. The registers on this row are updated with
the decisions of the survivor path. Since each state can only come from two
possible states, a multiplexer controlled by the decision bit is enough to make

the choice.

In ASOVA, only N,,.. but not all 20— paths are recorded. The locations

99

u(i-1,0)u(i-1,1)

/1,0 éﬁiﬁ
[&

-1
4 e o °
= 0 4
4
/1 (i-1,0) /1 (i-2.0) /] (i-TL.0)

Figure 8.8. Metric Difference Memory Architecture

of the paths are dynamically determined, so the paths merging into a state
are not coming from a fixed location. To solve this problem, extra 2N,,q,
registers, which is named as Pathldentify, are used to record the state of the

path. Detailed circuitry can be found in [96].

. Metric Difference Memory

In addition to the bit decision information used for Viterbi Algorithm, SOVA
also gives the reliability of each decoded bit, which is generated from the metric
difference as Eq. 7.6. The computation of this reliability is done by the Metric

Difference Memory.

MDM stores the metric difference A of the N,,,, survivors over the T'L levels,
covering the same range as SMU. At each step, when ACS make a decision of
a path, this decision is propagated over the whole row to update the As of this
path. As described in Chapter 7, the A will be getting close to the value of

reliability of the decoding decision along with the updating.

Figure 8.8 gives an example of a row of MDM. At the (i-1)th level, if the
decoded bit of path 0, u(i — 1,0), and path 1, u(i — 1,1), which are obtained

from SMU, are different, the new A(i — 1,0) will be the smaller of the original

100

A(i—1,0) and the new metric difference A(7,0) from ACS. When shifting one
level to the right, the new A(: — 1,0) will be stored into the location of where
A(i — 2,0) was.

All the reliability informations in the same row, which belong to the same
path, are updated at the same time and shifted to the right by one level. The
A(i — TL,0), which has been updated by TL times, is popped out from the
right side of MDM as the reliability of path 0 at level (i — T'L).

While the MDM of traditional SOVA requires 2K~ rows, ASOVA uses only
Nynaz Tows. The same as SMU, the ASOVA MDM is also a N,,.; by T'L array,
but the memory cell of MDM has 4 bits.

8.3 Experimental Approach of FPGA Implementation

Before the ASOVA Turbo decoder can be mapped onto aSoC, it has to be tested
in FPGA. First of all, the ASOVA is a novel algorithm and requires totally different
storage memory organization from traditional SOVA. The FPGA evaluation helps
to choose the proper architecture between the register exchange and the traceback
approaches. Second, proper parameters and performance numbers for individual
functional blocks are required when the Turbo decoder is mapped onto aSoC. Third,
the overall performance of FPGA implementation can be compared with the aSoC

model.

8.3.1 FPGA Implementation Parameters

Parameterizable Turbo decoders with both traceback and register exchange ap-
proaches are developed with Verilog. Decoders for a variety of K and N, values
were synthesized to an Altera Stratix EP1S10 FPGA and downloaded to a Nios

Development Board [6].
The bit width of the path metric and A depends on the accuracy requirement

of the system. It was known that a word-length of 3 bits is almost optimum for

101

the symbols in the case of BPSK modulation [25]. In our implementation, it was
determined that a bit width of 4 bits is good enough for these experiments.

In the following experiments, turbo decoders were tested with 1024 bit data
blocks and 6 decode iterations. In the traceback model, the survivor memory was
constructed with eight memory banks which can hold 10 x K trellis columns of i
and A information (5 x K for traceback, 2.5 x K for update, 2.5 x K for rotating
spare storage). In the register exchange model, the SMU and MDM are designed to

hold 5 x K trellis columns of 4, and A information.
8.3.2 Experimental System

To test the practicality of the reconfigurable ASOVA-based architecture, a hard-
ware implementation of the decoder was tested as part of a communication system.
This system contains blocks for data generation, encoding, transmission, and decod-
ing. A random bit generator creates a bit sequence to model transmitted data. A
turbo encoder, also shown in Figure 7.3, then encodes the data for transmission. A
modulator converts the coded bits into real numbers: 0 -> 1, 1 -> -1 for the binary
phase-shift keyed (BPSK) system employed. The output of the modulator is input
to a AWGN channel simulator. This block simulates a noisy channel where white
Gaussian noise is added to the transmitted signal. The amount of noise depends
on the signal-to-noise ratio preset by the user. The symbols obtained from the
AWGN channel model are quantized before being sent to the decoder as its input.
On receiving the input, the decoder attempts to recover the original sequence.
All software modeling of the communication system (except for the FPGA-based
decoder) was performed using a 1.6 GHz Pentium IV PC.

The ASOVA-based decoder architecture was mapped to a Stratix EP1S10 FPGA
located on an Altera NIOS Development Board [6]. This mapping allowed for

in-field testing of turbo decoder designs for constraint lengths up to K=6. An

102

RTL level description of the turbo decoder was written in Verilog. The Verilog
code was simulated using Altera Quartus II simulation tools. All designs were
synthesized and mapped using Quartus II with timing constraints. The maximum
operating frequencies of the FPGA were obtained from Quartus II compilation.
Overall communication system decode rates were measured through profiling with
the time utility on the PC.

Power consumption values for the turbo decoders were determined using the
Quartus Il power analyzer. To account for power consumption during EP1S10
reconfiguration, the power associated with reading the configuration bitstream from
SDRAM and storing it in the FPGA was calculated. It was determined that approx-
imately 125 mW of power are needed during reconfiguration to read the 3,534,640
EP1S10 configuration bits from 4Mxx32 Micron MT48LC4M32B2 SDRAM [73].
This value was determined by scaling the specified maximum power dissipation
to 100 MHz, which is the required FPGA configuration speed. The amount of
power required to reconfigure the EP1S10 was approximated by assuming the use
of a on-chip reconfiguration shift chain. The power dissipated by the shift chain
was determined by calculating the energy dissipated by a single shift in 0.13um
technology with SPICE. This shift chain power value was scaled by the required
3,534,640 shifts and divided by configuration time to calculate FPGA reconfiguration
power. It was calculated that 54.8 mW are required to reprogram the configuration
bits of the EP1S10. To account for the reconfiguration time overhead, it was
determined that a total time of 35mS was required to reconfigure a EP1510 FPGA
[6].

An experimental system is established as shown in Figure 8.9. The Turbo
decoding board receives channel data from the receiver through Ethernet. In real
system, the receiver might be a piece of hardware that receives channel signals from

the remote antenna. In our experiment, a computer is used to send the data to the

103

() FGPA

Decoder _ Recevied
Nios | Ethernet Data

Proc Cable
y S WA \\

Config. T SNR change

FPGA
SRAM Bit—stream

S /

Figure 8.9. Turbo Code Experiment System

FPGA board for decoding. Insides the Stratix FPGA, a Nios micro processor [5] is
implemented to measure the SNR when relaying the received data to the decoder.
When the SNR changes, the processor picks up a proper bit-stream stored in the
SRAM, reconfigures the FPGA and generates a new decoder appropriate for the

current channel noise statistics.

104

CHAPTER 9

MaArP ASOVA TUrRBO DECODER ONTO ASOC

The ASOVA Turbo decoder has to be verified before mapping it onto aSoC
devices. In this chapter, the implementation results of the ASOVA Turbo decoder
on FPGAs are presented. Both register exchange and traceback approaches are eval-
uated and the proper architecture is chosen for later experiments. The functionality
and performance of the ASOVA Turbo decoder was tested in the FPGA board,
including decoding speed, resources usage and power consumption. Based on the

performance and parameters obtained from the FPGA hardware implementation,

the ASOVA Turbo decoder is mapped onto aSoC devices.

9.1 Results of FPGA Implementation
9.1.1 Register Exchange FPGA Turbo Decoder

As described in Chapter 8, Turbo decoders with both register exchange and
traceback are implemented in Verilog and mapped onto a Stratix FPGA on the Nios
board [6].

The mapping results of the Turbo decoder using register exchange is shown in
Table 9.1. It can be seen from the results that this Turbo decoder can work on a
clock frequency up to 96MHz, and have a decoding data rate up to about 8Mbps.
Unfortunately, it takes huge resources when N,,,, is greater. When N, is 4,
it requires about 100K LUTSs, which is more than the largest Stratix FPGA can
provide. Since Quartus II is unable to map it onto any possible FPGAs, the number
of resources and performance are unavailable. The huge resource usage is because

of the multiplexing circuitry required in the ACS and SMU. In the ACS, it has to

105

Npae | LUTs | MEM | FFs | Max. Clk | Power | Data Rate
(bit) (MHz) | (mW) | (Mbps)
2 55048 | 684 | 6144 96.68 360 7.9
4 83194 | 1247 | 12288 - - -
Table 9.1. Register Exchange Turbo Decoder Statistics
BER
100 EEEEEEEEEEE] EEEEEEEEEEEE SEEEEEEEEEEE SEEEEEEEEEEE FEEEEEEEEEEE FEEEEEEEEEEES SEEEEEEEEEEER SEEEEEEEEEEE FEEEEEEEEEEE EEEEEEEEEE
& g SOVA —+—
~ Max-Log-MAP ---><---
10t L Ao A
102 ¢
10
10 ¢
10'5 1 1 m ml I Im ”I’ ml Im]
04 06 08 1 12 14 16 18 2 22 24
SNR=E/N, (dB)
Figure 9.1. ASOVA Performance for a (31,27) code versus competing decoder

algorithms

locate the two merging path from the randomly ranged N,,,, previous states for
each next state, and there are up to 2 X N,,., next states. In the SMU and MDM,
each metrics and metric difference A could potentially be updated by any of the
other N, — 1 states. In the whole storage array, there are T'L X N,,, storage
units. As a result, since the register exchange approach, although with a high data
rate, is not appropriate for the FPGA implementation of ASOVA Turbo decoder,

the traceback approach is chosen.
9.1.2 Traceback FPGA Turbo Decoder

Prior to implementing the ASOVA component decoder in hardware, a set of

simulations were performed to evaluate appropriate T and N,,,,; values for the

106

ASOVA-based decoders. Via simulation it was determined that a value of 7= —10
and the associated N,,,, values, shown in Table 9.2, were best suited for our decoders
for a fixed BER of 107%. The signal-to-noise ratio (SNR) range supported by each
tested decoder is shown in Table 9.2. For a constraint length K of 4,5, and 6, the
codes of (15, 13), (31,27) and (65,57) was used respectively. When the SNR is high,
a reduced N,,,; can be used to obtain the required BER.

Parameter values were used to evaluate the ASOVA decoders’ error-correcting
performance versus competing component decoders to verify the performance bene-
fits of this approach. For comparison purposes, software versions of turbo decoders
based on SOVA, Log-MAP, and Max-Log-MAP component decoders were devel-
oped. Figure 9.1 indicates that the BER performance of ASOVA is superior to the
original SOVA without the scaling factor o, and approaches the performance of the
computationally more expensive Log-MAP algorithm for the (31,27) code (K =5).

Other codes demonstrated similar results.

9.1.2.1 Traceback ASOVA Turbo Decoder Statistics

To test the power consumption and decoding speed of our ASOVA-based turbo
decoders, a parameterizable decoder was written in Verilog. Decoders for a variety
of K and N, values were synthesized to an Altera Stratix EP1S10 FPGA and
downloaded to a Nios Development Board [6]. In the following experiments, turbo
decoders were tested with 1024 bit data blocks and 6 decode iterations. The survivor
memory was constructed from eight memory banks with the capacity to hold 10 x K
trellis columns of 4y, and A information (5 x K for traceback, 2.5 x K for update,
2.5 x K for rotating spare storage).

Table 9.2 illustrates the hardware resource usage of the decoders. Table 9.3
shows the decode rate and power consumption of the decoders for a range of K and

Npaz values. Two sets of power and decode rate values were determined: values at

107

K | Nz | SNR | LUTs | MEM | FFs
(dB) (Kbit)
6| 32 | 015 | 4611 | 135 | 2523
6| 28 | 1520 4407 | 133 | 2347
6| 18 |2025| 3814 | 126 | 1907
6| 12 |253.0] 3100 | 65.0 | 1503
6| 9 |3.04.0] 2851 | 63.1 | 1371
6| 7 |4.045]| 2524 | 37.2 | 1143
6| 6 |4555] 2406 | 36.6 | 1099
6| 5 |556.0] 2317 | 36.0 | 1055
6| 4 | >6.0 | 1972 | 25.1 | 871
5] 16 | 0-1.5 | 2809 | 67.6 | 1293
5| 12 |152.0| 2587 | 65.0 | 1133
5| 9 |2025] 2392 | 63.1 |1013
5| 8 |253.0]| 2202 | 37.9 | 897
5] 6 |3.04.0] 2074 | 366 | 817
5| 5 |4.05.0] 1996 | 26.0 | 777
5| 4 5065 1768 | 25.1 | 661
51 3 | >65 | 1722 | 244 | 621
4] 7 | 020 | 1896 | 26.8 | 687
4] 6 |2025] 1831 | 265 | 651
41 5 |2540] 1752 | 26.2 | 615
4| 4 |4055] 1563 | 20.7 | 535
41 3 | >5.5 | 1541 | 204 | 499

Table 9.2. ASOVA Decoder Statistics for BER=10"* and T=-10

50 MHz, the clock speed of the NIOS board, and values for the maximum possible
clock rate for the decoder. Clock speeds of nearly 90 MHz were found for smaller
decoders. For a 50 MHz decoder it can seen from the table that for K = 5, there is
a 51% power reduction for the N,,q, changing from 16 to 3, and for K = 6, there is

a 67% power reduction across N,,., values from 32 to 4.

9.1.2.2 ASOVA Dynamic Reconfiguration

A second set of experiments were used to determine power savings that could

be achieved if the entire FPGA decoder was reconfigured at run-time to support

108

50 MHz Max speed

K | Ny | Power | Speed fmaz | Power | Speed

(mW) | (Kbps) | (MHz) | (mW) | (Kbps)
6 32| 4477 173.4 52.9 | 469.1 183.4
6 28 | 431.3 193.6 56.7 | 485.1 219.4
6 18 | 306.9 228.2 59.3 | 431.3 270.5
6 12 | 232.6 288.6 60.0 | 279.6 346.5
6 9| 212.8 | 410.9 67.1 | 292.9 551.4
6 T 1779 | 447.1 66.1 | 233.0 590.2
6 6| 173.8 | 450.2 68.7 | 228.4 619.5
6 5| 168.4 501.3 67.4 | 215.8 677.9
6 4| 1473 | 469.2 77.8 | 159.1 728.6
5 16 | 205.8 312.2 70.5 | 280.5 | 440.0
5 12 | 193.0 301.0 70.4 | 250.4 | 424.0
5 9| 148.3 | 411.3 73.7 | 206.1 606.4
5 8| 169.6 | 444.8 74.6 | 246.5 663.5
5 6| 130.1 468.6 79.7 | 181.9 746.9
5 5| 134.3 | 470.1 80.7 | 198.9 758.5
5 4| 1104 472.6 82.8 | 163.4 782.2
5 3| 100.1 471.7 82.3 | 143.4 776.2
4 7| 134.3 487.8 81.2 | 248.9 792.5
4 6| 125.9 515.6 81.8 | 204.1 851.2
4 5| 113.0 622.8 80.2 | 198.0 851.2
4 4| 106.7 688.2 84.1 | 176.5 | 1216.0
4 3 98.6 734.6 89.0 | 185.2 | 1178.0

Table 9.3. ASOVA Performance on a Stratix EP1S10 FPGA

existent channel SNR requirements. Depending on the SNR, power savings are
achieved by using a lower N,,,,, lower-power decoder for high SNR and a higher
Nz, higher-power decoder for low SNR. The three constraint lengths K offered
three separate SNR ranges for testing.

Wireless communication channels are affected by three propagation mechanisms:
path-loss, shadowing, and multipath fading. The first, path-loss, represents the loss
in signal strength with increasing distance of the receiver from the transmitter, and,

hence, varies significantly only over relatively long time scales. The second effect,

109

Possibility

15%: I

ol U 1

15 25 35 45 55 6.5 SNR(dB)

Figure 9.2. SNR Distribution of Log-Normal Shadowing Channel

shadowing, is caused by the presence of large objects between the transmitter and
the receiver. The obstructions essentially form “dead zones”, where the transmitted
signal can be greatly attenuated from that expected at a given distance. Shadowing,
which is often modeled instantaneously as a log-normal random variable, changes the
average received signal-to-noise (SNR) ratio at moderate time scales, thus allowing it
to be measured and used for system adjustment in the second- and third-generation
wireless systems. Finally, multipath fading is caused by the constructive or destruc-
tive interference effects of the summation of the many reflected transmitted signals.
Although multipath fading can cause significant fluctuations in signal strength, its
rapid fluctuation allows the system to average its effects - thus greatly ameliorating
its impact on the system in many cases.

In this dissertation, we focus on the effects of the log-normal shadowing. In
particular, it is of interest to consider how measurements of fluctuations in the
local average signal-to-noise ratio can be used dynamically to optimize system
performance. This well matches the information available in many second and third
generation wireless cellular systems [76].

A set of 10,000 SNR values were sampled for each K using a log-normal shad-
owing distribution [83] for a total transmission length of 2.5 billion bits. Figure
9.2 presents the distribution of the sampled SNRs. Based on the assumption that
SNR can be sampled successfully every 250K bits [82], the FPGA was periodi-

110

cally reconfigured during the transmission process. Table 9.4 shows the number of
required reconfigurations, the resulting decode rates at 50 MHz, and the average
power dissipated. The average power consumption for the (31,27) code (K = 5) is
131 mW, a 36% improvement over a fixed N, = 16 decoder. For a (65,57) code
(K = 6), the average power of 216 mW is 52% less than the power of the fixed
Nz = 32 decoder, 448 mW. Power and decode rate numbers include the time and

power needed for FPGA reconfiguration, as described in Chapter 8.

9.1.2.3 Comparison to Microprocessor Implementations

Although the parallelism and memory structure of turbo decoders make efficient
implementation on a microprocessor difficult, we contrasted the software perfor-
mance of ASOVA on two microprocessors versus FPGA hardware implementations.
Software results were determined using the 1.6 GHz Pentium IV PC (the host for
the NIOS board) and the 50 MHz NIOS processor running on the FPGA board.
The results for K = 4, 5, and 6 are shown in Table 9.5. For a given K and N4,
the 50 MHz FPGA decoder outperformed software implemented on the Pentium
IV by over two orders of magnitude. The NIOS processor power consumption was
approximately 630 mW for all decoders, and was 30% larger than the highest power
consumption for an FPGA decoder (447 mW).

In a final experiment we performed a direct comparison between FPGA decode
rates on the NIOS board (including PC-to-board transfer overheads) and Pentium
IV PC decode rates. When 100 Mbps Ethernet PC-to-board delays are considered,
the overall decode speed for a K = 6, N,,,, = 18 decoder is 211.1 Kbps and the
overall decoder speed for a K =5, N, = 12 decoder is 229.7 Kbps. These values
are still more than two orders of magnitude faster than corresponding Pentium IV

PC decoders with data rates of 1.3 Kbps and 2.1 Kbps, respectively.

111

K | Avg. | Reconfigures | Avg. Power
Speed required (mW)
(Kbps)

4 | 598.6 | 6925/10000 111.6

5| 429.4 | 6306/10000 131.7

6 | 359.1 | 8369/10000 216.2

Table 9.4. Dynamic Reconfiguration

9.1.2.4 Comparison to Digital Signal Processors

The FPGA implementation of ASOVA Turbo decoder is compared to a SA-1100
low-power processor [53], and a TMS320C6713 digital signal processor (DSP) [98],

to further evaluate its performance.

The technology parameters of the compared architectures are presented in Table
9.6. The decoding speed and power consumption are shown in Table 9.7. The SA-
1100 is evaluated by JouleTrack [93]. The decoding performance of TMS320C6713
is obtained from the simulation using the Code Composer Studio (CCStudio) De-
velopment Tools [97]. The power consumption of the TMS320C6713 is about 1.7W
based [98]. Generally, the power consumption of DSPs does not vary too much for
applications, which can also been seen from the power consumed by the SA-1100 in

Table 9.7.

9.1.2.5 Comparison to Commercial FPGA Implementations

Recently, Altera and Xilinx published their commercial Turbo decoder cores
using Log-MAP algorithm [8, 109]. A comparison is presented in Table 9.8. The
performance of all decoders are based on a (31,27) code with 5 iterations. For a fair
comparison, the N,,., of ASOVA is set to be the full state of 8, so that the ASOVA

decoder covers the same SNR range.

The Altera core uses 5-bit soft information, which mainly relates to the size of

the required memory. A bitwidth of 6 is used for the soft information in the Xilinx

112

K | Nz | Pentium IV | NIOS | FPGA Hardware
(Kbps) (Kbps) (Kbps)
6 32 0.784 0.003 173.4
6 18 1.344 0.005 228.2
6 12 2.064 0.007 288.6
6 9 2.730 0.009 410.9
6 7 3.382 0.011 447.1
6 6 3.615 0.013 450.2
6 d 4.227 0.015 501.3
6 4 5.294 0.019 469.2
6 3 6.239 0.024 471.4
) 16 1.589 0.006 312.2
5 12 2.048 0.008 301.0
5 9 2.661 0.010 411.3
5 8 3.013 0.012 444 .8
5 6 4.160 0.015 468.6
) 3 4.899 0.019 470.1
) 4 5.824 0.022 472.6
4 7 3.177 0.014 487.8
4 6 3.404 0.017 515.6
4) 4.193 0.020 622.8
4 4 5.241 0.024 688.2
4 3 7.381 0.030 734.6

Table 9.5. Decoding Speed of FPGA ASOVA Decoder versus Microprocessors

core. However, the function look-up-table, which is the kernel of the computation
core, has 4-bit outputs. In Table 9.8, the results of ASOVA are based on a Turbo
decoder with 5-bit soft information.

The power consumption of the Xilinx core was obtained from the Xilinx power

Architecture | Technology | Voltage | Clock
(pm) (V) | (MHz)
Stratix EP1S10 0.13 1.5 50
SA-1100 0.35 3.3 206
TMS320C6713 0.13 1.2 225

Table 9.6. Parameters of Stratix and DSPs

113

Nas Decoding Speed (Kbps) Power (mW)

EP1S10 | SA1100 | TMS320C6 || EP1S10 | SA1100
16 312.2 0.141 0.602 205.8 365.4
12 301.0 0.178 0.727 193.0 365.0
10 411.3 0.204 0.847 178.4 364.8
8 444.8 0.240 0.975 169.6 364.4
6 468.6 0.292 1.153 130.2 363.8
4 472.6 0.351 1.422 110.4 363.0

Table 9.7. Comparison to DSPs

Model FPGA Alg. LUT | MEM | CLK | Power | Speed
EM | (MHZ) | (mw) | (bit/s)

Xilinx [109] | XC2V500 | Log-MAP | 2695 x 2 | 360K 66 970 2M

Altera [8] | EP1S10 | Log-MAP | 5644 | 400K | 50 | N/A | 2M

ASOVA EP1510 ASOVA 2066 65K 76 248 | 1.35M

Table 9.8. Comparison Results of (15,13) Code

estimation tools [110] with an average activity rate of 30%. Note that the power
consumed by the Xilinx core did not include the 10 pads. The Xilinx core uses 2695
slices, where each slice has 2 LUTs. In terms of the LUT number, the dynamic
ASOVA Turbo decoder is about 2 to 3 times smaller than the Xilinx core. The

power consumption of Xilinx is about 8 times that of the dynamic ASOVA model.

9.2 Mapping ASOVA onto aSoC

After testing the ASOVA Turbo decoder in the FPGA board, the Turbo code

system is mapped onto aSoC devices.
9.2.1 Partitioning of Functional Blocks

To run the Turbo decoder on the aSoC devices, the decoder must be partitioned
into sub-tasks that can fit in aSoC cores. As introduced in Chapter 5, four types
of cores are available in our aSoC model chips, namely, R4000, MEM, FPGA and

114

Encoder Channel Decoder

Component
Decoder
ul g |y
Random Data | AWGN| P EL @
| i
Generator p1l FFl’ ACS

I Interleave
' y L»':Z Component| | » ——@
1 | g Decoder De—
Interleaver

p2 |
| AWGN | -~

| Outpu

d

ACS

Figure 9.3. ASoC Partitioning of Turbo Decoder

MAC. In addition to matching the core functions, the partition should also allows
for parallelism and pipelining.

To test the Turbo decoder, a Turbo encoder and a channel simulator were
required in the system to provide the input data. The data rate of the encoder and
the channel simulator should be no slower than the decoding speed when testing
the decoder performance. Therefore, they also have to be integrated in the aSoC
devices and carefully partitioned to provide enough input data rate.

The partitioning of the Turbo code system is shown in Figure 9.3, which includes
arandom data generator, a Turbo encoder, a channel simulator and a Turbo decoder.
Each dark block in Figure 9.3 is mapped onto one aSoC core.

Random Data Generator generates information bit sequence u, which is the
data to be sent to the receiver. It is a sequence of pseudo random bits of 0 or
1. Linear-feedback shift registers (LFSR) are employed to implement this random
data generator. Since it is mainly bit wise operation, a FPGA core is used for the
random data generator.

The Turbo encoder consists of three cores, two of which are encoders and the
third is an Interleaver. The architecture of the RSC encoders described in Chapter 7
are implemented by two FPGA cores. The Interleaver functions to shuffle the order
of the input data. The input data are buffered and output in a different order. A

MEM core is used to accomplish this job.

115

Turbo Decodet

—| Turbo Decoder
Turbo

Encoder

Channel

—| Turbo Decoder

L .| Turbo Decoder

Figure 9.4. System with Four Turbo Decoders

The channel simulator functions as an additive white Gaussian noise (AWGN)
channel. Each data that passes through the channel is added with a Gaussian noise.
To allow for parallelization, two R4000 cores are used to perform the same function,
with one on the data sequence of ¢, and the other one on sequences of y and p.

The Turbo decoder is implemented by three Interleavers and De-Interleavers, a
decider and two component decoders. The Interleaver and De-Interleaver are built
by MEM cores. An FPGA core is used for the decider. Each component decoder
employs two cores. A MAC core works as the BMU and generate the branch metrics
for each input, and a R4000 core takes care of the ACS and other computations since
the aSoC FPGA core does not have enough hardware resources for this function. To
sum up, two R4000 cores, one FPGA core, two MAC cores and three MEM cores
are used for a Turbo decoder.

In order to further improve the decoding data rate, multiple Turbo decoders
are mapped onto an aSoC chip. Figure 9.4 presents an example of a system with
four parallel decoders. Each decoder works on separate code blocks. Given a block
length of 1024 bits, the channel sends the first 1024 data to the first decoder, the
second 1024 data to the second decoder, and so on. When all four decoders work
parallelly, the decoding speed can be increased up to four times when compared to
a system with only one decoder.

Table 9.9 presents the core requirements for the systems with various Turbo

116

Decoder # | Chip Size | R4000 | FPGA | MEM | MAC
1 4x4 4 4 4 2
2 5%5 6 5 7 4
3 6x6 8 6 10 6
4 X7 10 7 13 8

Table 9.9. Resources Usage of Turbo Decoder on aSoC

decoders. The first column is the number of decoders used in the system. The
second column is the smaller chip size in terms of core number that can fit the

Turbo decoder system. Other columns presents the number of used cores in each

type.

9.2.2 Obtain aSoC Turbo Decoder Parameters

AppMapper is employed to map the Turbo decoder onto aSoC devices following
the procedure described in Chapter 3.

A decoder for code (15,13) with constraint length K = 4 is chosen for the aSoC
decoder. In all the experiments, a block size of 1024 bits and 6 iterations are used.
The clock speed and the computation delay between communications are obtained
from core simulation. The parameters of Decider, Interleaver and De-Interleaver
are generated from the FPGA simulation. The part of ACS is simulated using
SimpleScaler [21].

The effects of the log-normal shadowing is considered in the Turbo decoding
system. For every 250,000 bits, the channel SNR is sampled, and the cores that
handle the ACS decoding can select the appropriate Np,,, for the current SNR.
A 2.5 billion information bit-sequence is tested in one experiment and the average

decoding time for each 1024-bit code block is measured.

117

9.2.3 Comparison to FPGA Implementation

In this section, the performance and resource usage of the Turbo decoder on

aSoC are compared with the FPGA implementation.

Table 9.10 presents the performance comparison between Turbo decoder using
the Pentium IV micro-processor [26], the FPGA and aSoC. As mentioned in Section
9.2.1, multiple Turbo decoders can be mapped onto an aSoC device to improve the
decoding rate. The row labeled with Decoder Number indicates the number of Turbo
decoders in the system. In this experiment, a (31,27) code with constraint length of
5 was used. Similar results were obtained for the codes with other constraint length
and not listed in the table.

It can be seen that the FPGA implementation has the highest decoding speed
within the systems consisting one decoder. This speedup comes from the special-
ization and the parallelism of the FPGA implementation. The Verilog hardware
design is customized for the FPGA. As described in Chapter 8, the architecture of
the component decoders are specially designed to fit the Stratix FPGA resources
to achieve the best performance. For example, the DSP blocks in the FPGA are
employed for the BMU, and the memory in the SMU is divided into banks to
make use of the SRAM blocks. In addition, the parameters used in the FPGA
implementation are optimized to 4-bit values, which speeds up the computation.
The general purpose processors such as the R4000 in aSoC and the Pentium IV

have to use the given bitwidth of 32-bit or 16-bit, whether it is needed or not.
On the other hand, the FPGA implementation is fully parallel. An FPGA device

has numerous computing resources which operate at the same time. With these
distributed units, the FPGA implementation of the Turbo decoder can achieve a
higher decoding speed. The general purpose processors have a centralized controller,
a limited number of ALUs and share the same memory. All these features force

the instructions to be executed sequentially. As a result, the decoding speed is

118

Nas Pentium IV (Kbps) | FPGA (Kbps) aSoC (Kbps)
Decoder Number 1 1 1 ‘ 2 ‘ 3
16 1.589 312.2 197.1 | 287.2 | 337.8
12 2.048 301.0 223.5 | 327.5 | 380.9
10 2.532 398.2 238.4 | 352.9 | 409.2
8 3.013 444.8 256.3 | 377.0 | 435.6
6 4.160 468.6 322.5 | 476.7 | 552.8
4 5.824 472.6 436.2 | 648.3 | 708.9

Table 9.10. Decoding Speed of aSoC and FPGA Implementation on (31,27) Code

much slower than the FPGA implementation. The aSoC devices employ multiple
heterogeneous IP cores, which allows more parallelism than a single processor and
brings the performance closer to the FPGA implementation.

The speedup of FPGA implementation comes at the cost of larger resource usage.
Since these devices are designed in different technologies, die size does not provide a
fair comparison. As a result, the transistor count is used in the following comparison.
Table 9.11 shows the transistor count of the Pentium IV, Stratix EP1S10 FPGA
and the aSoC components used by the Turbo decoder. Pentium IV has about 42M
transistors [26]. The exact transistor count of Stratix EP1S10 is unavailable from
the public documents, but can be estimated closely with the algorithm in [17]. The
Stratix EP1S10 FPGA consists of 10,570 logic elements (LEs) and about 1M bit of
SRAM [7]. Each LE has about 900 transistors [16] and one memory bit requires 6
transistors. As a result, the number of overall transistors can be calculated as Eq
9.1.

900 x 10,570+ 1M x 6 = 15.5M (9.1)

This number includes only the memory blocks and LEs. The other resources, such
as the interconnect, IO pads and DSP blocks, are not included in this estimation.
The above computation gives only a conservative number, and an EP1510 FPGA

has more than 15.5M transistors.

119

Architecture Transistor Count
Stratix EP1S10 >15.5M
Turbo decoder on aSoC 11.2M
Pentium IV 42M [26]

Table 9.11. Transistor Count Comparison of Different Approaches

Core Type Transistor Count
R4000 1M [27]
MEM 1.3M
MAC 100K
FPGA 1.1M
Communication Interface 500K

Table 9.12. Transistor Count of aSoC Cores

The transistor count of aSoC can be obtained by summing up the transistors of
the IP cores and the communication interface. Table 9.12 presents the transistor
count of the aSoC components. The data for the cores of MEM, MAC, FPGA and
the aSoC communication interface are obtained from the simulation and synthesis.
As mentioned previously in Section 9.2.1, a Turbo decoder employs two R4000 cores,
one FPGA core, two MAC cores and three MEM cores. The transistor count sums

up to 11.2M as shown in Eq. 9.2.
1M x24+1.1M + 100K x 2+ 1.3M x 3+ 500K x 8 =11.2M (9.2)

The transistor count comparison is shown in Table 9.11. The Pentium IV has the
largest transistor count because it consists a lot of units unnecessary to the Turbo
decoder, for example, the graphic processing ability.

The performance and area comparison results mainly depend on the computation
resources but not the communication architecture. To evaluate the aSoC communi-

cation architecture, a fair comparison system has to be established to eliminate the

120

effect of the computation cores. This system is presented in more detail in Chapter

10.

121

CHAPTER 10

ASOC SIMULATION RESULTS

To evaluate the benefits of aSoC versus other on-chip communication technolo-
gies, design mapping, simulation, and layout were performed. Benchmark simulation
of 9 and 16 core models shown in Figure 5.1 were used to determine architectural
parameters for aSoC prototype layout. Core model assumptions were subsequently
validated via layout. As a final step, aSoC implementations of the benchmarks were

compared to implementations using alternative on-chip interconnect approaches.

10.1 aSoC Parameter Evaluation and Layout

The benchmarks described in Chapter 6 and the Turbo decoding system intro-
duced in Chapter 9 were evaluated using the aSoC simulator to determine aSoC
parameters such as the required number of instructions per instruction memory.
The cores listed in Table 5.2 were used in configurations described in Chapter 5.
R4000 performance and area were obtained from MIPs [27]. Multiply-accumulate,
memory, and FPGA performance numbers were determined through core layout
using TSMC 0.18um library parameters [90].

Benchmark run-time statistics determined via simulation are summarized in
Table 10.1. These statistics illustrate usage of various CI resources across a set
of applications. The values were determined with parameters set to values which
led to best-performance application mapping. Statistics which were used for CI
architectural choices are highlighted in boldface. Although the maximum number
of instructions per CI was relatively small for these designs (9), a depth of 32 was

allocated in the aSoC prototype to accommodate expansion for future applications.

122

Design Cores | Streams | Max. | Max. Ave. Max. Ave.
CI Str. Str. | Coreport | Coreport
Number | Number | Inst. | per CI | per CI Depth Depth
IR 9 11 2 5 3.5 2 2.0
IR 16 20 2 5 3.5 4 2.7
IMG 9 8 2 3 2.0 2 1.5
IMG 16 15 4 4 3.5 4 1.9
IMG 25 20 4 7 2.0 4 2.1
IMG 36 28 4 7 1.8 4 1.5
IMG 49 36 4 7 2.6 4 1.5
Doppler 16 32 8 6 2.1 4 1.6
OFDM 16 39 9 6 2.2 4 1.5
MPEG 16 19 4 8 3.6 4 2.3
MPEG 25 37 5 8 3.2 4 3.0
MPEG 36 55 5 8 2.1 4 3.1
MPEG 49 73 5 8 5.3 4 3.0

Table 10.1. Benchmark statistics used to determine aSoC parameters

Since the maximum total number of streams per CI is 8, each of the four CDM
buffers per CI could be restricted to a depth of 2 in the prototype. The coreport
memory depth was set to four, the maximum value in terms of streams across all
benchmarks.

A prototype SoC device, including aSoC interconnect, was designed and imple-
mented based on experimentally-determined parameters. The 9 tile device layout in
a 3x3 core configuration contains lookup-table (LUT) based FPGA cores with 121
clusters of 4 four-input LUTs, a complete communication interface, and clock and
power distribution. Each tile fits a size of 30,000 x 30, 000\? with 2,500 x 3, 500\?
assigned to the communication interface and associated control and clock circuitry
(about 6% of device area). An H-tree clock distribution network is used to reduce
clock skew between tiles. Layout was implemented using TSMC 0.18um library
parameters resulting in a communication clock speed of 400MHz. The critical path

of 2.5 ns in the communication interface involves the transfer of a flow control bit

123

Data Memor

i

-
M

SEoESEEES || SR SEREEE || HarESREEE || Fhogmk o
oo XF HE b e BIELE
g
o
B p P &
E
i %
4 : s nag 2
; i
1
-

ThIRIRLR T T
Instruction Memory
o l ro

{71 e Rty T o100 000 0 o N 0 O e

0 N T Y R0 Y

Figure 10.1. Layout of FPGA Core and Communication Interface

MAC FPGA FPGA
””””””””””””””””” Interface
MEM |
R4000 FPGA FPGA!
[I |

Figure 10.2. Non-uniform aSoC core configuration

from a CDM buffer to the read control circuitry of a neighboring CDM buffer, as
shown in the right-to-left path in Figure 3.8. A layout snapshot of a communication
interface, coreport, and a single FPGA cluster appears in Figure 10.1.

The layouts of the communication interface and associated cores support the
creation of a non-uniform mesh structure which is populated to optimize space

consumption. As shown in Figure 10.2, tile sizes range from 10,000 x 10,000)? to

124

30,000 x 30,000)2. The overhead percentage of the communication interface for
each core is shown in Table 5.2. For comparison, an embedded Nios processor core
[1] and its associated AMBA bus interface [39] were synthesized. A total of 206 out
of 2904 total logic cells (7%) were required for the AMBA interface, with additional
area required for bus wiring. This result indicates that the aSoC communication

interface is competitive with on-chip bus architectures in terms of core overhead.
10.2 Performance Comparison with Alternative On-Chip Interconnects

A series of experiments were performed to compare aSoC performance against
three alternative on-chip communication architectures: a standard CoreConnect on-
chip bus [54], a hierarchical CoreConnect bus, and a hypothetical network based on
run-time dynamic routing [30]. Performance was evaluated using the aSoC simulator
described in Section 5.2. In these experiments, the IP cores with parameters shown
in Table 5.2 were aligned in the 9 and 16 configurations shown in Figure 5.1. For each
interconnect approach, the relative placement of cores and application partitioning
was kept intact. Only the communication architecture which connects them together

was changed for comparative results.

10.2.1 Comparison to CoreConnect Architecture

To evaluate aSoC bandwidth capabilities, a benchmark-based comparison is
made for aSoC versus the IBM CoreConnect processor local bus (PLB) [54]. The
PLB bus architecture allows for simultaneous 32-bit read and write operations at
133 MHz. When necessary, bus arbitration is overlapped with data transfer. The
architecture requires two cycles to complete data transfer: one cycle to submit the
address and a second cycle to transport the data. CoreConnect PLB supports burst
transfers up to 16 words. Maximum possible speedup for burst transfer versus

multiple single-word transfer is about 2X.

125

9-Core Model 16-Core Model
Ezecution IR | IMG IIR | IMG | MPEG | Doppler | OFDM | Turbo
Time (mS)
R4000 0.049 | 327.0| 0.350 | 327 152 0.80 4.40 109
CoreConnect 0.012 22.0 | 0.016 | 30.5 173 0.13 0.21 | 0.323
CoreConnect 0.012 18.9 | 0.015 | 24.3 172 0.13 0.21 | 0.323
(burst)
aSoC 0.006 9.6 | 0.006 7.3 83 0.11 0.18 | 0.102
aSoC Speedup || 2.0| 23| 25| 3.3 2.1 1.2 1.2 3.2
vs. burst
Used aSoC 8 8 33 27 41 26 45 33
links
aSoC max. 10% 8% | 3% | 28% 25% 2% 4% 1 15%
link usage
aSoC ave. ™% % | 22% | 25% 5% 2% 3% 8%
link usage
CoreConnect 91% | 100% | 100% | 99% 67% 32% 3% 72%
busy (burst)

Table 10.2. Comparison of aSoC and CoreConnect Performance

It can be seen in Table 10.2 that aSoC performance improvement over Core-
Connect increases with a larger number of cores. Run times on a single 200 MHz
R4000 are provided for reference. Relative aSoC improvement over CoreConnect
burst transfer is indicated in the row labeled aSoC speedup. For most designs
the CoreConnect implementation leads to saturated or nearly-saturated bus usage.
The CoreConnect busy row indicates the fraction of total possible bandwidth used

by the CoreConnect bus during the application.

10.2.2 Comparison to Hierarchical CoreConnect

A limiting factor with shared on-chip buses is scalability. To provide a fairer
comparison to aSoC, a set of experiments was performed using a hierarchical version
of the CoreConnect bus. Three separate CoreConnect PLBs connect rows of cores

shown in Figure 5.1. A CoreConnect OPB bridge [54] joins three subbuses (for

126

9-Core Model 16-Core Model
Ezecution Time (mS)| TIR| IMG | IIR | IMG | MPEG | Doppler | OFDM
Hier. CoreConnect, 0.013 26.0 | 15.7 | 374 178 0.15 0.22
aSoC 0.006 96| 7.0 7.3 83 0.11 0.18
aSoC Speed-up 2.1 2.7 2.2 5.1 2.2 14 1.2
subbus 0 busy 8% | 97% | 99% | 100% 94% 30% 30%
subbus 1 busy 2% | 83% |99% | 61% 94% 12% 27%
OPB bridge busy 40% 65% | 81% | 60% 93% 16% 36%

Table 10.3. Comparison of aSoC and Hierarchical CoreConnect Performance

9 cores) or four subbuses (for 16 cores). When a cross-subbus transfer request is
made, the OPB bridge serves as a bus slave on the source subbus and a master
for the sink subbus. The OPB bridge arbitrates for control of the sink subbus
before acknowledging the source subbus transaction. When both subbuses are idle,
a cross-subbus transaction can be set up within two bus clock cycles. As shown in
Table 10.3, for all but one design, aSoC speedup versus the hierarchical CoreConnect
bus is larger than speedup versus the standard CoreConnect bus. This effect is due

to the overhead of setting up cross-bus data transfer.
10.2.3 Comparison to Oblivious Dynamic Routing

In a third set of experiments, the aSoC interconnect approach was compared
to a hypothetical on-chip dynamic routing approach. This dynamic routing model
applies oblivious dynamic routing [30] with one 400 MHz router allocated per IP
core. Tile topology for the near-neighbor dynamic network is the same as shown in
Figure 5.1. For each transmitted piece of data, a header indicating the coordinate
of the target node is injected into the network, followed by up to 20 data packets.
Dimension-order routing, which routes packets horizontally and then vertically, is

used to prevent routing deadlock. To allow for a fair comparison to aSoC flow

127

9-Core Model 16-Core Model

Ezecution Time (mS) | TIR | IMG [IIR | IMG | MPEG | OFDM | Turbo
Dynamic Routing 0.008 144 | 8.7 9.7 162.0 0.19 | 0.154
aSoC 0.006 6.1 70| 7.3 82.5 0.18 | 0.102
aSoC Speedup 1.3 24| 1.3 1.3 2.0 1.1 1.5

Table 10.4. Comparison of aSoC and Dynamic Network Performance

control, the routing buffer in each dynamic router is set to be the maximum size

required by an application.

The results in Table 10.4 indicate that the aSoC is up to 2.4 times faster than
the dynamic model. Performance improvements are based on the removal of header

processing and a tight aSoC coreport-router interaction.

10.2.4 Comparison to Published Results

Several experiments were performed to compare the results of aSoC interconnect
versus previously-published on-chip interconnect results. An MPEG-2 decoder, de-
veloped from four Motorola PowerPC 750 cores interconnected with a CoreConnect
bus, was reported in [88]. The four 83 MHz compute nodes require communication
arbitration and contain an associated on-chip data and instruction cache. During
decoding, frames of 16x16 pixels are distributed to all processors and results are
collected by a single processor. To provide a fair performance comparison to this
MPEG-2 decoder, our aSoC simulator was supplemented with SimpleScalar 3.0
for PowerPC [21] and applied to four PowerPC 750 core tiles interconnected with
communication interfaces. The partitioning of computation was derived from [88],
following consultation with the authors. In the experiment, the PowerPC cores
run at 83 MHz and the aSoC communication network runs at its 400 MHz. Table
10.5 compares our results to previously published work. Unlike the 64-bit, 133
MHz CoreConnect model [88], aSoC avoids communication congestion by avoiding

arbitration and providing a faster transfer rate (32 bits at 400 MHz).

128

MPEG-2 Decoder | Throughput (Mbps)
CoreConnect [88] 0.68
aSoC 2.88
OFDM Throughput (Mbps)
CoreConnect [89] 2.19
aSoC 5.67

Table 10.5. Comparison to published work

In previously published work [89], OFDM was also implemented using four 83
MHz PowerPC 755 cores interconnected with a 64-bit, 133 MHz CoreConnect bus.
Each packet of OFDM data contains a 2048-complex valued sample and a 512-
complex valued guard signal. This application was partitioned into four stages:
initiation, inverse FFT, normalization and guard signal insertion. Each stage was
mapped onto a separate processor core. Like the MPEG-2 decoder described above,
the same mapping of computation to 83 MHz PowerPC 755 cores was applied to
aSoC and modeled using SimpleScalar and aSoC interconnect simulators. Results
are shown in Table 10.5. The aSoC implementation achieves improved performance
for this application by providing high bandwidth and pipelined transfer.

Unlike the results for MPEG-2 and OFDM shown in Tables 10.1 through 10.4,
communication is not overlapped with computation during execution of the appli-
cations. This approach is consistent with the method used to obtain the previously-

published results [88, 89].
10.3 Run-time Communication Branching

As discussed in Chapter 3.1.3, the conditional branch mechanism of the commu-
nication interface provides the capability of modifying aSoC communication patterns
at run time. This is especially useful for algorithms with changing communication
patterns, such as FFT. All source-destination paths for the computation are known

at compile time and switches between communication patterns are coordinated by

129

Stage 1 Stage 2 Stage 3
| | | | i e TR —
Core0 | x(0) <>< ***** ;iD\, ffffff ﬂ 7777777 y(0) RAO0O ‘ L;(Ec;rieiofi 7‘73;076@7516) T Téaréﬂ B j Core 3‘
HCorel‘ ‘ ‘ ‘?””{”)1 CoreZ‘

) O~ =0 KON/ v | I D s

aSoC setting for Stage 1

x@) O< . ﬁ/ 777777 ﬂi \ 7><7 / ’)/\) ¥e) R4000 ‘ ‘ ‘ Core 4 [___“1 Core 6‘ ‘ ‘
o O =0 ’\QX XX’JO YO raooo ‘4 — i i* - ‘

[Lcores — [Core2 |

E J
E J
E J
E J
corea [O 20 stXXXX% | ppo I s
E J
E J
E J

aSoC setting for Stage 2

FPGA ‘ vy—r‘_—,‘ Core4‘ ‘ Core 6 ’—'7‘

x(3) ()i,,,,,ﬂ ,,,,, Qj, ,,,,, %) v(6) EPGA ‘ Core 0 ‘ ‘ ACore‘S‘ Core7}‘—_>(Core 3 ‘
Looer o=] [L—J]{coez]

M LD v e]

aSoC setting for Stage 3

Figure 10.3. Mapping Result of FFT

Instruction | interface next, possible | Comment

Number connection instruction | branch?

0x0 core to south | 0x1/- N data transfer south
Ox1 core to I,y 0x2/0x0 Y test control value
0x2 core to east | 0x3/- N data transfer east
0x3 core to I, 0x4/0x2 Y test control value
0x4 core to west | 0x5/- N data transfer west
0xb5 core to I,y 0x0/0x4 Y test control value

Table 10.6. Control branching transfer example

a core-generated count value. When the count value reaches 0 and is transferred to
the I,y port of the communication interface (shown in Figure 3.5) and a switch in
communication patterns is performed.

A FFT kernel is mapped onto aSoC devices following the partition shown in
the left part of Figure 10.3. As shown in Table 10.7, a number of multi-point
FFTs were implemented to illustrate control branching. A single core performs

all butterfly computations in a shaded row in the left portion of Figure 10.3. To

130

| N | 8 | 16 | 32 | 64 | 128 | 256 | 5121024 |
R4000 23.0 | 34.0 | 50.0 | 89.0 | 176.0 | 263.0 | 792 | 1900
aSoC 04 | 0.8 | 1.7 | 47 | 146 [38.7 | 94 [230
CoreConnect | 0.4 | 1.0 [2.7 | 54 | 244 | 52.0 [120 | 314

Table 10.7. FFT application run time for N points (times in uS)

complete required transfers, three communication patterns are scheduled for the
three stages of FF'T computation. The data streams scheduled for different stages
are shown in the right part of Figure 10.3. As an example, the interconnect memory
program of Core 4 in the 16 tile topology in Figure 10.3 is shown in Table 10.6.
These instructions illustrate the transfer of a control value from the local core to
port I,,; on alternate instructions. When the control value reaches 0, control is
switched to the subsequent communication instructions. This occurs when all data
for the current phase (e.g. 8 points for a 64 point FFT) have been communicated.

Execution time results of the FFT application using CoreConnect and aSoC
interconnect approaches are shown in Table 10.7. The benefits of aSoC over Core-

Connect are due to the elimination of bus arbitration.
10.4 Architectural Scalability

An important aspect of a communication architecture is scalability. For inter-
connect architectures, a scalable interconnect can be defined as one that provides
scalable bandwidth with reasonable (e.g. linear) latency increase as the number of
processing nodes increase and as the computing problem size increases [28]. Under
this definition, aSoC provides scalable bandwidth for many applications, including
MPEG-2 encoding, Turbo decoding, image smoothing and OFDM application.

The MPEG-2 encoder in Figure 6.1 can be scaled by replicating core func-
tionality, allowing for multiple frames to be simultaneously processed in separate

threads. A bottleneck of this approach is a common Input Buffer and data collection

131

Threads | Core Configuration | Used Cores | Comm. Cycles Throughput
pixel/uS ‘ Mbps

1 4 x4 12 33,002,480 0.60 | 7.15
2 5% 5 23 | 34,906,796 1.13 | 13.51
3 6 x 6 34| 34,916,246 1.69 | 20.27
4 Tx T 45 | 35,311,402 2.23 | 26.72

Table 10.8. Scalability of the MPEG2 Encoder

buffer at the input and output of the encoder. Since the communication delay of
distributing the data to threads can be overlapped with computation, communi-
cation congestion and data buffer contention can lead to performance degradation
as design size scales. Table 10.8 illustrates scalable performance improvement for
multiple MPEG-2 threads implemented on aSoC. Device sizes ranging between 16
and 49 cores were considered. Total communication cycles increased marginally to
accommodate routing and Input Buffer contention.

Similar to the scalable MPEG II encoders, multiple Turbo decoders can be used
in a decoding system to improve the decoding speed. As described in Chapter 9,
when the sequence of 1024-bit code blocks are received from the channel, each code
block will be assigned to a idle Turbo decoder. All Turbo decoders in a system can
be working parallelly. In this experiment, up to 4 Turbo decoders are used in a
system. Appropriate number and types of cores, as shown in Table 9.9, are chosen
for the target aSoC devices. With different Turbo decoder numbers, the sizes of these
devices range from 16 to 49 cores. Table 10.9 presents the scalable performance on
aSoC devices. The decoding date rate of aSoC devices are compared to the system
using CoreConnect bus, and the devices using dynamic network. With the number
of decoders in a system increases, the aSoC devices and the model using dynamic
network provides increasing decoding data rate. However, due to the congestion and

bus arbitration overhead, more decoders do not help to achieve better performance

132

Device 16-core | 25-core | 36-core | 49-core
Decoder Number 1 2 3 4
Used Core 14 22 30 38
aSoC Speed (Mbps) 1.66 2.51 2.89 3.28
CoreConnect Speed (Mbps) || 0.529 | 0.689 | 0.615 | 0.602
Dyn. Speed (Mbps) 1.12 1.49 1.86 1.93
aSoC vs. CoreConnect 3.2 3.6 4.7 5.4

Table 10.9. Scalability of Turbo Decoder

| Slices | Core Configuration | Used Cores | Execution Time (mS) |

2 3x3 8 9.61
4 4 x4 14 7.27
6 dXd 20 4.84
9 X7 38 4.75

Table 10.10. Scalability of image smoothing for 800x600 pixel image

for the model using CoreConnect architecture. It can be seen that, as the number of
Turbo decoders increases in a system, the aSoC devices obtains increasing speed-up
over the CoreConnect bus architecture. It indicates that aSoC can achieve better
performance over bus architecture when the size of the system gets large and the
communication amount increases.

Using a similar multiprocessing technique, the image smoothing application was
parallelized across a scaled number of cores using multiple threads applied to a
fixed image size. Each 3-pixel high slice is handled by an R4000, a MAC and
an FPGA. Table 10.10 illustrates the scalability of the application across multiple
simultaneously-processed slices. The image source and destination storage buffers
are shared across slices. Application execution time scales down with increased core
count until contention inside the storage buffers eliminates further improvement.

In a final demonstration of architectural scalability, a number of multi-point

Doppler evaluations were implemented on a 16 core aSoC model. Execution time

133

| N | 8] 16| 32| 64| 128]256 5121024 |

R4000 23.034.0| 50.0 | 89.0 | 176.0 | 263 | 792 | 1900
CoreConnect | 068 | 1.6 | 3.7 74| 28.2| 60| 130 | 340
aSoC 065| 13| 27| 6.6| 183 | 46| 110 | 260

Table 10.11. Doppler run time for N points (times in uS)

results of the Doppler application using CoreConnect and aSoC interconnect ap-
proaches are shown in Table 10.11. The benefits of aSoC over CoreConnect are due

to the elimination of bus arbitration.

134

CuaPpTER 11

CONCLUSION AND FUTURE WORK

This dissertation solves the problem of the scalable on-chip communication band-
width requirement for near future System-on-a-Chip devices. Currently used bus
architectures rely on centralized arbitration to dynamically choose the bus master,
which restricts the scalability of the communication architecture. In addition, long
bus wires limit the clock speed and consume a great deal of power to drive all
cores on the bus. In this dissertation, a new communication substrate, the adaptive
System-on-a-Chip (aSoC), for on-chip communication has been presented. There
are four main contributions of this dissertation:

1. A scalable communication architecture has been constructed as shown in Chap-
ter 3. Several features have been employed in the architecture to improve
the data bandwidth and performance. The communication interface has been
designed to support the packet-switching scheme so that centralized bus ar-
bitration is avoided. The use of scheduled communication allows for pre-
dictable data transfer at a fast rate. Its distributed nature allows for scal-
able bandwidth. Near-neighboring pipelined wires are used to connect the
communication interfaces, allowing for fast clock frequency. Although the
architecture has been optimized for stream-based communication to allow for
predictable data transfer at a fast rate, dynamic behavior is supported through
communication control branching. The distributed nature of the interconnect

allows for scalable bandwidth.

The developed communication architecture includes the communication in-

terfaces which forward the data packets to their destinations based on the

135

prescheduled instructions, the pipelined near-neighboring wires, and the core-
port which synchronizes the computation cores and the communication net-

work.

. Supporting mapping tools have been developed to aid in design translation to
aSoC devices. The tools include an aSoC compiler and a system simulator.
The compiler accepts high-level design representations, isolates basic blocks of
code, and assigns blocks to specific cores. Data transfer times between cores are
determined through heuristic scheduling. An integrated core and interconnect
simulation environment allows for accurate system modeling prior to device

fabrication.

. A set of benchmarks have been developed for aSoC devices. The applications
are chosen from the DSP, multi-media and communication domains to verify
the performance of aSoC architecture, including the MPEG II encoder/decoder,
image smoothing, Doppler radar, OFDM, and IIR filter. While the above
applications are mostly DSP cores, a Turbo decoder is also mapped onto aSoC
devices as an integral system. A novel adaptive Soft-output Viterbi algorithm
is developed to improve the decoding data rate and reduce the computation

complexity.

. Experimentation was performed to validate the performance of an aSoC ar-
chitecture. A nine-core prototype aSOC chip including both FPGA cores
and associated communication interfaces was designed and constructed. The
point-to-point nature of our architecture supports a communication clock speed
of 400 MHz in 0.18 micron technology. The six application circuits have been
tested on the aSoC devices and compared with alternative communication
architectures. It was found that the aSOC interconnect approach outperforms

the standard IBM CoreConnect on-chip bus protocol by up to a factor of

136

five and compares favorably to previously-published work. Experiments on
the Turbo decoding system reveals increasing speedup over the CoreConnect
bus architecture on aSoC devices with more cores, which indicates the superb

scalability of aSoC on communication applications.

The current status of this dissertation has verified the performances of aSoC
communication architecture. It provides a communication substrate for SoC designs.
The concept of pipelined packet-switching on-chip communication has been justified
by carefully chosen applications covering the communication, multi-media and DSP
domains. In addition, the dissertation also opens some possible directions for future

research interests.

e While the speed performance of aSoC has been validated in this dissertation,
the power consumption, which is another critical issue for deep sub-micron
devices, has not been addressed. The aSoC, as an on-chip communication
substrate, provides not only the inter-core communications but also the clock
tree for local computation cores. The highly active clock tree and long wire
data communications consume a considerable portion of the power in modern
devices. Further research can be done to reduce power consumption for on-chip

communication so that a low-power aSoC architecture can be developed.

e Software tools that aid the mapping of applications onto aSoC are described
in Chapter 4. The compiler is designed for high level language descriptions,
which were created for sequential executions. New programming languages
which can exploit the parallelism will be desirable for aSoC devices. The use
of stream-based programming languages for aSoC also provides an opportunity

for further investigation.

e Although the aSoC architecture is optimized for pre-scheduled stream-based

architecture, dynamic routing is still a desirable feature for many applications.

137

The addition of some dynamic routing hardware to the communication inter-
face will improve the flexibility of aSoC and extend the applications to a more

flexible domain.

138

REFERENCES

[1] www.altera.com. Altera Corporation, 2000.

[2] B. Ackland, A. Anesko, D. Brinthaupt, S. Daubert, A. Kalavade, J. Knobloch,
E. Micca, M. Moturi, C. Nicol, J. ONeill, J. Othmer, E. Sackinger, K. Singh,
J. Sweet, C. Terman, and J. Williams. A single-chip, 1.6-billion, 16-b mac/s
multiprocessor dsp. Journal of Solid-State Circuits, 35(3), Mar. 2000.

[3] L. Adams. OverView of the CoreFrame Architecture. In PalmChip Corpora-
tion white paper, 2000. http://www.palmchip.com/coreframe.html.

[4] P. J. Aldworth. System-on-a-Chip Bus Architecture for Embedded Applica-
tions. In IEEE International Conference on Computer Design, Austin, Texas,
Oct. 1999.

[5] Altera, Inc. Nios 3.0 cpu data sheet. In
http://www.altera.com/literature/ds/ds_nioscpu. pdf, 2002.

[6] Altera, Inc. Nios development kit, stratix edition. In http://www.altera.com/
products/devkits/altera/kit-nios_1510.html, 2002.

[7] Altera, Inc. Stratix data sheet. In http://www.altera.com/literature/ds/
ds_stx.pdf, Dec. 2002.

[8] Altera, Inc. MegaCore Function User Guide Turbo Encoder/Decoder. In
http://www. altera.com /literature /ug/turbo_ug.pdf, 2003.

[9] J. Babb, M. Rinard, C. Moritz, W. Lee, M. Frank, R. Barua, and S. Amaras-
inghe. Parallelizing Applications to Silicon. In Proceedings, IEEE Workshop
on FPGA-based Custom Computing Machines, Napa, Ca, Apr. 1999.

[10] J. Babb, R. Tessier, M. Dahl, S. Hanono, and A. Agarwal. Logic Emula-
tion with Virtual Wires. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 609-626, June 1997.

[11] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate. IEEE Transactions on Information
Theory, pages 284-287, Mar. 1974.

[12] L. Benini and G. D. Micheli. Networks on chips: a new soc paradigm.
Computer, 35(1), Jan. 2002.

139

[13] R. Bergamaschi and W. Lee. Desiging systems-on-chip using cores. In
Proceedings, 37th Design Automation Conference, Los Angeles, CA, USA, Jun.
2000.

[14] C. Berrou, P. Combelles, and B. Talibart. An IC for Turbo-Codes Encoding
and Decoding. In IEEE International Solid-State Circuits Conference, pages
90-91, Feb. 1995.

[15] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes. In Proceedings of ICC’93,
pages 1064-1070, Geneve, Switzerland, May 1993.

[16] V. Betz and J. Rose. Directional Bias and Non-Uniformity in FPGA Global
Routing Architectures. In ICCAD, San Jose, Ca, 1996.

[17] V. Betz and J. Rose. Cluster-Based Logic Blocks for FPGAs: Area-Efficiency
vs. Input Sharing and Size. In Custom Integrated Circuits Conference, 1997.

[18] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, 1999.

[19] P. Black and T. Meng. A 1-gb/s, four-state, sliding block viterbi decoder.
IEEE Journal of Solid-States Circuits, 32(6), Jun 1997.

[20] S. Borkar. Supporting Systolic and Memory Communication in iWarp. In
Proceedings 17th International Symposium on Computer Architecture, 1990.

[21] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0.
Unwversity of Wisconsin, Madison Computer Science Department, June 1997.
Technical Report 1342.

[22] F. Chan. Adaptive viterbi decoding of turbo codes with short frames. In
Communication Theory Mini-Conference, pages 47-51, June 1999.

[23] F. Chan and D. Haccoun. Adaptive viterbi decoding of convolutional
codes over memoryless channels. IEEE Transactions on Communications,
45(11):1389-1400, Nov. 1997.

[24] D. Cherepacha and D. Lewis. A datapath oriented architecture for fpgas. In
Proceedings, ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Monterey, CA, USA, Feb 1994.

[25] G. C. Clark and J. B. Cain. Error-Correction Coding for Digital Communi-
cations. Plenum Pub Corp., New York, 1981.

[26] I. Corporation. 2000: Intel Pentium 4 Processor. In
http://www.intel.com /intel /intelis /museum/Ezhibits/hist_micro/hof/index.htm,
2000.

140

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. Corporation. MIPS R4000 web page. MIPS Corporation, 2000.
http://www.mips.com/products/s2p6.html.

D. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufman, San Francisco, CA, 1999.

I. Cypress Semiconductor. Cyprss MicroSystems Unveils Programmable
System-on-a-chip For Emgedded Internet, Communications and consumer
Sysstems. In http://www.cypress.com, 2000.

W. Dally and H. Aoki. Deadlock-free Adaptive Routing in Multicomputer
Networks using Virtual Channels. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(4), April 1993.

W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip Inter-
connection Networks. In Proceedings, ACM/IEEE 38th Design Automation
Conference, June 2001.

J. Darringer, R. Bergamaschi, S. Bhattacharya, D. Brand, A. Herkersdorf,
J. Morrell, I. Nair, P. Sagmeister, and Y. Shin. Early analysis tools for system-
on-a-chip design. IBM Journal of Research and Development, 46(6), Nov.
2002.

G. DeMicheli and R. Gupta. Hardware/Software Codesign. Proceedings of the
IEFEE, 85(3):349-365, Mar. 1997.

C. Ebeling, D. C. Cronquist, and P. Franklin. Rapid - reconfigurable
pipelined datapath. In Proceedings, Sizth International Workshop on Field
Programmable Logic and Applications, Darmstadt, Germany, Sep. 1996.

P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System Level Hard-
ware/Software Partitioning Based on Simulated Annealing and Tabu Search.
Design Automation for Embedded Systems, 2(1):5-32, Jan. 1997.

J. A. Erfanian, S. Pasupathy, and G. Gulak. Reduced complexity symbol
detectors with parallel structures for isi channels. IEEFE Transactions on
Communications, 42:1661-1671, Feb/Mar/Apr 1994.

R. Ernst, J. Henkel, and T. Benner. Hardware Software Cosynthesis for
Microcontrollers. IEEE Design and Test of Computers, 10(4):64-75, Dec.
1993.

G. Feygin and P. G. Gulak. Architectural tradeoffs for survivor sequence mem-
ory management in viterbi decoder. IEEE Transactions on Communications,
41(3), March 1993.

D. Flynn. AMBA: Enabling Reusable On-Chip Design. IEEE Micro, pages
20-27, July 1997.

141

[40] M. P. C. Fossorier, F. Burkert, S. Lin, and J. Hagenauer. On the Equiva-
lence Between SOVA and Max-Log-MAP Decodings. IEEE Communications
Letters, 2(5):137-139, May 1998.

[41] V. Franz and J. B. Anderson. Concatenated Decoding with a Reduced-Search
BCJR Algorithm. IEEE Journal on Selected Areas on Communication,
16:186-195, Feb. 1998.

[42] D. Garrett and M. Stan. Low power architecture of the soft-output viterbi
algorithm. In Proc. International Symposium on Low Power Electronics and
Design (ISLPED’98), pages 262-267, Monterey, California, Aug. 1998.

[43] M. Ghanbari. Video Coding. The Institution of Electrical Engineers, London,
England, 1999.

[44] F. Gilbert, A. Worm, and N. Wehn. Low power implementation of a turbo-
decoder on programmable architectures. In Proc. 2001 Asia South Pacific
Design Automation Conference (ASP-DAC 01), pages 400-403, Yokohama,
Japan, Jan. 2001.

[45] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger, A. A.
Lamb, J. Wong, H. Hoffman, D. Z. Maze, and S. Amarasinghe. A stream
compiler for communication-exposed architectures. In Proceedings of the In-
ternational Symposium on Architectural Support for Programming Languages
and Operating Systems, 2002.

[46] J. Hagenauer. Source-controlled channel decoding. IEEE Transactions on
Communications, 43(9):2449-2457, Sept. 1995.

[47] J. Hagenauer and P. Hoeher. A Viterbi Algorithm with Soft-Decision Outputs
and its Applications. In Proceedings of GLOBECOM’89, pages 47.1.1-47.1.7,
Dallas, Texas, Nov. 1989.

[48] J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and
convolutional codes. IEEE Transactions on Information Theory, 42(2):429-
445, Mar. 1996.

[49] S. Halter, M. berg, P. M. Chau, and P. H. Siegel. Reconfigurable signal
processor for channel coding & decoding in low SNR wireless communications.
In Proc. IEEE Workshop on Signal Processing Systems (SiPS’98), pages
260274, Cambridge, Oct. 1998.

[50] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and
D. Lindqvist. Network on chip: An architercture for billion transistor era. In
Proceedings, IEEE NorChip Conference, Finland, Nov. 2000.

142

[61] S. Hong, J. Yi, and W. E. Stark. VLSI design and implementation of
low-complexity adaptive turbo-code encoder and decoder for wireless mobile
communication applications. In IEEE Workshops on Signal Processing Sys-
tems: Design and Implementation, pages 233-242, Oct. 1998.

[62] IDT, Incorporated. IDT Peripheral Bus: Intermodule Connection Technology
Enables Broad Range of System-Level Integration. In http://www.idt.com,
2000.

[63] Intel, Inc. Intel StrongARM SA-1100 Microprocessor. In
http://www.lart.tudelft.nl/27810525. pdf, 2000.

[64] International Business Machines, Inc.
IBM CoreConnect Information Web Site. In
http://www. chips.ibm.com/products/powerpc/cores, 2000.

[65] International Technology Roadmap Semiconductors. The International Tech-
nology Roadmap Semiconductors: 2002 Update. International SEMATECH,
2002. http://public.itrs.net.

[56] A. Iyer and D. Marculescu. Power efficiency of voltage scaling in multiple
clock, multiple voltage cores. In Proceedings, IEEE/ACM International Con-
ference on Computer Aided Design, San Jose, CA, USA, Nov. 2002.

[67] O. J. Joerssen, M. Vaupel, and H. Meyr. Soft-output Viterbi decoding:
VLSI implementation issues. In Proceedings of IEEE Vehicular Technology
Conference, pages 941-944, Secaucus, NJ, May 1993.

[68] G. D. F. Jr. The viterbi algorithm. In Proceedings of IEEE, pages 268-278,
col. 61, Mar. 1973.

[59] J. Kaza and C. Chakrabarti. Energy-efficient turbo decoder. In IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
May 2002.

[60] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System-Level Design: Orthogonalization of Concerns and Platform-Based
Design. IEEE Transactions on Computer-Aided Design of Integrated Chircuits
and Systems, 19(12), Dec. 2000.

[61] D. Kim and G. Stuber. Performance of Multiresolution OFDM on Frequency-
selective Fading Channels. IEEE Transactions on Vehicular Technology,
48(5):1740-1746, 1999.

[62] P. Knudsen and J. Madsen. Integrating Communication Protocol Selection
with Hardware/Software Codesign. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 18(8), Aug. 1999.

143

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

K. Lahiri, A. Raghunathan, and S. Dey. Performance Analysis of Systems
With Multi-Channel Communication. In International Conference on VLSI
Design, Jan. 2000.

W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe. Space-Time Scheduling of Instruction-Level Parallelism on
RAW Machine. In Proceedings of the FEighth International Conference on
Architectural Support for Programming Language and Operating Sustems, Oct.
1998.

O. Y.-H. Leung, C.-W. Yue, and C.-Y. Tsui. Reducing power consumption of
turbo code decoder using adaptive iteration with variable supply voltage. In
ISLPED, pages 3641, San Diego, CA, 1999.

S.-F. Li, M. Wan, and J. Rabaey. A Low-Energy Heterogeneous Reconfig-
urable DSP IC. In Proceedings 1999 IEEE Workshop on Signal Processing
Systems, Taipei, Taiwan, Oct. 1999.

J. Liang, S. Swaminathan, and R. Tessier. aSOC: A Scalable, Single-Chip
Communications Architecture. In IEEFE International Conference on Parallel
Architectures and Compilation Techniques, Philadelphia, PA., Oct. 2000.

S. Lin and D. J. Costello. Error Control Coding: Fundamentals and Applica-
tions. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

A. Lines. Asynchronous interconnect for synchronous soc design. IEEE Micro,
24(1):32-41, Jan/Feb 2004.

A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A
reconfigurable arithmetic array for multimedia applications. In Proceedings,
ACM/SIGDA Seventh International Symposium on Field Programmable Gate
Arrays, Monterey, Ca, USA, Feb 1999.

C. Metcalf. Managing Scheduled Routing With A High-Level Communications
Language. PhD thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 1997.

A. M. Michelson and A. H. Levesque. Error-Control Techniques for Digital
Communication. John Wiley and Sons, New York, NY, 1985.

Micron Technology, Inc. Mt48lc4m32b2 sdram data
sheet. In http://www.micron.com/products/dram/
sdram/part.aspz?part=MT48LC{M32B2F5-6, 2003.

E. Mirsky and A. Dehon. MATRIX: A Reconfigurable Computing Architec-
ture with Configurable Intruction Distribution and Deployable Resources. In
Proceedings, IEEE Workshop on FPGA-based Custom Computing Machines,
Napa, Ca, Apr. 1996.

144

[75] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner. Globally-
asynchronous locally-synchronous architectures to simplify the design of on-
chip systems. In Proceedings, IEEE International ASIC/SOC Conference,
Washington, DC, Sept. 1999.

[76] S. Nanda, K. Balachandran, and S. Kumar. Adaptation techniques in wireless
packet data services. IEEE Communications Magazine, pages 54-64, Jan 2000.

[77] T. Njolstad, O. Tjore, K. Svarstad, L. Lundheim, T. O. Vedal, J. Typpo,
T. Ramstad, L. Wanhammar, E. J. Aas, and H. Danielsen. A socket interface
for gals using locally dynamic voltage scaling for rate-adaptive energy savings.
In Proceedings, Fourteeth Annual IEEE International ASIC/SOC Conference,
Arlington, VA, Sep. 2001.

[78] OMI. PI-Bus Peripheral Interconnect Bus - a bus for interconnecting micro-
cells on chip. In http://www.omimo.be, Aug. 1997.

[79] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, 1999.

[80] L. Papke, P. Robertson, and E. Villebrun. Improved decoding with the sova
in a parallel concatenated (turbo-code) scheme. In Proceedings of ICC’96,
Dallas, Texas, June 1996.

[81] W. Peterson. Design Philosophy of the Wishbone SoC Architecture. In Silicore
Corporation, 1999. http://www.silicore.net/wishbone.htm.

[82] J. Proakis. Digital Communications. McGraw-Hill, New York, NY, 1995.

[83] T. S. Rappaport. Wireless Communications: Principles and Practice. Pren-
tice Hall PRT, Upper Saddle River, NJ, 1996.

[84] Robert P. Dick, Niraj K. Jha. MOCSYN: Multiobjective Core-Based Single-
Chip System Synthesis. In In Proc. Design, Automation and Test in Europe,
pages 263-270, Mar. 1999.

[85] P. Robertson, E. Villebrun, and P. Hoeher. A Comparison of Optimal and
Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain. In
Proceedings of ICC’95, pages 1009-1013, Seattle, Washington, June 1995.

[86] R.Wilson, R.French, C.Wilson, S.Amarasinghe, J.Anderson, S.Tjing, S.Liao,
C.W.Tseng, M.Hall, M.Lam, and J.Hennessy. SUIF: An Infrastructure for
Research on Paralleling and Optimizing Compilers. In ACM SIGPLAN
Notices, 29(12), Dec. 1996.

[87] W. E. Ryan. Concatenated Convolutional Codes and Iterative Decoding.
http://www.ece.arizona.edu/ ryan/, May 2001.

145

[88] K. Ryu, E. Shin, and V. Mooney. A Comparison of Five Different Multiproces-
sor SoC Bus Architectures. In Proceedings of the EUROMICRO Symposium on
Digital Systems Design (EUROMICRO’01), pages 202—-209, September 2001.

[89] K. K. Ryu and V. J. M. ITI. Automated bus generation for multiprocessor soc
design. In Proceedings of the European Conference on Design, Automation
and Test (DATE), pages 282-287, Munich, Germany, Mar. 2003.

[90] T. Schaffer, A. Stanaski, A. Glaser, and P. Franzon. The NCSU Design Kit
for IC Fabrication through MOSIS. In International Cadence User Group
Conference, Austin, Texas, Sept. 1998.

[91] C. Schurgers, L. V. der Perre, M. Engels, and H. D. Man. Adaptive turbo de-
coding for indoor wireless communication. In URSI International Symposium
on Signals, Systems, and Electronics (ISSSE’98), pages 107-111, Pisa, Italy,
Sept. 1998.

[92] D. Shoemaker, C. Metcalf, and S. Ward. NuMesh: An Architecture Optimized
for Scheduled Communication. Journal of Supercomputing, 10:285-302, 1996.

[93] A. Sinha and A. P. Chandrakasan. JouleTrack: a web based tool for software
energy profiling. In Proceedings of the 38th conference on Design automation,
2001.

[94] Sonics, Incorporated. Corporate Web Site. In http://www.sonicsinc.com,
1999.

[95] S.S.Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[96] S. Swaminathan, R. Tessier, D. Goeckel, and W. Burleson. A Dynamically
Reconfigurable Adaptive Viterbi Decoder. In International Symposium on
Field Programmable Gate Arrays, Monterey, Ca., Feb. 2002.

[97] Texas Instruments, Inc. Development Tools: Code Composer Studio. In
http://dspuillage.ti.com/docs/catalog/devtools/selection.jhtml?templateld=
51216path=templatedata/cm/toolswovw/data/ccs_ovwéfamilyld=44€
tool Typeld=30&tool TypeFlagld=2, 2003.

[98] Texas Instruments, Inc. TMS320C6713, TMS320C6713B Floating-Point Dig-
ital Signal Processor. In hitp://focus.ti.com/lit/ds/symlink/tms320c6713.pdf,
2004.

[99] M. J. Thul, T. Vogt, F. Gilbert, and N. Wehn. Evaluation of algorithm
optimizations for low-power turbo-decoder implementations. In IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
May 2002.

146

[100] M. C. Valenti and B. D. Woerner. Variable latency turbo codes for wireless
multimedia applications. In Proc. of the International Symposium on Turbo
Codes and Related Topics, pages 216219, Brest, France, 1997.

[101] S. Vishwanath and A. J. Goldsmith. Adaptive turbo coded modulation for
flat fading channels. In Proc. IEEE Vehicular Technology Conference, Boston,
MA, Sept. 2000.

[102] A. J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. IEEE Transactions on Information Theory,
Apr. 1967.

[103] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring It All to Software: Raw Machines. IEEE Computer, 30(9):86-93, Sept.
1997.

[104] M. Wan, Y. Ichikawa, D. Lidsky, and J. Rabaey. An energy-conscious
exploration methodology for heterogeneous DSPs. In Proceedings of the IEEE
Custom Integrated Circuits Conference, pages 111-117, Santa Clara, CA., May
1998.

[105] C. Weems. Asynchronous simd: An architectural concept for high performance
image processing. In Proc. IEEE Int’l Workshop on Computer Architecture
for Machine Perception, pages 235-243, Boston, MA, Oct 1997.

[106] D. Wingard. MicroNetwork-Based Integration for SOCs. In Proceedings,
ACM/IEEE 38th Design Automation Conference, June 2001.

[107] J. P. Woodard and L. Hanzo. Comparative Study of Turbo Decoding
Techniques: An Overview. IEEE Transactions on Vehicular Technology,
49(6):2208-2232, Nov. 2000.

[108] xess Corporation. myCSoC: Design Explorations With Your COnfigurable
System on a chip. In www.zess.com/manuals/myCSoC-1_3.pdf, 2000.

[109] Xilinx, Inc. 3GPP Turbo Decoder. In http://www.zilinz.com/products/
logicore/alliance/sysonchip/sysonchip_3gpp_tbd.pdf, 2001.

[110] Xilinx, Inc. Xilinx Virtex-I Web Power Tool Version 2.1.0. In
http:/ /www.zilinz. com/cgi-bin /power_tool /web_power_tool.pl, 2001.

[111] Y. Kaji, T. Fujiwara, T. Kasami and S. Lin. A Trellis-Based Recursive Log-
MAP Algorithm for Binary Linear Block Codes. Technical Report of IEICE,
IT96-79, Mar. 1997.

147

