
gns

gn
ain
-
ed

in.
ch
s
en

or.
can
ng

is
GA.
en
that
se

tem
ity.
ut

es
is

be
is
of

lity.
r

ms
os
nd

ch
e

n
m
ns
rd
GA
s
e.
l
i-

Multi-domain Communication Scheduling For FPGA-based
Logic Emulation

Murali Kudlugi
Emulation Systems Group

IKOS Systems Inc.
Waltham, MA

murali@ma.ikos.com

Russell Tessier
Dept. of Electrical and Computer Engg.

University of Massachusetts
Amherst, MA

tessier@ecs.umass.edu
Abstract

Communication scheduling is a technique used by many parallel
verification systems to pipeline data signals across shared physical
wires. This scheduling approach makes it possible to multiplex pro-
cessing component pins across numerous logical signals, effec-
tively overcoming pin limitations. While it is generally
straightforward to derive a fixed relationship between the verifica-
tion system clock which controls communication and the numerous
phase-related clocks of a design under test, mapping complications
arise if a user design contains multiple clocks that operate asyn-
chronously to each other. Specifically, multi-clock domain behavior
makes it difficult to ensure that reconvergent multi-FPGA paths that
are sourced and sampled by multiple asynchronous design clocks
can be evaluated accurately. In this paper, we describe scheduling
and synthesis techniques that address the reconvergent fanout prob-
lem for designs with multiple asynchronous clock domain signals.
It is shown that when our approach is applied to an FPGA-based
logic emulator, evaluation fidelity is maintained and increased
design evaluation performance can be achieved for large bench-
mark designs with multiple asynchronous clock domains.

1. Introduction
Recently, parallel verification platforms, which can perform
millions of logic evaluations concurrently, have received
widespread acceptance. These systems, such as logic emulators
[1,2,3] and parallel simulation engines, generally are constructed
from specialized components, such as special-purpose logic
processors or FPGAs. During design verification, logic is evaluated
and results are communicated using a high-speed system clock. For
combinational paths, multiple logic evaluations are completed
during each user design cycle, necessitating a fixed relationship
between the behavior of system and design clocks. This
relationship can then be used to schedule the evaluation of logic
functions and to communicate the results between processors.
Multiple design clocks with known phase relationships can also
easily be handled by deriving a base frequency which can be used
for logic and communication scheduling.

Early FPGA-based verification systems dedicated user design
signals to inter-FPGA routing resources, leading to device pin
limitation issues [4]. As a result of limited pin availability, the
amount of logic assigned to each FPGA was constrained to a
fraction of the available device logic. Modern FPGA-based systems
use pin multiplexing to assign multiple emulated signals to a
specific physical wire over time [5]. These virtual connections are
pipelined at the maximum clocking frequency allowed by the
FPGA technology [6]. Although communication scheduling eases
pin limitations and allows for full FPGA logic utilization, its

synchronous nature can introduce constraints for user desi
containing multiple asynchronous clock domains.

For multi-domain circuits mapped to pin-multiplexed logic
emulators, inter-FPGA signal transport is complicated by desi
signals that both transition and are sampled on multiple dom
edges. This multi-domain behavior is limiting since pin
multiplexed systems often require logical signals that are assign
to a given physical inter-FPGA wire be driven in the same doma
As a result, the transport of multi-domain signals requires that ea
signal be logically split into constituent single-domain value
before inter-FPGA transport. These single-domain values must th
be combined at the destination to support multi-domain behavi
Causality is an issue in such systems since actual routing delays
vary across inter-FPGA domain paths. System scheduli
algorithms must ensure that a regenerated multi-domain value
consistent with the pre-transport value created at the source FP
In the past [4,6], the multi-domain transport problem has be
addressed through special compilation and/or manual steps
isolate individual asynchronous domains in hardware. The
approaches directly map communication paths to special sys
hardware at the expense of performance and mapping flexibil
Not only has this approach been difficult and time-consuming, b
often results are unpredictable, leading to verification flaws.

In this paper we present a scheduling approach that provid
causally-correct transport of multi-domain signals. The basis of th
approach is the formulation of a set of constraints which can
integrated into system-wide scheduling. It will be shown that th
approach can be scaled to handle an unlimited number
asynchronous domains and can achieve provable modeling fide
After formulating the scheduling problem and describing ou
general approach, a discussion of the integration of our algorith
with a commercial FPGA-based logic emulation system from Ik
Systems is provided [2]. It is shown that the new constraints a
algorithms achieve modeling fidelity and overall system
performance improvement versus a previous "hard-wired" approa
for two large commercial ASIC designs that contain multipl
asynchronous clock domains.

2. Background
The target system for this paper is an Ikos VirtuaLogic emulatio
system that contains 384 Xilinx XC4062XL FPGAs. This syste
contains six boards of 64 FPGAs each. All intra-board connectio
in the system are point-to-point between FPGAs, while inter-boa
connections are supported via a passive backplane. Inter-FP
communication in VirtuaLogic systems is based on Virtual Wire
technology, an inter-FPGA communication scheduling techniqu
This approach pipelines multiple logical signals called Virtua
wires across single inter-FPGA wires to overcome FPGA pin lim



al

-
u-

ck)
ug-
of
er-
d-
in
r-

in
em

the
e of
s-

a
to
e,
ce

ths
tations [6,7]. Logic designs are mapped to multi-FPGA VirtuaLogic
systems through a series of compilation steps. These steps include
design partitioning into logic blocks small enough to fit within
FPGAs, placement of logic blocks onto specific FPGAs, and sched-
uling of both intra-FPGA logic evaluation and inter-FPGA commu-
nication. Both logic evaluation and signal communication are
controlled by a high-speed clock called a Virtual Clock which
serves as a discrete timebase, providing a reliable mechanism for
controlling the order of events at a fine granularity. Since many
combinational evaluations and signal transfers may occur in a sin-
gle design clock cycle, the virtual clock by necessity runs at a much
higher frequency than the design clock. For logic emulation sys-
tems, inter-FPGA (processor) communication scheduling is based
on the virtual clock.

This work builds upon previous scheduling approaches that
address multi-domain signal behavior in parallel verification sys-
tems. The basic approach of scheduling asynchronous domain data
transfer for logic emulation systems has previously been applied to
latches[8]. The main focus of this previous work was to address
hold-time constraints for latches driven by signals sourced by mul-
tiple clock domains.

3. Transporting Multi Domain Values
Functional Axiom 1: Causality

The occurrence times of combinational logic form a partial order
based on causality. If part A feeds part B, events on A must have

occurred before events on B.

Consider the circuitry shown in Figure 1 where two asynchronous
clocks CLK1 and CLK2 drive state elements (FF1,FF3) and (FF2,
FF4) respectively. This circuit contains two same domain paths,
FF1.Q-N3-N5-FF3.D in the domain of CLK1 and FF2.Q-N4-N5-
FF4.D in the domain of CLK2. Note that the net N5 transitions and
is sampled in both clock domains. It is called aMTSD (Multi Tran-
sition and Sample Domain) net.

Consider a situation where the circuit in Figure 1 is partitioned
such that the multi domain value N5 that needs to be transported
from FPGA1 to FPGA4 as shown in Figure 2. The physical wires
that connect FPGAs are grouped into uni-directionalchannels
where each physical wire is capable of carrying a single domain
value in each Virtual clock cycle. Pin multiplexing makes it possi-
ble to reuse physical wires to support numerous logical wires. To
complete signal transport, the communication scheduler determines
a path from a source FPGA to a destination FPGA and identifies

schedule time slots for the communication to take place. Sign
routing may include several intermediate FPGA hops.

A key verification issue involves the transport of multi value sig
nals such as N5 in Figure 1 in a system where inter-FPGA comm
nication needs to be synchronous to a system clock (virtual clo
over a shared physical resource (channel wire). Previous work s
gests that we either avoid such a situation by limiting the size
asynchronous-domain logic to one FPGA or dedicate special int
FPGA wires to transport the values (hard-wiring) [6]. Since har
wired signals cannot be multiplexed to carry non-MTSD nets, p
limitation problems [5] can result leading to reduced system perfo
mance. To avoid this problem, it is desirable to split multi doma
values into constituent domain values and to route (schedule) th
in respective domains and recover the multi-domain value at
destination FPGA. This solution poses another problem becaus
unpredictable route timing that is inherent in statically routed sy
tems.

In Figure 2, the circuit in Figure 1 has been partitioned onto
multi-FPGA topology such that the multi-domain value N5 needs
be transported from FPGA1 to FPGA4. As shown in the figur
communication for each asynchronous clock domain takes pla
over a different set of inter-FPGA channels. In the case of N5, pa

 D Q  D Q

 D Q D Q

CLK1

CLK2

FF1

FF2

FF3

FF4

G1

N1

N2

N3

N4

N5

N6

N7

Figure 1: A Multi Domain Circuit Example

N1-N3-N5-N6

N2-N4-N5-N7

A

B

DOMAIN D1

Figure 2: Transporting Multi Domain Values

DOMAIN D2

FPGA1 FPGA2

FPGA4FPGA3

G1

N3

N4

N5

 D Q

 D Q

FF3

FF4

FF3

FF4

CHANNELS

CHANNELS

FPGA

FPGA

Hop

Hop

TIME

N3

N4 N4

N5

N5 N5

N5

 D1 Delay=5

D2 Delay=2

(k-1)

(j)
 (j, k-1)

 (k)

(j,k)(j,k)

(j, k-1)

(j, k-1)

N5

Figure 3: Multi Domain Causality Problem

t=2 t=7        t=8t=6t=4t=3t=1

N5 (D1)

N5 (D2)  N5 (MTSD)
N5(MTSD)

N3(D1)

N4(D2)

     FPGA
PARTITION

FPGA1 FPGA 4



is
n-

d to
hs.
sub-
As.
elay
alue

te
ul-

to
ca-
ps
il

k
t
e
the
he
by

on
te-

t-
.

-
,

using both domain1 (D1) and domain2 (D2) channels are needed to
transport N5 between FPGA1 and FPGA4. The disjoint nature of
multiple routing paths for the same logical signal can lead to cau-
sality concerns at the destination FPGA. As a result of unpredict-
able routing delays due to routing congestion, it is possible for the
domain1 (D1) value of N5 to start from the source FPGA sooner
than the domain2 (D2) value but still arrive after the D2 value
reaches its destination. This can break the causality principle and
cause the clobbering of the D2 value. Figure 3 illustrates such a
case where a D1 version of signal N5 departs from Point A at t=2
while the D2 version departs at t=3,after a new value of N4 has
been created. Due to route congestion, the D1 value reaches desti-
nation B after the D2 version. Using combinational rules, when
multiple versions of a signal in asynchronous domains are merged
at a destination, the most-recently arriving version is used in subse-
quent calculation. As a result, the late arriving older D1 value at t=7
will be the final value of the signal at B and the newer value that
arrived at t=6 will be completely lost. A requirement in transporting
multi-domain signals is to ensure that causality of events is guaran-
teed within each of the constituent domains irrespective of routing
delays.

4. Definitions
MTSD Net. A net which transitions (changes value) and is sampled
(read) by more than one clock domain. In Figure 1, net N5 is a
MTSD net.

MTSD Gate.Any combinational gate whose output is connected to
an MTSD net. In Figure 1, gate G1 is a MTSD gate.

MTSD Block. The MTSD logic is partitioned into chunks of size
that are small enough to fit into a FPGA. It is at the block boundary
all the inter-FPGA communication (routing) takes place.

5. The Approach
Observation 1:

For any signal path relationship Ri(A, B) in a multi domain circuit
containing domains A and B, it is sufficient to satisfy Ri(A) and

Ri(B) for correct functional verification.

For example, in the circuit showing Figure 1, we only need to sat-
isfy the causality property for the same domain paths FF1.Q-N3-
N5-FF3.D and FF2.Q-N4-N5-FF4.D but not for the cross domain
paths FF1.Q-N3-N5-FF4.D or FF2.Q-N4-N5-FF3.D.

Inter-FPGA data transport of an MTSD net can be decomposed into
the independent transport of signal components from each domain.
These components are then causally merged at the destination. We
represent these flows by adding FORK/MERGE operator pairs at
FPGA boundaries as shown in Figure 4, resulting in a set of same
domain signals on FPGA boundaries. From Observation 1, notice
that flow and dependence relationships on intra-FPGA paths only
need to consider combinationally connected signals from the same
domain. Causal merging can be accomplished by dynamically
selecting an appropriate single domain signal at a MERGE point.

To facilitate causal merging, a new type of signal dependency
introduced that takes multi-domain behavior into account. Depe
dency analysis is performed across multiple domains and is use
compute path depths that are normalized for multi-domain pat
These paths are ordered based on multi-domain depths and are
sequently routed to support causal behavior at destination FPG
Our scheduler and synthesizer ensure that the total transport d
in each of the independent domain paths are equal so that the v
arriving at the destination is guaranteed to be causally correct.

6. Static Scheduling
We have used a modified TIERS scheduling algorithm to rou
communication paths between blocks[7]. This is a reverse sched
ing algorithm in that it routes paths starting from primary outputs
primary inputs. Note that the techniques explained are also appli
ble to forward routing. In this section we describe the basic ste
involved in static routing. In the next section we describe in deta
the specific steps involved in scheduling MTSD paths.

A route-link (Pi, Pj) represents a logical connection from bloc
output terminal Pi to block input terminal Pj located on a differen
FPGA. A route-link often has to cross multiple FPGAs befor
reaching its destination. We calculate link depths that represent
longest time required to propagate through the network from t
source FPGA to the destination FPGA. We create a partial order
sorting route-links by depth to ensure that all the route-links up
which a given route-link depends are scheduled before the rou
link itself. The core scheduling algorithm involves the following
steps for each route-link from Pi to Pj.

Algorithm 1: Route (route-link)
1. Find the latest time, calledReadyTimeat which a value must
arrive at its destination for further evaluation. For Pj termina
ing at design primary output k, ReadyTime is Delay(Pj to k)

2. Find the shortest path ‘sp’ from Pi to Pj such that data
arrives by ReadyTime(Pj). We use a modified Dijkstra’s algo
rithm[9]. This takes into account the domain, channel width
channel availability and direction.

3. Reserve wiring resources along the path sp.

4. ComputeDepartureTime(Pi) at the source Pi:
DepartureTime(Pi) = ReadyTime(Pj) - PathLength(sp)

5. Update input ReadyTimes at the block,
      for each terminal Pk in Parent(Pi)
         ReadyTime(Pk) = DepartureTime(Pi) - Delay(Pk to Pi)

MTSD
MERGEMTSD

FORK

N5 (D1)

   N5 (D2)  N5 (MTSD)
N5(MTSD)

N3(D1)

N4(D2)

     FPGA
PARTITION

Figure 4: Splitting MTSD paths



nt
1
.

e
re
for

s.

s to
ider
In
d

are
g

e
ut-

to
s-
ns-
ks
hild
7. MTSD Scheduling
This section describes how MTSD paths are scheduled so that cau-
sality requirements are satisfied at destination FPGAs.

MTSD Dependency and Depth
Combinational dependency analysis is performed on the placed

but unrouted design to support the creation of an ordered set of
route links for routing. As shown in Figure 4, MTSD paths are
given special treatment; they are split into a group of route links
that belong to different domains. These links collectively transport
domain versions of the MTSD value across FPGAs. One way to
guarantee causality of the transported value is to require that all ver-
sions of the MTSD signals require the same number of virtual
clocks for transport. If the route scheduler can ensure that these
route-links are scheduled such that they all take an equal number of
virtual clocks to propagate the value, the causally correct value can
be easily obtained at the destination.

To support scheduling two types of dependency are computed.
Same-Domain dependencytracks link dependencies within a single
domain andMtsdDependencytracks link dependencies across all
domains including cross domain paths

Dependency determination is a multi-step process. Initially, link-to-
link dependencies are determined.

For each block input terminal i we calculate,
Parent [i] = {Set of block inputs in the same domain that

                          combinationally reach block output i}
and

MtsdParent [i] = {Set of all block inputs that
                                 combinationally reach block output i}
Similarly we calculate Child[j] and MtsdChild[j] sets to hold
inverse relationships.

Figure 5 shows an example design with four partitions. Partition1
contains a block with strictly domain D1 logic, Partition2 contains a
block with strictly domain D2 logic and Partition3 and Partition4
contain MTSD blocks. The partitions are interconnected with a set
of wires labeled W0 through W9. Each wire is associated with a

specific domain of transition. MTSD nets are split into compone
domain signals. For example, wires W5(D1) and W5(D2) carry D
and D2 versions of a MTSD wire W5 from Partition3 to Partition4
For Partition4, which contains an MTSD block, the following
domain relationships hold:
• Child[i]                = {k}
• MtsdChild[i]   = {k, l}
• Parent[l]               = {j}
• MtsdParent[l]         = {i, j}

Following the evaluation of parent and child relationships, th
Same-Domain and MTSD depths of each inter-partition wire a
determined recursively from the wire dependent sets such that
each wire i:

Similarly MtsdDepth is computed using MtsdParent relationship

Note that depths are computed in reverse fashion from path sink
sources and may cross a number of partition boundaries. Cons
depth evaluation for the partitioned example shown in Figure 5.
this example it is known that initially the Same-Domain and Mts
Depths of wire W8=4 and W9=1 due to downstream paths that
not shown in the figure. From these initial conditions the remainin
depths can be determined as follows:

In the above table, related MTSD links W5(D1) and W5(D2) hav
different Same-Domain depths but equal MtsdDepths. During ro
ing, same-domain paths are typically scheduled independently
promote optimal scheduling [7]. For MTSD scheduling, a cros
domain restriction is added for MTSD nets. To support causal tra
port, it is necessary to process all related MTSD route-lin
together so that they can be routed after their same-domain c

W0(D1)

W1(D2)

W3(D1)

W4(D2)

W5 (D1)

W5 (D2)

W6 (D1)

W7 (D2) W8(D2)

W9 (D1)

Inter Partition wire

Dependence relation

Partition3Partition4

Partition1 (D1)

Partition2 (D2)

(MTSD)(MTSD)

k

l

i

j

Figure 5: MTSD Dependency and Depth Computation

Depth i[ ]
0 If…Parent i[ ] ∅=( )

1 MaxDepth Parent i[ ]( )+



=

MtsdDepth i[ ]
0 If…MtsdParent i[ ]( ) ∅=

1 MaxDepth MtsdParent i[ ]( )+



=

Similarly we compute MtsdDepth by:

W9
W6
W8
W7
W5(D1)
W5(D2)
W4
W3
W1
W0

Depth MtsdDepth

1
2
4
5
3
6
7
4
8
5

1
2
4
5
6
6
7
7
8
8

Nets

W0

W1

W3

W4

W5(D1)

W5(D2)

W6

W9

W7 W8

Figure 6: A partial order of Route-links sorted based on
                  MtsdDepth



t be

d

te-
l
lize
o
-
m-
o

e
hat

is

s
ut

esti-

ck
ig-
ble
so

in
ut-

nd

n-
ua-
route-links have been scheduled. As shown in Figure 6, MtsdDepth
is used to sort all route links in all domains to produce a partial
order that is consistent across all domains.

Routing MTSD Paths
The group of all related route-links of a MTSD net n is referred to
as MTSDLinks(n). All route-links in MTSDLinks(n) must be pro-
cessed at the same time since scheduling one path may affect
another. The end result of MTSDLinks routing is a schedule for
every route-link in MTSDLinks that is equivalent in length in terms
of virtual clock cycles. Note that this distance must be at least the
length of the longest FPGA path from a source of net n to the desti-
nation of net n. This distance is referred to as the target distance.

In determining routing for each MTSD net, four variables are used:

• DTrequired (RequiredDepartureTime), the time at which the
signal must depart a source block terminal to satisfy target dis-
tance requirements.

• DTactual, the time at which a signal departs the source block.
• ATrequired(RequiredArrivalTime), the time at which a signal

should arrive at a destination block to satisfy the target dis-
tance. This is the ready-time computed during the scheduling
of dependent route-links, as explained in Algorithm 1.

• ATactual (ActualArrivalTime), the time at which a signal is
scheduled to arrive at the input of the destination block.

Algorithm 2: MTSDLinks Routing
The basic algorithm is as follows (assumingreverse routing):

1. ComputeTargetDistance for the MTSD route-links. Note
that even if source and destination FPGAs for an MTSD net
are the same, the path lengths of different domain paths may
vary based on channel domain designation.

2.For each route-link in MTSDLinks compute DTrequired, the
time by which a signal must leave a source block.
     DTrequired(Ri) = ATrequired + TargetDistance

3.For each route-link in MTSDLinks find a schedule using
Algorithm 1 such that the value arrives at the destination at or
beforeATrequired and has a length less than or equal to the
TargetDistance.

4. If Step 3 is successful for all MTSD route-links in MTS-
DLinks, go to step 6.

5. If Step 3 failed because such a feasible schedule can no
found
 - delete all the schedules for links already routed and
 - increment TargetDistance by 1

 - Goto Step 3
6. For each route-link in MTSDLinks(n), reserve the selecte
wiring resources.

Delay Compensation Synthesis

At the completion of Algorithm 2, it is known that all route-links of
a MTSD net have been routed successfully. However, each rou
link in MTSDLinks(n) may require a different number of virtua
clocks to complete source-destination paths. In order to equa
the delay for all route-links of MTSDLinks(n), it is necessary t
add extra virtual clocks to all paths that initially require fewer vir
tual clocks than the longest route-link path. This can be acco
plished by adding delay compensating flip flops under one of tw
cases:

• Source Compensation: Virtual clock triggered flip flops can b
added in the source FPGA at the FPGA boundary such t
SourceCompensation = DTrequired - DTactual. This is to pre-
vent a signal from being sampled in any domain before it
ready.

• Destination Compensation: Virtual clock triggered flip flop
can be added in the destination FPGA at the FPGA inp
boundary such thatDestCompensation=ATactual- ATrequired.
This approach ensures that the domain data reaches the d
nation so that causality is preserved.

Delay compensation is implemented by synthesizing virtual clo
triggered flip-flops in each single domain path as shown in the F
ure 7.a for the example in Figure 3. Figure 7.b shows one possi
way to correctly transport multi-domain net N5 to the destination
that causality is preserved. Note that three flip flops are inserted
the D2 path to compensate for the difference in D1 versus D2 ro
ing delay (5 versus 2).

8. Experimental Results
We have implemented the algorithms described in this paper a
integrated them into the Ikos VirtualLogic Compiler[3] for the
VStation-5M Emulator. We have taken two industrial designs co
taining asynchronous domains and compiled them using the Virt

T etDis cetanarg
MAX Min Dis ce Ri( )tan( )( )

Ri MTSDLinks n( )∈
=

Figure 7.a: Delay Compensation

N5 (D1)

N5 (D2)  N5 (MTSD)
N5(MTSD)

N3(D1)

N4(D2)

     FPGA
PARTITION

FPGA1 FPGA 4

SourceCompensation =
       DTrequired - DTactual

DestCompensation =
        ATactual - ATrequired TIME

N3

N4 N4

N5

N5 N5

N5

 D1 Delay=5

D2 Delay=2

(k-1)

(j)
 (j, k-1)

 (k)

(j,k)(j,k)

(j, k-1)
(j, k-1)

N5

t=2 t=6        t=7t=5t=4t=3t=1

N5

t=9        t=10t=8

Figure 7.b: Causally correct merge at destination

(j,k)



ted
o
e
IO
er-
ns
y to
is

fit
g.

ls in
lti-
as

sin-
els
ent
tion
g
by

he
ys-
tal
del-
ll

est
cks

ny

-

-

.

Logic compiler. Design1 has a smaller percentage of MTSD logic
when compared to Design2 and has fewer memory modules. Table
1 compares the results of scheduled MTSD routing to hardwire
routing. Note that MTSD routed wires and pins are multiplexed to
achieve better FPGA pin utilization while hard routed wires require
dedicated physical wires and pins. To determine the results for hard
routing experiments we ran a pre-routing step which reserved phys-
ical pins between source and destination FPGAs for each MTSD
wire and removed those pins from consideration during virtual
routing of non-MTSD wires. Note that the number of Virtual clocks
in the critical path for Design2 is much higher than Design1. This is
because experiments for Design2 were dominated by memory
transactions. It can be seen that the MTSD routing results in a
slightly smaller number of Virtual clocks (hence faster execution)
as compared to the hard wired approach. This is because if some
physical wires are removed, the remaining wires have to carry a
greater load of non-MTSD communication.

Maximum emulation clock speeds in rows 10 and 11 are estima
based on a 34 MHz Virtual clock on a VStation-5M Emulator. T
further illustrate the usefulness of scheduled MTSD routing, w
varied the partition sizes for Design1 and compared the resulting
pincounts. Figure 8 shows the number of FPGAs needed vs. p
FPGA Pin-counts. Since there is a hard limit on the number of pi
on a FPGA, unless time scheduled routing is used, it is necessar
reduce the partition size in order to keep the pincount below th
hard limit. This results in a need for substantially more FPGAs to
the same design for hard routing versus scheduled MTSD routin

9. Conclusions
In this paper we have addressed the issue of transporting signa
parallel verification systems that are sourced and sampled by mu
ple asynchronous design clocks. A new scheduling algorithm h
been developed that allows these signals to be split into several
gle-domain versions and transported across inter-FPGA chann
dedicated to signals sourced by a single clock. These constitu
signals are subsequently merged together at the routing destina
to form a causally-correct result. A key aspect of the routin
approach is a guarantee that all routing paths for signals created
the split require the same amount of communication time. T
approach has been demonstrated on a VirtuaLogic emulation s
tem for two large commercial benchmark designs. Experimen
results show that the approach is scalable and provides good mo
ing fidelity. As a result of this scalability, an improvement in overa
system performance was also obtained.

We plan to extend this approach to deal with memories under t
and hard-wired cores. The heterogeneous nature of these blo
presents special considerations for scheduling and interfacing.

10. Acknowledgments

We thank Charles Selvidge, Ken Crouch and Matt Dahl for ma
insightful discussions on scheduling and routing.

11. References

[1] Shekhar Patkar and Pran Kurup, "ASIC Design Flow Scores
on First Pass", Integrated Systems Design Magazine, Aug
1997.

[2] IKOS Systems Inc, Virtual Logic Datasheet,
http://www.ikos.com/products/vsli/index.html

[3] Quickturn Design Systems, Cobalt Data Sheet,
http://www.quickturn.com/products/cobalt.htm

[4] D.E. Van Den Bout, et al. “Any Board: An FPGA Based
Reconfigurable System:, IEEE Computer, Sep. 1992, pp 21
30.

[5] J. Babb, R. Tessier et al. “Virtual Wires: Overcoming Pinlimi
tations in FPGA based logic emulators”. In Proceedings of
IEEE Workshop on FPGA based Custom Computing
Machines, pages 142-151, Napa, CA, April 1993.

[6] J. Babb, R. Tessier, et al. “Logic Emulation and Virtual
Wires”. In IEEE Transactions on CAD, June 1997, Vol 16,
No.6, Pages 609-626.

[7] C. Selvidge, et al. “TIERS: Topology Independent Pipelined
Routing and Scheduling for VirtualWire Compilation”. In Pro-
ceedings of FPGA’95, pages 25-31, Berkeley, CA, Feb 1995

[8] M. Kudlugi, C. Selvidge, R. Tessier, “Static Scheduling of
Multiple Asynchronous Domains For Functional Verification”,
To appear at DAC 2001, Las Vegas. Nevada.

[9] Corman et al. Introduction to Algorithms, MIT Press, 1992.

Testcase Design1 Design2

1. Num. Total Modules  543000  57000

2. Num. MTSD Modules  3100  7400

3. Num. Clock Domains  3  2

4. Num. MTSD Paths  173  213

5. Num. MTSD FPGAs  23  24

6. Clock Domains  D1    D2     D3   D1     D2

7. Num. Non MTSD FPGAs  11    43   180   4       7

8. Critical Path (Virtual-
Clocks) MTSD Hard Routed

 42    47    49   85     131

9. Critical Path (Virtual-
Clocks)MTSD VirtualRouted

 37    38    46   68     108

10. Est. Max Speed
MTSD HardRouted

 346 KHz  129 KHz

11. Est. Max Speed
MTSD VirtualRouted

 369 KHz  157 KHz

Table 1: MTSD Virtual Routing vs. Hard Routing

 3000

 2000

 1000

400          800          1200         1600

For Xilinx 4062 FPGAs
UserIO Pincount is 352

Pin Count

Num. FPGAs

PinCount  NumFPGAs
-------------------------
120            3492
287            1702
657             735
727              430
1047            331
1780            280

Figure 8: Pin requirements Vs. FPGA requirements


	1. Introduction
	Recently, parallel verification platforms, which can perform millions of logic evaluations concur...
	Early FPGA-based verification systems dedicated user design signals to inter-FPGA routing resourc...
	For multi-domain circuits mapped to pin-multiplexed logic emulators, inter-FPGA signal transport ...
	In this paper we present a scheduling approach that provides causally-correct transport of multi-...
	2. Background
	3. Transporting Multi Domain Values
	4. Definitions
	MTSD Net
	MTSD Gate
	MTSD Block.

	5. The Approach
	6. Static Scheduling
	Algorithm 1: Route (route-link)

	7. MTSD Scheduling
	MTSD Dependency and Depth
	Routing MTSD Paths
	Algorithm 2: MTSDLinks Routing

	8. Experimental Results
	Table 1: MTSD Virtual Routing vs. Hard Routing

	9. Conclusions
	[1] Shekhar Patkar and Pran Kurup, "ASIC Design Flow Scores on First Pass", Integrated Systems De...
	[2] IKOS Systems Inc, Virtual Logic Datasheet, http://www.ikos.com/products/vsli/index.html
	[3] Quickturn Design Systems, Cobalt Data Sheet, http://www.quickturn.com/products/cobalt.htm
	[4] D.E. Van Den Bout, et al. “Any Board: An FPGA Based Reconfigurable System:, IEEE Computer, Se...
	[5] J. Babb, R. Tessier et al. “Virtual Wires: Overcoming Pinlimitations in FPGA based logic emul...
	[6] J. Babb, R. Tessier, et al. “Logic Emulation and Virtual Wires”. In IEEE Transactions on CAD,...
	[7] C. Selvidge, et al. “TIERS: Topology Independent Pipelined Routing and Scheduling for Virtual...
	[8] M. Kudlugi, C. Selvidge, R. Tessier, “Static Scheduling of Multiple Asynchronous Domains For ...
	[9] Corman et al. Introduction to Algorithms, MIT Press, 1992.


	Multi-domain Communication Scheduling For FPGA-based Logic Emulation

