
FPGA Architecture Support for Heterogeneous,
Relocatable Partial Bitstreams

Christophe Huriaux
University of Rennes 1

IRISA
Lannion, France

christophe.huriaux@irisa.fr

Olivier Sentieys
Inria

IRISA
Lannion, France

olivier.sentieys@inria.fr

Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003
tessier@umass.edu

Abstract—The use of partial dynamic reconfiguration in
FPGA-based systems has grown in recent years as the spectrum
of applications which use this feature has increased. For these
systems, it is desirable to create a series of partial bitstreams
which represent tasks which can be located in multiple regions in
the FPGA fabric. While the transferal of homogeneous collections
of lookup-table based logic blocks from region to region has
been shown to be relatively straightforward, it is more difficult
to transfer partial bitstreams which contain fixed-function re-
sources, such as block RAMs and DSP blocks. In this paper we
consider FPGA architecture enhancements which allow for the
migration of partial bitstreams including fixed-function resources
from region to region even if these resources are not located in
the same position in each region. Our approach does not require
significant, time-consuming place-and-route during the migration
process. We quantify the cost of inserting additional routing
resources into the FPGA architecture to allow for easy migration
of heterogeneous, fixed-function resources. Our experiments show
that this flexibility can be added for a relatively low overhead
and performance penalty.

Keywords—Partial reconfiguration; FPGA; heterogeneous
fixed-function blocks

I. INTRODUCTION

Almost since the creation of the first SRAM-based FPGAs
there has been a desire to explore the benefits of partially
reconfiguring a portion of an FPGA at run-time while the
remainder of design functionality continues to operate unin-
terrupted. Recent advances in FPGA technology have fueled
increased interest in the area from an application standpoint.
Dynamic FPGA reconfiguration has been used successfully in
applications such as communication coding [1], image pro-
cessing [2], and networking [3], among others. In most cases,
dynamic reconfiguration plays an important role in enhancing
application performance, although reduced power consumption
and increased fault tolerance are additional motivations.

Contemporary FPGA devices provide hardware interfaces
which allow for portions of an FPGA to be modified at
run-time without affecting the operation of unmodified areas.
Although numerous papers have been written which examine
region packing [3], software scheduling [4], and bitstream
writing techniques [5] to facilitate partial reconfiguration, the
approach is still used by designers on a limited basis.

Currently, the use of partial reconfiguration imposes lim-
itations on the FPGA design: partially-reconfigurable regions
must be constrained to a certain size and, in many cases, region

bitstreams must be precompiled before application execution.
In cases where a partial bitstream is translated from one region
to another, the resources in both source and destination regions
must match in terms of both functionality and the location of
the resources (e.g. logic, fixed-function blocks) in the region.

In this paper, we develop an FPGA architecture which
allows for easy translation of partial bitstreams (also called
tasks) across partially-reconfigurable regions even if the rel-
ative placement of fixed-function blocks within the region is
changed. This flexibility comes at the cost of isolating the
routing resources from the fixed-function blocks. Our approach
can be applied without the need for storage of numerous
bitstreams for the same task or for the use of place-and-route
tools when a task is moved from location to location.

Although our idea could be used for any island-style FPGA,
the work presented in this paper has been specifically con-
ducted in the context of the the European FP7 project FlexTiles
[6], in which a dynamically reconfigurable logic fabric in a
many-core architecture is used to accelerate specific functions.
For this project, an architecture has been developed in which
inputs and outputs in the fabric are made through dedicated
fixed-function blocks inside the fabric, rather than I/Os spread
in a ring around the fabric. This increases the importance of the
free movement of tasks across partially-reconfigurable regions.
As a result, it is necessary to translate tasks flexibly to locations
on the fabric where the relative placement of fixed-function
blocks (e.g. memory blocks, multipliers, I/Os) in the region is
different.

The remainder of the paper is structured as follows. Section
II presents previous work exploring the concept of partial
reconfiguration including the relocation of tasks. In Section III,
we present FPGA architectural enhancements which allow for
the relocation of tasks with fixed-function blocks. In Section
IV, our experimental methodology using a modified version of
VPR 6.0 [7] is described. Experimental results are presented
in Section V to quantify the area and performance overhead
of the approach. Section VI concludes the paper and offers
directions for future work.

II. RELATED WORK

The use of partial dynamic reconfiguration in FPGAs has
been studied for over twenty years. Although early analysis
primarily targeted Xilinx XC6200 series FPGAs [8], almost all
recent work in the area has focused on Xilinx Virtex families



and Altera Stratix V devices, which allow for partial recon-
figuration of device regions. Most recent software systems in
the area require the precompilation of task bitstreams [9][10]
that are assigned to partially-reconfigurable regions (PRR).
Occupancy in these locations can be managed by scheduling
and region packing software [4].

In many cases it is desirable to place and route a task
targeted to a PRR once and then to migrate the task to
multiple locations on the FPGA die as needed. Often some
routing is still needed to connect the newly placed region
with surrounding interconnect. In Mignolet, et al [5], a fast
router is used to connect a task to surrounding blocks. In
Flynn, et al. [11], the routing of clock signals to the region is
performed. If additional routing is performed during the merge,
the migration of a task to a new PRR can be as long as 97
seconds [12], a prohibitive time for most applications.

PRRs are connected to static regions in recent Xilinx and
Altera devices using lookup tables as an interface [9][10].
Older partial reconfiguration approaches overcome the inter-
PRR communication issue by using a standard bus interface
for communications between the PRR and the remainder of the
circuit. Both Carver, et al. [13] and Tan and DeMara [14] use
bus macros at fixed locations to allow a task to be located
at a variety of positions within an FPGA. In some cases
for the Virtex architecture, it is necessary to make bitstream
modifications to the stored task (such as a new CRC) if it
is moved to a different on-chip location, even if the logic
resources in the original and destination locations exactly
match. Touiza, et al. [15] provide a high-throughput method
for moving a task from one region to another with a single
bitstream by calculating most of the needed changes offline.

Two previous partial FPGA reconfiguration schemes di-
rectly address the issue of migrating a task which contains
fixed-function blocks. Krasteva, et al. [16] examine techniques
which move a task with fixed-function blocks to a new region
where the blocks are in the same relative position in the region.
To date, the only work which examines moving a task with
fixed-function blocks to a new location where the blocks are
not in the same position is Becker, et al. [17]. In this case,
the blocks are not used, eliminating their need for migration.
Unfortunately, given the diversity and abundance of fixed-
function blocks in contemporary FPGAs, simply ignoring and
not using them is not a viable option for PRRs.

III. TASK MIGRATION WITH HETEROGENEOUS BLOCKS

In this paper we describe FPGA routing architecture
changes which allow tasks to be migrated so that fixed-function
(hard) blocks are located in different locations within the target
PRR. The approach does not require time-consuming place-
and-route during the migration process. Since fixed-function
blocks generally are aligned in vertical columns in contem-
porary FPGAs, we provide the ability for tasks to “float”
horizontally within the logic array. The main contributions of
this paper are:

• FPGA routing architecture enhancements which allow
for routing connections to fixed-function blocks which
are isolated from other routing in the FPGA routing
fabric.

Ssrc

Snew

T1

Fig. 1: Relocation problem in modern FPGAs: task T1, placed
on a set Ssrc of resources, is only movable to another set Snew

with resource positions matching those in the original set

• An evaluation of the performance and area over-
heads incurred by this routing isolation for a collec-
tion of benchmark designs which include components
mapped to both FPGA logic and fixed-function re-
sources.

A. Background

To promote direct comparisons with contemporary FPGAs,
we modify the well-known island-style FPGA model [18].
This architectural model (Figure 1) includes a two-dimensional
array of logic blocks (LB) shown in grey squares that are
interconnected via a programmable routing network. Our mod-
eled LBs include a single four-input lookup table (LUT) and
a flip flop (FF), although clusters of LUTs and FFs could
also be used. The programmable routing consists of horizontal
and vertical channels made of multiple wire segments. The
channel segments can be connected to inputs and outputs of
the LBs through connection boxes (CB). The channels are also
connected to each other via switch boxes (SB). To optimize
area and performance, modern FPGAs contain a spectrum of
fixed-function blocks (shown as rectangles in Figure 1). These
hardware resources reduce the demand for logic blocks for
common functions, such as multiplication and bulk memory.

In an island-style FPGA, fixed-function blocks such as
block RAMs and signal processing blocks (DSP blocks) are
aligned in columns to simplify FPGA layout and the combining
of multiple blocks into larger functional resources. Depending
on block complexity, the height of a fixed-function block is
often larger than a single grid location (e.g. the height of a
logic block), as shown in Figure 1.

The allocation of fixed-function blocks across the logic
fabric complicates task relocation for the shaded task which
spans three columns in Figure 1. Given a hardware task
placed at the position (xsource; ysource) in the array, it is
limiting to find a position (xnew; ynew) in the logic fabric
that contain a set of resources Snew with all resources in
exactly the same relative position as Ssource. Overcoming
the restrictions imposed by fixed-function resources requires
making the routing connections to the fixed-function blocks
more flexible.



LB1 X1 LB2 LB3 Y1 LB4

(a)

LB1 LB2 LB3 LB4
X1 Y1

(b)

Fig. 2: Abstraction of heterogeneous resources: (a) Original
logic array (b) Resulting set of logic-only and fixed-function
only arrays

B. Fixed-function blocks abstraction

Increased routing flexibility for fixed-function blocks is
introduced via an abstracted view of heterogeneous resources.
Starting from the original architecture illustrated in Figure 2a,
two separate logic resource layers are considered. The first
layer, the logic array, includes the logic resources (LBs) of
the architecture and its routing network, connection boxes
and switch boxes. The second layer is made up of the fixed-
function blocks in the baseline logic array (e.g. memory
blocks, DSP blocks, communication interfaces, etc.). The
heterogeneous plane has its own routing network, composed of
bidirectional routing long lines which span a defined region of
the FPGA. Each of these lines can be connected to an input or
output of the fixed function blocks. The fixed-function block
input and output connections are restricted to their dedicated
routing network. Links to the logic array are made via the
heterogeneous-only long lines which connect to switch boxes
of the logic array routing network. The extent of each of the
long lines is optimized to provide good delay performance.
The abstraction is presented in Figure 2b. It should be noted
that this abstraction does lead to an increase in horizontal delay
for routing in the logic-only (homogeneous) plane. Since the
positioning on the die of fixed-function blocks is not known
at place and route time, it must be assumed that such a
block is physically located horizontally between each LB. The
additional delay associated with the longer horizontal wires in
the homogeneous plane must then be considered.

1) Routing network separation: The heterogeneous-only
long lines only carry signals to or from fixed-function blocks.
The remaining homogeneous routing network carries signals

Fig. 3: Switch box enhanced to include connections between
heterogeneous and homogeneous layers. Red and blue hor-
izontal wires (the top four wires) represent heterogeneous-
only long lines while the remaining black wires represent
homogeneous routing

(a) (b)

(c) (d)

Fig. 4: Multiple relocation possibilities for the same bitstream
of a task.

emanating from logic blocks. Heterogeneous-only long lines
are connected to the homogeneous routing network through
switch boxes at horizontal and vertical channel intersections,
as shown in Figure 3. Routing segments spanning multiple LBs
(e.g. 2, 4, 8, etc) are commonly found in island-style archi-
tectures. These segments do not make intermediate switch box
connections to reduce wire delay. However, the heterogeneous-
only long lines do connect to multiple adjacent switch boxes.
Thus, it is possible to connect to these lines from multiple
switch boxes. This additional level of routing allows for the
ability to slide a given task horizontally along the horizontal
heterogeneous-only long lines without affecting either layer of
routing, as illustrated in Figure 4. Only the use of horizontal,
heterogeneous-only long lines for fixed-function input and
output signals was explored to avoid complex routing and
excessive overhead for the overall circuit.

2) Partitioning: Since the size of fixed-function blocks
can vary, the vertical and horizontal extent in LBs of a
reconfigurable partition must be carefully selected. The width
of the partition is bounded by the length of the heterogeneous-
only long lines. The height of a partition is defined as the least
common multiple of the height of the fixed-function blocks it
contains. In this work, the FPGA partitions are identical in size
and they are evenly distributed. The partitioning also improves



C3(3, 1, t2)

C2(5, 2, t2)

C1(2, 3, t1)

C0(4, 4, t1)

Fig. 5: Task model: each connection Ci has to be linked to a
fixed-function block via heterogeneous-only routing

the scalability of our approach: partitions can be duplicated to
extend the size of the logic fabric.

3) Task model: In the context of this paper, we consider
a hardware task to be a set of logic resources that are
interconnected. A hardware task is described by a bitstream to
be loaded into the configurable logic fabric. Unlike standard
FPGA development where a hardware task contains an IP
block that is loaded into the FPGA at a specific location,
in this case a task is an aggregate of both interconnected
homogeneous logic resources and a set of connections to
heterogeneous-only long lines, as depicted by Figure 5. Each
connection is characterized by its position (x, y) within the task
and its type t is used to determine its resource connection.
This set of connections is fixed, relative to the task itself,
and the problem of relocation requires finding a corresponding
match of fixed-function resources to this set. A task is defined
as T = {Ci(xi, yi, ti)}, where xi, yi is the position of the
connection and ti is its type.

IV. EXPERIMENTAL METHODOLOGY

To experimentally evaluate the impact of our revised FPGA
architecture on FPGA area and performance, the Versatile
Place and Route (VPR) tool set (version 6.0) was modified.
The following subsection details changes made to VPR for
experimentation. In subsection IV-B, we describe the set of
benchmark designs used for our experiments.

A. Modeling in VPR

The changes made to the VPR source code were made
on the latest version1 available in the Verilog To Routing
(VTR) [7] project repository.

1) Architecture: The VPR architecture description XML
file that was used to model our circuit is based on
k4_N10_memSize16384_memData8.xml, which is one
of the default files shipped with the VTR tool flow. The file
defines a simplified version of the Stratix IV architecture. The
architecture was adapted to suit our needs and to provide
a generic FPGA supporting multiple types of fixed-function
blocks. The blocks include a 36× 36 multiplier and a config-
urable dual-port RAM similar to a Stratix 144 Kbit embedded
memory block. Figure 6 demonstrate two placements of the

1The checked out version was revision 3034.

Fig. 6: Two placements of the same task on the enhanced
architecture with VPR

same task with VPR and the enhanced architecture; routing
was omitted for readability.

2) Routing abstraction: The key modifications to the VPR
code base resulted in a dual-layer routing graph which allows
inter-layer routing connections at switch boxes (Figure 3).

The segment types of the separated routing networks were
modeled using two different segment type definitions in the
architecture file. The first segment type, used for homogeneous
routing, contains wires which span a single logic block. The
second segment, used for heterogeneous-only routing, contains
long lines spanning the whole chip. Since we restrict the
routing to the fixed-function blocks to horizontal wires, the
vertical routing adjacent to the fixed-function blocks is not
used. In many VPR architecture definitions, a logic array block
will be defined to have its inputs and outputs spread across its
four sides. This behavior is undesirable in our case since inputs
and outputs on left-hand and right-hand sides of the block will
connect to vertical routing channels. As a result, we defined the
location of input and output signals for fixed-function blocks
as the top and bottom of the block.

Since VPR does not provide support for separate routing
networks which are only interconnected in a few locations,
modifications were made to the VPR routing graph generator.
Source code was modified to enable the marking of segments
of the architecture file segmentlist with an additional
attribute, selective_routing. This attribute tags the seg-
ment as appropriate for either homogeneous signals (i.e. to
or from a LB), heterogeneous-only signals (to or from a
fixed-function block), or both types. Our model only uses
heterogeneous-only long lines and segments which can carry
both signal types. Additionally, the graph building procedures
were adapted so that input and outputs of the complex blocks
marked as heterogeneous are not routed on routing segments
which are not tagged to route them. Similar marking was used
for homogeneous routing segments.

In the original VPR release, long lines are balanced and
their connections are rotated among the wires of the channels
in which they reside. This behavior is desirable in an FPGA
where one wants to leverage the full routability of the circuit.
However, this rotation is not desirable in our model since
connections to the heterogeneous-only long lines are more
substantial. To circumvent this issue, we disabled the long
line balance feature for segments marked as heterogeneous,



TABLE I: VTR design flow benchmark suite

Benchmark Memories Multipliers LBs

LU8PEEng 45 8 2,174
bgm 0 11 2,977
boundtop 1 0 272
ch intrinsics 1 0 41
diffeq1 0 5 43
diffeq2 0 5 30
mkDelayWorker32B 41 0 497
mkPktMerge 15 0 17
mkSMAdapter4B 5 0 181
or1200 2 1 273
raygentop 1 7 192
stereovision1 0 38 990

which allows the wires modeling the fixed-function routing
to effectively span a fixed amount of the same columns.
Currently, for a given defined segment, VPR will create both
horizontal and vertical tracks in the routing graph. For our
implementation, only horizontal long lines are used. Although
vertical long lines for the heterogeneous-only routing layer
were created, they were marked as unusable by the router and
their area cost was ignored. All switch block and connection
block connections to these wires were removed.

B. Benchmarks

Benchmarks with heterogeneous resources were used to
evaluate our modified FPGA architecture. We choose to use
the set of benchmarks included in the VTR design flow for
experimentation. Among these benchmarks, 12 of them that
use heterogeneous blocks (i.e. memories and multipliers) were
selected to test our enhanced architecture. Table I sums up the
benchmark details. The number of fixed-function blocks was
calculated after the packing stage for our architecture. A total
of 8 out of 12 designs make use of memories, and 7 out of
12 use multipliers. Of these designs, two of them have more
than a thousand logic blocks.

V. RESULTS

In this section we evaluate results obtained with the bench-
marks described in Section IV-B using the enhanced archi-
tecture detailed in Section III. We use the modified version
of VPR described in Section IV-A to perform timing-driven
packing, placing and routing for the 12 designs. Comparative
results are obtained with respect to a standard architecture
which is similar to the enhanced one, with the exception of
the new routing for the heterogeneous-only routing. Place and
route data concerning the standard architecture are presented in
Table II. The basic partition of both architectures is a 8×8 array
of logic blocks with one column dedicated to a memory of 8
blocks height, and another column containing two multipliers
of 4 blocks height. The results of the enhanced architecture
were generated with multiple side-by-side horizontal partitions
of size 8 since this is the smallest common denominator of the
logic fabric. Each long line tied to a specific heterogeneous
block spans a single partition.

A. Logic array size

As observed in Table III, our enhanced architecture has no
influence on the minimal array size (in number of logic blocks)
on which a task can be placed.

TABLE II: Place and route benchmark results on the standard
architecture

Benchmark Array size Chan. width Crit. delay (ns)

LU8PEEng 56 77 124.06
bgm 64 91 34.66
boundtop 20 36 7.17
ch intrinsics 8 25 3.57
diffeq1 12 32 16.17
diffeq2 12 28 13.84
mkDelayWorker32B 50 65 11.25
mkPktMerge 32 24 5.60
mkSMAdapter4B 18 44 7.34
or1200 25 55 13.36
raygentop 17 45 5.11
stereovision1 37 76 6.24

TABLE III: Place and route benchmark results on the enhanced
architecture

Name Size Chan. width H-wire Crit. delay (ns)

LU8PEEng 56 139 (1.81×) 324 134.41 (1.08×)
bgm 64 108 (1,19×) 324 35.67 (1.03×)
boundtop 20 56 (1.56×) 324 7.51 (1.05×)
ch intrinsics 8 25 (1.00×) 162 3.84 (1.08×)
diffeq1 12 96 (3.00×) 234 15.96 (0.99×)
diffeq2 12 65 (2.32×) 234 12.66 (0.92×)
mkDelayWorker32B 50 117 (1.80×) 324 11.46 (1.02×)
mkPktMerge 32 92 (3.83×) 324 4.84 (0.86×)
mkSMAdapter4B 18 83 (1.89×) 324 7.35 (1.00×)
or1200 25 77 (1.40×) 324 13.62 (1.02×)
raygentop 17 98 (2.18×) 324 5.78 (1.13×)
stereovision1 37 129 (1.70×) 324 6.97 (1.12×)

B. Critical delay

The critical delay of each circuit is expressed in nanosec-
onds in Tables II and III. To ensure an equal quality of results
for both architectures, the same timing driven options were
given to VPR, and the same routing seed was used in both
cases. Most of the benchmarks sees a critical delay change
by less than 10% between the standard architecture and the
enhanced one.

The critical path delay increase in Table III is limited and
results from routing congestion when vertical routing tracks in
the homogeneous routing layer are used to reach the horizontal
long lines and the increased capacitance of the long lines for
short connections. Some of the benchmarks expose a decrease
in critical path delay (in particular diffeq2, mkPktMerge).
These improvements originate from the use of long lines to
reach heterogeneous blocks, reducing the wire delay for signals
in the critical path. The critical path timing of a task must
consider relocation-related issues. Since the logic content of
a relocatable task is placed relatively to the heterogeneous
blocks, we do not know in advance where homogeneous signal
will step over a fixed-function block. This issue is addressed
at the place-and-route stage through the use of conservative
timing.

In our case, the main area impact is a result of the
distribution of long lines across the FPGA: a horizontal routing
channel contains the minimum number of long lines required
to route every I/O of a partition of the biggest channel (i.e. the
amount of connections to the most connection-intensive fixed-
function block). Long lines which are not tied to a specific I/O
in a horizontal channel can be used for other purposes, which



can result in a reduced critical delay.

C. Routing resources

Our approach primarily focuses on routing network en-
hancements. The isolation of routing resources for logic-block
only and fixed-function blocks has several implications. As
described in Section III, each input and output of the fixed-
functions blocks is tied to a unique long line of a partition.

We observe an increase in the routing resources needed
in the homogeneous routing network (the channel width in
Table III), of 1.97× on average. Routing resources due to
the routing heterogeneous-only long lines dedicated to fixed-
function blocks in the partition are shown in the h-wire column
in Table III. It should be noted that the heterogeneous long
lines (h-wires) in the table for each benchmark are spread
across an entire partition and not isolated in just one channel.
As the number of h-wires increases, the number of logic-only
homogeneous wires required to route signals up to the long
lines increases to avoid network congestion.

Given these results, it is reasonable to define a nominal
partition width of 8 columns, including heterogeneous blocks,
for this specific architecture, as used in our experiments. This
size allows for good performance in terms of flexibility, while
still making a good trade-off in routing resources demand and
occupied area. Our approach eliminates the need for routing
when a task is moved. The only required change for the
task bitstream is to shift the homogeneous-to-heterogeneous
and heterogeneous-to-fixed-function block connections hori-
zontally. The position of these connections in the bitstream
can easily be offset by a fixed amount for the hundred or so
connections for each fixed-function block as the task is loaded
into the device.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an enhanced FPGA architecture sup-
porting the relocation of tasks and associated partial bitstreams
even if the relative position of fixed-function blocks in the
target partially-reconfigurable region is changed. A standard
island-style FPGA architecture has been expanded to include
a dedicated routing layer for fixed-function blocks. Long lines
are used in this layer to allow blocks to ”float” horizontally
within a region, greatly expanding partially-reconfiguration
region placement. The routing implications and costs associ-
ated with this freedom have been investigated for a variety
of VTR benchmarks including fixed-function resources. This
architecture is only the first step in the development of a
dynamically reconfigurable FPGA for the FlexTiles project
which allows for fast task migration and ease-of-use from a
designer standpoint. The architecture treats I/Os in addition to
multipliers and DSP blocks as fixed-function blocks, necessi-
tating our new approach. Future implementations will allow for
both horizontal and vertical connections in the heterogeneous-
only routing layer. Additionally, research is needed to study the
impact of various architectural parameters (e.g. task geometry,
routing lines spreading) on detailed performance.

ACKNOWLEDGMENT

This research was sponsored by the European Commission
under the 7th Framework program within the FlexTiles project

(FPT ICT-288248) and by the French Ministry of Research. R.
Tessier was supported in part by National Science Foundation
grant EECS-1201834.

REFERENCES

[1] L. Atieno, J. Allen, D. Goeckel, and R. Tessier, “An adaptive Reed-
Solomon errors-and-erasures decoder,” in Proc. ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, 2006, pp. 150–
158.

[2] P. Sedcole, P. Y. K. Cheung, G. Constantinides, and W. Luk, “Run-
time integration of reconfigurable video processing systems,” IEEE
Transactions on VLSI Systems, vol. 15, no. 9, pp. 1003–1016, 2002.

[3] D. Unnikrishnan, R. Vadlamani, Y. Liao, J. Crenne, L. Gao, and
R. Tessier, “Reconfigurable data planes for scalable network virtualiza-
tion,” IEEE Transactions on Computers, vol. 62, no. 12, pp. 2476–2488,
2013.

[4] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck, “Configuration
relocation and defragmentation for run-time reconfigurable computing,”
IEEE Transactions on VLSI Systems, vol. 10, no. 3, pp. 209 –220, 2002.

[5] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and
R. Lauwereins, “Infrastructure for design and management of relocat-
able tasks in a heterogeneous reconfigurable system-on-chip,” in Proc.
Design, Automation and Test in Europe Conference, 2003, pp. 986–991.

[6] F. Lemonnier, P. Millet, G. M. Almeida, M. Hubner, J. Becker,
S. Pillement, O. Sentieys, M. Koedam, S. Sinha, and K. Goossens,
“Towards future adaptive multiprocessor systems-on-chip: an innovative
approach for flexible architectures,” in Proc. International Conference
on Embedded Computer Systems, 2012, pp. 228–235.

[7] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson, “The VTR project: ar-
chitecture and CAD for FPGAs from Verilog to routing,” in Proc.
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2012, pp. 77–86.

[8] G. Brebner, “A virtual hardware operating system for the Xilinx
XC6200,” in Field-Programmable Logic Smart Applications, New
Paradigms and Compilers, 1996, pp. 327–336.

[9] Increasing Design Functionality with Partial and Dynamic Reconfigu-
ration in 28-nm FPGAs, Altera Corporation, 2010.

[10] Partial Reconfiguration User Guide, UG702, Xilinx, Inc., 2013.
[11] A. Flynn, A. Gordon-Ross, and A. D. George, “Bitstream relocation

with local clock domains for partially reconfigurable FPGAs,” in Proc.
Design, Automation and Test in Europe Conference, 2009, pp. 300–303.

[12] M. L. Silva and J. C. Ferreira, “Creation of partial FPGA configurations
at run-time,” in Proc. Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, 2010, pp. 80–87.

[13] J. Carver, N. Pittman, and A. Forin, “Relocation of FPGA partial
configuration bit-streams for soft-core microprocessors,” in Workshop
on Soft Processor Systems, 2008.

[14] H. Tan and R. F. DeMara, “A multilayer framework supporting au-
tonomous run-time partial reconfiguration,” IEEE Transactions on VLSI
Systems, vol. 16, no. 5, pp. 504–516, 2008.

[15] M. Touiza, G. Ochoa-Ruiz, E.-B. Bourennane, A. Guessoum, and
K. Messaoudi, “A novel methodology for accelerating bitstream relo-
cation in partially reconfigurable systems,” Microprocessors and Mi-
crosystems, vol. 37, no. 3, pp. 358–372, 2012.

[16] Y. E. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, “Virtex II FPGA
bitstream manipulation: Application to reconfiguration control systems,”
in Proc. International Conference on Field Programmable Logic and
Applications, 2006, pp. 1–4.

[17] T. Becker, W. Luk, and P. Y. Cheung, “Enhancing relocatability of par-
tial bitstreams for run-time reconfiguration,” in Proc. IEEE Symposium
on Field-Programmable Custom Computing Machines, 2007, pp. 35–44.

[18] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAS. Boston, MA: Springer, 1999.


