
System-Level Security for Network Processors with
Hardware Monitors

Kekai Hu, Tilman Wolf, Thiago Teixeira and Russell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA, USA
{khu,wolf,tteixeira,tessier}@ecs.umass.edu

ABSTRACT

New attacks are emerging that target the Internet infras-
tructure. Modern routers use programmable network pro-
cessors that may be exploited by merely sending suitably
crafted data packets into a network. Hardware monitors
that are co-located with processor cores can detect attacks
that change processor behavior with high probability. In this
paper, we present a solution to the problem of secure, dy-
namic installation of hardware monitoring graphs on these
devices. We also address the problem of how to overcome
the homogeneity of a network with many identical devices,
where a successful attack, albeit possible only with small
probability, may have devastating effects.

1. INTRODUCTION
The Internet is a critical communication infrastructure

for many aspects of our society. As such, it is a vehicle for
and target of many malicious attacks. Network security has
long focused on scenarios where the network is used to pro-
vide connectivity between an attacker and the attacked end-
system. Results of such attacks compromise the attacked
end-system [4], which can be used to steal data, execute
malicious code (e.g., botnets [6]), etc. There are numerous
existing mechanisms aiming to defend against such attacks
at the edge of the network (e.g., by filtering malicious traffic
with firewalls [10] or content-inspection systems [12]) or on
the attacked devices (e.g., virus scanner software).

Recently, a new class of attacks has emerged targeting the
network infrastructure itself. This type of attack aims to dis-
rupt or modify the operation of routers to achieve denial of
service attacks or to use routers to actively launch denial
of service attacks. Attacks that target the control inter-
face of routers [5] can be prevented using standard security
mechanisms for end-systems. However, there are attacks
on network processors, the general-purpose processor cores
used for packet forwarding in routers, that can be launched
through the data plane by simply sending malformed data
packets [3]. These types of attacks are particularly problem-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’14, June 01–05 2014, San Francisco, CA, USA.
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

atic since they target critical infrastructure and cannot be
easily defended against with conventional mechanisms.

Network processors are used in routers of all major ven-
dors and are implemented using multiprocessor system-on-
a-chip (MPSoC) devices. The processor cores on these MP-
SoCs are simple embedded cores that are typically inca-
pable of running operating systems or other software defense
mechanisms. Protection mechanisms for these types of pro-
cessors have been proposed in the form of hardware monitors
that track the operation of each core, detect deviations from
programmed behavior due to attacks, and perform reset and
recovery. These hardware monitors have been studied in the
context of network processors (e.g., [7]), as well as in the
context of embedded systems in general (e.g., [1, 11]).

While the design and operation of single processor cores
with hardware monitors running one or a small number of
preconfigured applications is well-understood, there is also
a need to look at the system-level perspective of the prob-
lem. There are two key challenges for a practical hardware
monitoring system for network processors: (1) Dynamics:

multiple processor cores and their monitors need to be man-
aged and reprogrammed at runtime as network traffic and
network functionality change. (2) Homogeneity: To simplify
management, practical networks use large numbers of iden-
tical router devices, which can lead to Internet-scale failures
in case an attack can be developed circumventing one spe-
cific monitoring system. This paper addresses these system-
level issues and presents the design of a monitoring system
that can securely install binaries and monitors on network
processors and parameterize these configurations such that
potentially successful attacks cannot propagate.

The specific contributions of our paper are:

• Design of a Secure Dynamic Multicore Hardware Mon-
itoring System (SDMMon), which enables secure in-
stallation of binaries and monitors on network pro-
cessor systems based on cryptographic principles and
suitable key management.

• Design of a novel, high-performance, parameterizable
hash function for use in hardware monitors enabling
the deployment of diverse monitoring systems that are
not susceptible to the same potential attack.

• Evaluation of a prototype system implementation show-
ing SDMMon functionality and performance.

We first discuss the operation of hardware monitors and
our security model. Then we present the design of our
system-level architecture followed by results from our pro-
totype and related work.

reset

binary

network processor

with hardware monitor

monitoring

graph

hardware

monitor

hash

monitoring

graph
binary

core
monitoring

logic

offline

analysis

reset

Figure 1: Hardware monitor operation. Application

binaries are analyzed offline to obtain the monitor-

ing binary. During runtime, a hashed value of the

processor operation is compared to the information

in the monitoring graph. An attack causes a devi-

ation from the monitoring graph, triggering a reset

of the network processor core.

2. HARDWARE MONITORS AND SECURITY

MODEL
To provide the necessary context for the system architec-

ture presented in Section 3, we briefly discuss the operation
of hardware monitors and the security model for our work.

2.1 Secure Processing with Hardware Moni-
tors

The hardware monitors used in our work are based on
[8] and illustrated in Figure 1. The monitors track the
operation of the processor core for every instruction and
compare the actual behavior to expected behavior. To de-
scribe expected, “normal” packet processing, the process-
ing binary is analyzed to extract a “monitoring graph.” The
graph contains all possible control flow operations between
basic blocks and a short (e.g., 4-bit) hash of each binary in-
struction. The use of a hashed version of the binary instruc-
tion (rather than the full binary instruction) is necessary to
reduce the size of the monitoring graph to a fraction of the
processing binary.

During processing, the processor core reports the hash
value of its current operation. The monitor compares that
hash value to the one stored in the hardware monitor. If
the hash matches, the comparison continues for the next
instruction. In case of control flow changes, the monitor
considers both next operations as valid (since the monitor
does not have a data path to compute which choice is valid).
In case the processor is attacked and starts executing code
that is different from the original binary (e.g., after a stack
smashing attack), the hash values reported by the proces-
sor core differ from the hash values in the monitor and the
attack can be detected. In an Internet Protocol (IP) based
network, recovery from an attack can be performed easily by
dropping the attack packet, resetting the processing stack,
and continuing with processing the next packet.

The security of the hardware monitoring system is based
on the observations that any meaningful attack necessarily
needs to change the operation of the processor core (other-
wise the core continues processing unchanged). Changes in
processor core operation generate different hash values that
are reported by the processor core. While an attacker may
create an attack where the hash values of particular instruc-
tions match the hashes of the valid instructions they replace,

the probability of a matching sequence decreases geometri-
cally with the length of the sequence. (For example, when
using a 4-bit hash, there is a 1 in 16 chance that one instruc-
tion matches the monitor, a 1 in 256 chance for a match for
two instructions, etc.) Crafting a set of instructions that
represent a meaningful attack and matches a predetermined
sequence of hash values is particularly difficult if the attacker
does not know what hash function is used.

One key requirement for the security of the hardware mon-
itoring system is that an attacker cannot modify the hard-
ware monitoring graph. If the attacker could modify the
monitoring graphs, an attack could be hidden by substitut-
ing the correct monitoring graph with one that would accept
the attack as valid code. Prior and related work have not
suitably addressed the question of how the monitoring graph
is installed in a hardware monitoring system. For embedded
systems that execute a single, unchanging binary (as was
assumed in prior and related work), a one-time installation
of the monitoring graph through a dedicated interface can
be assumed. However, for network processors systems that
need to dynamically download new processing code, there is
no existing suitable solution.

2.2 Security Model
In the following, we focus on how to achieve the secure

installation of valid hardware monitoring graphs. We do
not consider security issues relating to the hardware mon-
itor itself since these issues have been addressed in prior
work [3, 8]. Instead, the focus is on the security issues re-
lating to dynamically installing monitoring graphs onto net-
work processor systems while considering that attackers may
tamper with this process to be able to launch attacks that
accept malicious code as valid.

To make the security model realistic in the context of prac-
tical network operation, we consider three entities that are
part of the system environment:

• Network processor manufacturer: The manufacturer
produces network processors and router systems and
sells them to the network operator. In some cases, the
network processor is manufactured by a different party
and then integrated on the router system by the router
manufacturer. For simplicity, we assume that the same
entity produces the router and the network processor.

• Network operator: The operator purchases the router
system with network processors from the manufacturer
and programs its operation for use in the network.

• Network processor device: The network processor de-
vice is programmed by the network operator. That is,
the network processor needs to obtain processing bina-
ries and monitoring graphs from the network operator.

2.2.1 Security Requirements

The specific system-level security requirements for a net-
work processor system with hardware monitors are:

SR1 Only valid binaries and matching hardware monitor
graphs should be installed on the network processor.
Validity implies that the binary and monitor have been
authenticated as being sourced from the network pro-
cessor’s network operator.

SR2 Hardware monitoring mechanisms should be sufficiently
diverse – despite the operation of identical binaries –

Figure 2: Hardware monitor with system-level se-

curity. Application binaries and monitoring graphs

are signed to ensure authenticity and integrity. In

addition, the hash function for each network pro-

cessor core is parameterized differently to achieve

heterogeneity.

to avoid catastrophic failures in a highly homogeneous
network environment in case of a successful attack.

SR3 Binaries, monitoring graphs, and hash parameters should
be confidential to prevent an attacker from obtaining
a hash parameter and from “stealing” the intellectual
property of a binary.

SR4 Binaries and monitor graphs should only be identified
as valid on one specific network processor system. This
security requirement helps in preventing an attacker
from injecting an binary from a different device.

2.2.2 Attacker Capabilities

We assume that attackers can do the following:

AC1 An attacker can observe any traffic and inject any type
of traffic. To limit the scope of this work, we do not
consider a case where an attacker can block all traffic
on a link. This problem can be addressed through
other techniques (e.g., multipath transmissions).

AC2 An attacker can generate a monitoring graph that matches
a binary that is vulnerable to a chosen attack.

To enable us to find a solution to this security problem, we
also need to constrain the abilities of the attacker. Specifi-
cally, we assume the following limitations:

AC3 An attacker cannot obtain cryptographic keys stored
by any of the three entities.

AC4 An attacker cannot break standard symmetric and asym-
metric cryptographic algorithms.

These limitations also imply that we do not consider phys-
ical or side-channel attacks. While such attacks may ex-
ist, there is ongoing research to develop suitable protection
mechanisms.

3. SYSTEM-LEVEL ARCHITECTURE
The system architecture for SDMMon is shown in Fig-

ure 2. The main difference to conventional hardware moni-
toring approaches, such as shown in Figure 1, is the use of

Figure 3: Security operations in SDMMon.

signed binaries, monitoring graphs, and hash function pa-
rameters. This approach protects the system from attacks
as we discuss below.

A critical aspect for security and operational functionality
is the set up of keys and cryptographic operations. Figure 3
shows the three entities that we consider for our work, the
router manufacturer, the network operator, and the network
processor device. In the following, we explain the interac-
tions between these entities and how they achieve the re-
quired security properties.

3.1 Operation and Key Management
The following operations describe the interactions between

the entities:

• At manufacturing time: During initial setup of the
network processor, the manufacturer configures the de-
vice with a public key/private key pair (denoted as K+

R

and K−

R). The manufacturer also installs the manufac-
turer’s public key (K+

M) into the device so that a root
of trust can be established. The keys can be stored in
hardware logic or a trusted platform module.

• At installation time: When the network processor is
installed in a network operator’s network, the manu-
facturer provides a certificate that contains (at least)
the network operator’s public key signed with the man-
ufacturer’s private key. Using this certificate, the net-
work processor can establish a chain of trust to the
network operator. This certificate may be sent to the
network processor once at boot time or with every re-
progamming step.

• At programming time: To program the network pro-
cessor, the network operator generates a monitoring
graph obtained from the processing binary. The mon-
itoring graph is then parameterized with a randomly
chosen 32-bit hash parameter. The binary, the moni-
toring graph, and the hash parameter are then signed
with the network operator’s private key. In addition,
the binary, monitoring graph, and hash parameter are
encrypted with a random symmetric key (Ksym). The
symmetric key is encrypted with the router’s public
key to ensure only the router can decrypt this infor-
mation. The encrypted binary, monitoring graph, and

hash parameter, the signature, the encrypted key, and
the certificate are then transmitted over the network
to the network processor. The network processor de-
crypts the data with the provided symmetric key (after
applying the router’s private key) and verifies the au-
thenticity and integrity of the data with the public key
of the network operator.

• At runtime: When the network processor performs
packet processing operations, the processor reports its
32-bit operation to the parameterizable hash function.
The 4-bit hashed operation is then reported to the
hardware monitor that compares it to the monitoring
graph (as discussed in Section 2).

We do not consider the question of when each binary needs
to be installed on the network processor. There has been ex-
tensive work on workload management on multicore network
processors to guide that decision [7, 13]. We focus on the
problem of installing the binary and monitor securely once
the decision that this binary is required has been made.

3.2 Parameterizable Hashing
The hash function used in our system takes the instruc-

tion word executed by the processor core and maps it to a
smaller (e.g., 4-bit) hash value. This value is then validated
by the hardware monitor against the information in the mon-
itoring graph. The monitoring graph has a hashed value of
each instruction in the binary and thus can detect when the
executed instruction does not match. Monitor graphs with
small hash values can be represented very compactly and
processed with a single memory access.

The drawback of using a hashed representation of the ex-
ecuted instruction word is that hash needs to be computed
every processor clock cycle and that hashing is a many-to-
one mapping. The latter can be exploited by a potential at-
tacker by creating an attack that hijacks the processor with
an instruction sequence that is identical to the hash values
expected by the monitor. To provide security from such an
attack, our SDMMon uses different hash function parame-
ters on each router and these parameters are communicated
securely between network operator and router. Thus, an at-
tacker cannot know what hash function to expect and the
only viable attack would be a brute force enumeration of dif-
ferent hash sequences. The use of different hash parameters
on different routers also ensures that a potentially success-
ful brute force attack on one system cannot be exploited on
other systems.

The design challenge for the hash function used in our
hardware monitoring system is to provide good hash char-
acteristics while allowing a high-performance implementa-
tion. Cryptographic hash functions would be a great choice
since they can be parameterized with a cryptographic key
and achieve strong collision resistance, but they require too
much processing complexity. Instead, we aim for a hash
function with weak collision resistance that can be imple-
mented efficiently in hardware.

We base our hash function design on a Merkle tree [9],
as shown in Figure 4. The tree structure can be efficiently
implemented in hardware and requires only a logarithmic
number of dependent operations based on the instruction
and parameter length. Each tree node computes an 8-to-4
bit compression function as part of the overall hash calcula-
tion. Leaf nodes take 4 bits from the hash function param-

f

f

f

f

f

f

f

f

f

f

f
4-bit

hash

8-to-4 bit compression

function

Figure 4: Parameterizable hash function based on

Merkle tree.

eter and 4 bits from the processor instruction.
Without knowledge of the parameter used in the calcula-

tion, an attacker cannot guess the mapping of a potential 32-
bit attack instruction to its 4-bit hash. As discussed above,
brute force probing is possible, but difficult to implement
for longer attacks.

3.3 Security Properties
Based on our system-level design of secure transmission

of binaries and monitoring graphs, as well as the use of a
hash function with different parameters for different router
systems, we can now illustrate how our security requirements
can be achieved.

1. Security requirement SR1 (only valid binaries installed)
is achieved because the packages of binaries and moni-
toring graphs are signed by the network operator. Be-
cause the attacker cannot obtain the network oper-
ator’s private key (AC3 and AC4) and because only
valid network operators receive certificates from the
manufacturer, the packages have to be authentic.

2. Security requirement SR2 (hardware monitor diver-
sity) is achieved because each monitor instance uses
a different, randomly chosen, hash parameter. The
attacker can try to generate an attack that matches
(AC2), but would need to do that using a very ineffi-
cient brute-force approach.

3. Security requirement SR3 (confidentiality) is achieved
because the components of the package are encrypted
with a symmetric key that is only available to the net-
work operator and the router (because of AC3 and
AC4). The attacker can observe the package (AC1),
but cannot interpret the content.

4. Security requirement SR4 (binaries and monitor graphs
specific to single system) is achieved because the sym-
metric encryption key is encrypted with the router’s
public key. Therefore, only the router for which a pack-
age is intended can correctly decrypt the information
in it (again because of AC3 and AC4).

Because we can ensure that our security requirements are

DE4 Board

1 GigE1 GigE

Stratix IV FPGA

FTP server

Nios II uClinuxnetwork

processor

core

hardware

monitor

1 GigE

processor

memory

security keys

download,

decryption,

verification

1 GigE

param. hash

function

monitor

memory

Figure 5: Prototype network processor system con-

figuration.

Table 1: Resource use on DE4 FPGA
Available Nios II NP core with
on FPGA contr. proc. hw monitor

LUTs 182,400 13,477 41,735
FFs 182,400 16,899 40,590
Memory bits 14,625,792 497,976 2,883,088

maintained, we claim to achieve system-level security for
network processors with hardware monitors.

4. PROTOTYPE IMPLEMENTATION
To illustrate how a secure system for network processors

with hardware monitors can be implemented in practice, we
present results from a prototype implementation.

4.1 System Setup
We have implemented a prototype SDMMon in an Altera

Stratix IV FPGA on an Altera DE4 board. A reconfigurable
network processor was implemented with a PLASMA pro-
cessor and a reconfigurable hardware monitor was connected
to this NP. For the security and dynamic control purpose, a
Nios II soft processor was implemented as the control proces-
sor. The board contains four 1Gbps Ethernet ports, through
which the control processor can reach the network operator’s
server. The system can download, decrypt, and verify the
binaries and monitor graphs, load the binaries and graphs to
the shared memory, and reconfigure the network processor
and hardware monitor. We have installed a uClinux oper-
ating system in the Nios II core to provide essential service
support such as TCP/IP, FTP, SSH, and OpenSSL.

The relative size of the control processor compared to a
network processor core with hardware monitor is shown in
Table 1. The control processor, which performs all the secu-
rity operations, is only about one third the size of a network
processor core with hardware monitor. In addition to the
resources shown in the table, the control processor also re-
quires 2895kB of memory for the operating system image.

4.2 Binary and Monitoring Graph Installation
We have implemented the decryption and verification steps

on the embedded control processor of the network processor
system. All cryptographic operations use the commercial-

Table 2: Processing of security functions on Nios II

Step Time (s)

Download data from FTP server 1.90
Check manufacturer certificate of network
operator’s public key K+

O

3.33

Decrypt AES keyKsym using router’s private
key K−

R

8.74

Decrypt package with AES key Ksym 7.73
Verify packet signature with network opera-
tor’s public key K+

O

3.92

Total 25.62
Total (no networking or certificate check) 20.39

Table 3: Implementation cost of hash functions
Bitcount hash Merkle tree hash

LUTs 103 95
FFs 61 61
Memory bits 0 32

grade OpenSSL toolkit (version 1.01e).
We generate public/private key pairs for all three entities

– network processor manufacturer, network operator, and
network processor device – using the RSA algorithm with
key length of 2048 bits. We sign the operator’s public key
with the manufacturer’s private key to create a certificate
to establish a chain of trust.

The package of binary (for IPv4+CM), monitoring graph,
and hash parameter is signed with the operator’s private
key. Since the package size exceeds the RSA algorithm’s
capacity to encrypt it, we encrypted the package using a
randomly chosen AES symmetric key. That symmetric key
is then encrypted with the router’s public key to allow secure
exchange.

At the network processor device, we verify the certificate
to make sure the operator is indeed the operator and not an
attacker. We also decrypt the AES key using the router’s
private key, making it able to access the package upon de-
cryption of the AES algorithm. We can then verify the sig-
nature using the operator’s public key. Finally, we unpack
the package and obtain the binary, monitoring graph, and
hash parameter. These files are then installed in the memory
network processor device.

The running times of the various steps taken on the con-
trol processor are shown in Table 2. The total time is about
25 seconds, which is acceptable since new processing appli-
cations for network processors are created at slower time
scales. (Note that switching between applications already
installed on the network processor can be done quickly to
accommodate dynamic changes in workload by keeping mul-
tiple binaries and graphs in memory.) When skipping the
certificate check (which has to be done only once) and ignor-
ing network delay (which can be decreased based on server
location), then the verification time is around 20 seconds.

4.3 Hash Function Evaluation
We have also implemented the parameterizable hash func-

tion on the prototype system. As compression function f ,
we use the 4-bit arithmetic sum of both 4-bit inputs. The re-
source consumption of the implementation of the hash func-
tion is shown in Table 3. For comparison, the resources for a

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32H
a
m

m
in

g

d
is

ta
n

c
e
 o

f
h

a
s
h

e
d

 p
a

ir
s

Hamming distance of input pairs

 Figure 6: Distribution of hash values using our Merkle-tree-based hashing.

typical conventional hash function (counting set bits in the
word to hash) are also shown. It can be seen that the re-
source requirements are comparable. Our Merkle tree hash
requires less logic, but requires memory to store the param-
eter, whereas the bitcount hash does not require memory.
Both hash functions are fast enough to compute the hash
within the available cycle time on our system.

To show that the parameterizable hash function based on
Merkle trees is effective for our goal, i.e., providing diver-
sity across systems (security requirement SR2), we evaluate
the distribution of generated hash values. We created 1011

32-bit value pairs (i.e., two different processor instructions)
and compared their 4-bit hashed value pair. As a compari-
son metric, we use the Hamming distance between each pair,
which is an indication on the number of bits that is different
between the values in the pair. Figure 6 shows the dis-
tribution of Hamming distances for hashed values for each
possible Hamming distance of the original pair. This figure
shows that changes in the input to the hash function (or its
key due to symmetry of inputs in the Merkle tree) lead to
changes in the output that have a Gaussian distribution of
the Hamming distance and thus are indistinguishable from
random changes (except for a Hamming distance of 1, where
the distribution is slightly different). Therefore, we can ar-
gue that an attacker cannot guess or strategize what 32-bit
instruction leads to a particular hash value other than by
exhaustively calculating the hash.

5. RELATED WORK
Hardware monitoring for embedded systems has been de-

veloped at different levels of granularity (e.g., basic blocks
[1, 11], processor instructions [8]). All hardware monitoring
approaches identify attacks by comparing processor behavior
to expected behavior based on offline analysis. Under dy-
namic workloads [13], dynamic installation of binaries and
data describing expected behavior is necessary.

Dynamic and secure installation of data has been explored
in the context of FPGAs [2], which is similar to our problem,
but with different security goals (protection of IP of more
concern than installation of a compromised bitfile). Also,
this work assumes local area network connections to derive
some security properties. In our work, we provide security
guarantees through cryptographic approaches while allowing
devices to be distributed anywhere in the Internet, which is
more realistic for router systems.

6. SUMMARY AND CONCLUSIONS
We have presented a system-level security design that en-

sures that hardware monitors on network processors can be
programmed dynamically, while ensuring that attackers can-
not tamper with the monitoring system. Our design is based
on the use of cryptographic principles to securely transfer all
the necessary data to the network processor. We have also

designed a parameterizable hash function that allows mon-
itoring graphs to be customized to each individual router
system in order to protect from a cascading attack. We
have demonstrated to operation of our system in hardware
on an FPGA-based platform. We believe that this work pro-
vides an important contribution toward moving from device-
level security to system-level security in embedded hardware
monitoring.

7. REFERENCES
[1] Arora, D., Ravi, S., Raghunathan, A., and Jha, N. K.

Secure embedded processing through hardware-assisted
run-time monitoring. In Proc. of the Design, Automation
and Test in Europe Conference and Exhibition (DATE’05)
(Munich, Germany, Mar. 2005), pp. 178–183.

[2] Bomel, P., Crenne, J., Ye, L., Diguet, J.-P., and
Gogniat, G. Ultra-fast downloading of partial bitstreams
through Ethernet. In Proc. of the 22nd International
Conference on Architecture of Computing Systems (ARCS)
(Delft, The Netherlands, Mar. 2009), pp. 72–83.

[3] Chasaki, D., and Wolf, T. Attacks and defenses in the
data plane of networks. IEEE Transactions on Dependable
and Secure Computing 9, 6 (Nov. 2012), 798–810.

[4] Clough, J. Principles of Cybercrime. Cambridge
University Press, June 2010.

[5] Cui, A., Song, Y., Prabhu, P. V., and Stolfo, S. J.
Brave new world: Pervasive insecurity of embedded
network devices. In Proc. of 12th International Symposium
on Recent Advances in Intrusion Detection (RAID)
(Saint-Malo, France, Sept. 2009), vol. 5758 of Lecture Notes
in Computer Science, pp. 378–380.

[6] Geer, D. Malicious bots threaten network security.
Computer 38, 1 (2005), 18–20.

[7] Kumarapillai Chandrikakutty, H., Unnikrishnan, D.,
Tessier, R., and Wolf, T. High-performance hardware
monitors to protect network processors from data plane
attacks. In Proc. of 50th Design Automation Conference
(DAC) (Austin, TX, June 2013).

[8] Mao, S., and Wolf, T. Hardware support for secure
processing in embedded systems. IEEE Transactions on
Computers 59, 6 (June 2010), 847–854.

[9] Merkle, R. C. Secrecy, Authentication, and Public Key
Systems. PhD thesis, Stanford University, Stanford, CA,
June 1979.

[10] Mogul, J. C. Simple and flexible datagram access controls
for UNIX-based gateways. In USENIX Conference
Proceedings (Baltimore, MD, June 1989), pp. 203–221.

[11] Ragel, R. G., and Parameswaran, S. IMPRES:
integrated monitoring for processor reliability and security.
In Proc. of the 43rd Annual Conference on Design
Automation (DAC) (San Francisco, CA, USA, July 2006),
pp. 502–505.

[12] Roesch, M. Snort - lightweight intrusion detection for
networks. In Proc. of the 13th USENIX Conference on
System Administration (LISA) (Seattle, WA, Nov. 1999),
pp. 229–238.

[13] Wu, Q., and Wolf, T. Runtime task allocation in
multi-core packet processing systems. IEEE Transactions
on Parallel and Distributed Systems 23, 10 (oct 2012),
1934–1943.

