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Abstract—Modern router hardware in computer networks is
based on programmable network processors, which implement
various packet forwarding operations in software. These pro-
cessor systems are vulnerable to attacks that can be launched
entirely through the data plane of the network without any access
to the control interface of the router. Prior work has shown
that a single malformed UDP packet can take over a network
processor running vulnerable packet processing software and
trigger a devastating denial-of-service attack from within the
network. One possible defense mechanism for these resource-
constrained network processors is the use of hardware monitoring
systems that track the operations of each processor core. Any
deviation from programmed behavior indicates an attack and
triggers reset and recovery actions. Such hardware monitors
have been studied extensively for single processor cores, but
network processors consist of dozens to hundreds of processors
with highly dynamic workloads. In this paper, we present the
design of a Scalable Hardware Monitoring Grid, which allows
the dynamic sharing of hardware monitoring resources among
processor cores. We show the scalability of our monitoring system
to network processors with large numbers of cores. We also
present a multicore prototype implementation of the monitoring
system on an FPGA platform.

Index Terms—network security, network infrastructure, data
plane attack, hardware monitor, multicore processor, FPGA

I. INTRODUCTION

Routers are an essential component of today’s Internet.

Routers connect network links and perform the protocol pro-

cessing operations that are necessary to send traffic along the

correct path, perform various correctness and security checks,

and keep track of performance and traffic statistics. While the

Internet Protocol (IP) only has a very small set of required

operations [1], there are countless additional functions that

have been added to improve network performance, to allow

for provider-specific network management, and to perform

accounting. To implement these functions, routers no longer

use application-specific integrated circuits (ASICs), but pro-

grammable network processors (NPs) [2]. Network processors

are high-performance embedded systems with many processor

cores that are programmed with software. The use of software

instead of hard-coded logic allows router vendors and network

providers to customize and update router functionality as

necessary. Practically all modern high-performance routers use

network processors.

While network processors offer great benefits in terms of

flexibility, since they can be reprogrammed, they also exhibit

potential security risks. Just as general-purpose workstation

and server processors have software vulnerabilities that can

be attacked remotely, network processors have software with

potential security vulnerabilities. Such security vulnerabilities

can be exploited to change the behavior of the router. In

particular, prior work has shown that an experimental network

processor with a security vulnerability in packet processing

code can be attacked by sending a single User Datagram

Protocol (UDP) packet [3]. The result of the attack was the

indefinite retransmission of the attack packet on the outgoing

link at full data rate. This type of attack is particularly

concerning since it can be launched through the data plane of

the network (i.e., no access to the control interface of the router

is necessary) Its effect can be devastating since routers in the

network inherently have access to multiple high-bandwidth

links. Thus, these types of attack can trigger Gigabits of attack

traffic with a single transmission.

While similar vulnerabilities and attacks have not yet been

disclosed for current commercial router systems, there are no

fundamental reasons why they cannot be found. In particular,

network processor software complexity continues to grow

as more features are deployed and thus the attack surface

continues to increase. It is important to note that even a single

vulnerability can have devastating effects on the operation of

the Internet due to the homogeneity of the network equip-

ment ecosystem. Currently, the network equipment market is

dominated by a small number of vendors. If a vulnerability in

deployed network processor code can be exploited, then a large

number of systems can be effected simultaneously. The ability

to take down a significant fraction of all network devices in a

short time would allow an attacker to drastically affect critical

infrastructure. Such capabilities are particularly concerning in

the context of cyber warfare (e.g., [4]).

Defenses against attacks on network processors need to

match the system constraints of these devices. In particular,

network processors use simple processor cores that typically

do not run full operating systems. Thus, conventional software

protection mechanisms (e.g., anti-malware software) are not

suitable for this domain. In addition, network intrusion detec-

tion systems (e.g., snort [5] or Bro [6]) are often only active

on the ingress side of campus networks and thus do not protect

the Internet core. Instead, hardware monitoring techniques

have been proposed as an effective protection mechanism for

network processors [7]. These hardware monitors operate in

parallel to the embedded network processor cores and monitor
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the processor behavior during runtime. If any deviation from

programmed behavior is detected, the processor core can be

reset and continue operating without executing attack code.

While many different hardware monitor designs have been

proposed in prior and related work, they all focus on single-

core systems with static (or very slowly changing) workloads.

Network processors, however, use dozens or hundreds of

parallel processor cores and have processing workloads that

can change dynamically based on the network traffic [8]. Thus,

the problem of how to realize an entire multicore hardware

monitoring system is critical for developing effective protec-

tion mechanisms for network processors. In this paper, we

present the design and prototype implementation of a Scalable

Hardware Monitoring Grid (SHMG) that provides a solution

to this problem. Our design uses an interconnection network

between processors and monitors to dynamically assign pro-

cessors to monitors based on their processing workload. In

addition, monitors can be shared by multiple processor cores

to reduce the implementation overhead for the monitoring

system. Our analysis shows that our design can scale to large

numbers of processor cores.

The specific contributions of our work are:

• The design of a scalable architecture for hardware mon-

itors that can be used in a practical network processor

system with a large number of processor cores.

• An analysis of performance of the proposed design at

runtime that considers the effects of dynamically assign-

ing processors to monitors and the resulting resource

contention.

• A prototype system implementation of a hardware mon-

itoring system on an field-programmable gate array

(FPGA) platform that illustrates the feasibility of our de-

sign and provides detailed resource requirement numbers.

Overall, our analysis and implementation results show that

our design of the Scalable Hardware Monitoring Grid is an

effective and scalable solution to providing protection for

network processors and thus for the Internet infrastructure.

This remainder of the paper is organized as follows. Sec-

tion II discusses related work. We describe data plane attacks

and potential defense mechanisms in detail in Section III.

Section IV introduces the design of our Scalable Hardware

Monitoring Grid. We evaluate the runtime performance of our

design in Section V. Results from a prototype implementation

are presented in Section VI. Section VII summarizes and

concludes this paper.

II. RELATED WORK

Network processors are used in routers to implement stan-

dard IP forwarding functions as well as advanced functions

related to performance, network management, flow-based op-

erations, etc. [2]. Network processors use on the order of

tens to low hundreds of parallel cores in a single multi-

processor system-on-chip (MPSoC) configuration. Example

devices include Cisco QuantumFlow [9], Cavium Octeon [10],

and EZchip NP-5 [11] with data rates in the low hundreds of

Gigabits per second.

Attacks on networking devices have been described in [12],

but that work explored vulnerabilities in the control plane,

where attacks aim to hack into the control interface of a

router (e.g., IOS [13]). In more recent work, Chasaki and Wolf

have described attacks on network processors through the data

plane [3], where attackers merely need to send malformed data

packets. In our work, we focus on the latter type of attack.

Since the processor cores of routers are very simple, there

are not sufficient resources to run complex intrusion detection

or anti-malware software. These resource constraints are sim-

ilar to what has been encountered in the embedded system

domain. Embedded systems (of which network processors are

one class) exhibit a range of vulnerabilities [14], [15].

One defense technique for systems, where software defenses

are not practical, is hardware monitoring. A hardware monitor

operates in parallel with a processor core and verifies that

the core operates within certain constraints (e.g., not access-

ing certain memory locations, executing certain sequences

of instructions, etc.). Hardware monitoring has been studied

extensively for embedded systems [16]–[18] and has also been

proposed for use in network processors [7]. In our recent

work, we describe a high-performance implementation of such

a hardware monitoring system that can meet the throughput

demands of a network processor with a single processing core

[19].

What has been missing in the space of hardware moni-

toring for network processors is a system-level design of a

comprehensive monitoring solution that can support a large

number of processor cores and can adapt to quickly changing

workloads. Since network processors may experience highly

dynamic workload changes based on changing traffic patterns

[8], effective solutions for such an environment need to be

developed.

III. DATA PLANE ATTACKS AND DEFENSES

To provide the necessary context for our Scalable Hardware

Monitoring Grid, we briefly describe how network processors

can be attached in the data plane and how hardware monitors

can be used to defend against these attacks.

A. Vulnerabilities in Networking Infrastructure

The typical system architecture and operation of a network

processor is illustrated in Figure 1. Network processors are

located at router ports, where they process traffic that is

traversing the network.

Due to the very high data rates at the edge and the

core of the network, network processors typically need to

achieve throughput rates in the order of tens to hundreds

of Gigabits per second. To provide the necessary processing

performance, network processors are implemented as multi-

processor systems-on-chip (MPSoC) with tens to hundreds of

parallel processor cores. Each processor has access to local and

shared memory and is connected through a global interconnect.

Depending on the software configuration of the system, pack-

ets are dispatched to a single processor core for processing

(run-to-completion processing) or passed between processor
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Fig. 1. Attack on network processor.

cores for different processing steps (pipelined processing). An

on-chip control processor performs runtime management of

processor core operation.

In order to fit such a large number of processor cores onto a

single chip, each processor core can only use a small amount

of chip real-estate. Therefore, network processor cores are

typically implemented as very simple reduced instruction set

computer (RISC) cores with only a few kilobytes of instruction

and data memory. These cores support a small number of

hardware threads, but are not capable of running an operat-

ing system. Therefore, conventional software defenses used

for workstation and server processors cannot be employed.

Nevertheless, these cores are general-purpose processors and

can be attacked just like more advanced processors on end-

systems.

An attack scenario for network processors is illustrated in

Figure 1. The premise for this attack is that the processing

code on the network processor exhibits a vulnerability. It

was shown in prior work that such a vulnerability can be

introduced due to an uncaught integer overflow in an otherwise

benign and fully functional packet processing function [3]. If

a vulnerability in packet processing code is matched with a

suitable attack packet (e.g., a malformed UDP packet), then

an attack on a processor core can be launched. In the case of

[3], the attack packet smashed the processor stack and led to

the execution of code that was carried in the packet payload.

The processor ended up re-transmitting the attack packet at

full data rate on an outgoing link without recovering until the

network processor was reset.

Launching a denial-of-service attack, such as in [3], can be

done by using a single packet and can have more impact than
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Fig. 2. Hardware monitor for single processor core.

conventional botnets, which are more complex to coordinate

and are constrained by the access link bandwidth of the

bots [20]. In addition, attacks on network processors have

been shown both on systems that are based on von Neumann

architecture [3], leading to arbitrary code execution, and on

systems based on Harvard architecture [19], leading to return-

to-libc attacks.

B. Defense Mechanisms Using Hardware Monitoring

Solutions to protect network processors from attacks on

vulnerable processing code are constrained by the limited

resources available on these systems. One promising approach

is to use hardware monitors, which have been successfully

used in resource-constrained embedded systems [16]–[18].

The operation of a hardware monitor is illustrated in Fig-

ure 2. The key idea is that the processing core reports what it

is doing as a monitoring stream to the monitor. The monitor

compares the operations of the processor core with what it

thinks the core should be doing. If a discrepancy is detected,

the recovery system is activated to reset the processor core.

In order to inform the monitor of what processing steps are

valid, the processing binary is analyzed offline to extract the

“monitoring graph” that contains all possible valid program

execution sequences.

The granularity of monitoring can range from basic blocks

[16] to individual processor instructions [18]. The detection

times are as low as a single processor cycle, and the recovery

times are in the order of tens of processor cycles. Since the

monitor does not need to implement a full processor data path

and the monitoring information can be compressed through

hashing, the overall size of a typical monitor and its memory

is about 10–20% of that of a processor core.

Hardware monitors for single core network processor sys-

tems have been demonstrated in prior work [3], [19]. These
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solutions, however, do not address two critical problems that

appear in practical network processor systems:

• Multiple cores: Practical network processors use multiple

processor cores in parallel, and all of these cores need to

be protected by hardware monitors.

• Multiple processing binaries: Network processors need to

perform different packet processing functions on different

types of network traffic. These different operations are

represented by different processing binaries on the net-

work processing system. Thus, different cores may need

to execute different binaries and need to be monitored by

hardware monitors that match these binaries.

• Dynamically changing workload: Due to changes in net-

work traffic during runtime, the workload of processor

cores may change dynamically [8]. Thus, hardware mon-

itors need to adapt to the changing processing binaries

during runtime.

We present the design and prototype of a hardware moni-

toring system that can accommodate these requirements.

IV. SCALABLE HARDWARE MONITORING GRID

A. Design Challenges

The development of a scalable monitoring system for mul-

ticore network processors has several challenges. The use

of monitoring should not impact the throughput or latency

of the network processor. For monitors that track individual

instructions, each per-instruction monitoring operation must

be completed in real time (i.e., during the execution of

the instruction), so that deviations from expected program

behavior are identified immediately. Additionally, the amount

of hardware resources used for monitoring should be limited

to the minimum necessary to reduce chip area and power

consumption. Since network processor programs may change

frequently, it must be possible to modify monitoring tasks for

each NP core to accommodate changing workloads.

These challenges necessitate the design of a customized

solution for multicore monitoring. Perhaps the most straight-

forward monitoring approach would be simply to attach a ded-

icated monitor to each individual NP core, following previous

approaches to single-core monitoring, as shown in Figure 3.

Although this approach minimizes the amount of interconnect

hardware needed to connect an NP core to a monitor, it suffers

from the need to reload monitoring information each time the

attached NP core’s program is changed. Alternatively, allowing

an NP core to dynamically access any monitor among a pool

of monitors as shown in Figure 4, while flexible, is expensive

and incurs a high processor-to-monitor communication cost.

In the next section, we describe a scalable monitoring grid

system that balances these two concerns of area and perfor-

mance overhead by using the clustered approach illustrated in

Figure 5.

B. Architecture of Scalable Hardware Monitoring Grid

Our model of the multicore NP system including monitoring

is shown in Figure 6. The architecture includes a control

processor that coordinates overall NP operation by assigning

arriving packets to individual NP cores. Each core executes

a program using instructions from its local memory. External

memory, which can be used to buffer packets and instructions

for currently unused programs, is located off-chip. An on-chip

interconnect is used to connect cores to external memory and

outside interfaces. In this architecture, processors are grouped

into clusters of n processors. Any of the processors in a cluster

can be connected to any of m monitors.

The management of loading application-specific monitoring

graphs into monitors and configuring specific processor-to-

monitor connections is performed by the same control proces-

sor used to assign packets to NP cores. Copies of monitoring

graphs for programs that are currently being executed or are

likely to be executed in the near future are stored on-chip in a

centralized monitor memory. Monitoring graph information is

encrypted when it is transferred onto the network processor via

an external interface. An AES core is used by the control pro-

cessor to decrypt the graphs and store them in the centralized

memory. The amount of time needed to load a monitor with

a graph from the centralized monitor memory is significant

enough (e.g. tens of clock cycles) that reloading should be

minimized. It is desirable to have a program monitor used

by different cores at different times during packet processing,

necessitating a flexible interconnection between NP cores and

monitors. In cases where m > n, a total of m−n monitors are

unused at a given point in time, although they can be quickly

activated in a few clock cycles by the control processor, if

needed.

C. Multi-Ported Hardware Monitor Design

To support scalability, we have optimized the structure

of single-processor monitors, which are capable of tracking

NP core execution on an instruction-by-instruction basis. The
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monitoring graph for this class of monitor typically represents

each program instruction as a state in a state diagram [19].

Expected program execution can be modeled as transitions

between known states. To evaluate correct processor operation

for an instruction, the progression between states is tracked

using instruction hash values. If the hash value of the in-

struction from the processor does not match the value stored

in the monitoring graph for the instruction, a deviation from

expected execution flow is detected and the processor is reset.

For network processors, this action typically involves a stack

reset and a packet drop. The monitoring graph for a program

can be determined by analyzing the instruction flow of the

program binary. For control flow instructions, multiple next

states may be possible in the monitoring graph, requiring

matching against several possible hash values.

The architecture of two monitors that perform this type

of instruction-by-instruction monitoring is shown in Figure

7. The monitoring graph, which is stored in a memory

block, includes one entry for each state in the execution state

diagram. A k-bit pointer indicates the entry in the graph

that corresponds to the currently executed instruction. As an

instruction is executed, a four-bit hash value of the instruction

is generated, which is then converted to a one-hot encoding.

(See [18] for a justification of hash size.) This encoding

is then compared against the expected hash values that are

stored in the graph entry. The next entry (memory row) in the

monitoring graph is determined using next state information

stored in the current entry and the matched hash value. The

implemented monitor requires only one memory lookup per

instruction, limiting the time overhead of monitoring.

Although separate hash comparison and next state select

information is needed for each monitor, multiple monitoring

graphs can be packed into the same memory block if the block

is multi-ported (Figure 7). In the example, the monitoring

graph for the monitor on the left is located in the top half of

the memory block while the graph for the monitor on the right

is located in the bottom half. For each monitor, the selection of

which monitoring graph (top or bottom) is used by the monitor

is set by a single graph select bit which forms the top address

bit into the block memory. A benefit of this shared memory

block approach is the possibility of both monitors accessing

the same monitoring graph at the same time without having

to reload monitor memory (e.g. both associated NPs execute

the same program and require the same monitor). In this case,

the second graph in the memory block would be unused.

D. Scalable Processor-to-Monitor Interconnection

The detailed interconnection network between a cluster

of n processors and m monitors is shown in Figure 8. In

this architecture, any processor can be connected to any

monitor via a series of n-to-1 (processor-to-monitor) and m-to-

1 (monitor-to-processor) multiplexers. The four-bit hash values

shown in Figure 7 are generated from instructions close to

the processor, reducing processor-to-monitor interconnect. One

of n four-bit values from the processors is selected for a

specific monitor using multiplexer ⌈log n⌉ select bits. During
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monitoring, a monitor generates a single reset/recover bit,

which is returned to the monitored processor to indicate if

an attack has occurred. In our implementation, this signal is

sent to the target processor via a multiplexer with m single-bit

inputs. The monitor and processor select bits are generated by

the control processor and sent to the appropriate multiplexers

via decoders.

E. SHMG Monitor Operation

To verify correct NP core behavior during execution of

a program, a monitor loaded with the proper monitoring

graph must be connected to the processor prior to the start

of execution. It is assumed that the monitoring graph has

been previously generated using known techniques [19] and

is available on-chip for loading. Monitoring and NP core

execution for all cores take place in parallel across the network

processor.

The connection of a monitor to an NP core for a specific

program takes place in a series of steps prior to the start of

program execution. Specific steps are coordinated as follows:

1) A packet is assigned to a specific NP core by the

control processor, which also determines which monitor

should be assigned to the NP core based on the program

required to process the packet.

2) If the monitor associated with the program is already

available in the m monitors assigned to the cluster and

is unused, the control processor sets the appropriate

monitor and processor select multiplexer inputs to

connect the monitor to the NP core and resets the

monitor state logic. In our scalable architecture, this

selection can take place in one clock cycle.

3) If the needed monitor is not currently loaded and

available among the m monitors, the monitoring graph

needs to be loaded by the control processor into one

of the unused monitors associated with the cluster. The

controller determines which monitoring graph should be

replaced using a least recently used or other replacement

policy. The controller streams monitoring graph data

from the centralized monitoring graph storage to the

target monitor. Since this transfer is unidirectional, it

can take place via one of several high-fanout busses

shown in Figure 6. The controller then sets appropriate

multiplexer select inputs to connect the monitor to the

NP core.

4) Once the processor-to-monitor physical connection is

made, a start signal is sent to both the monitor and NP

core starting both program processing and monitoring.

Clearly, loading monitoring information from centralized

memory to monitoring graphs is time consuming so it is

desirable to minimize how often this action is needed.

V. RUNTIME ANALYSIS OF SHMG

Given the Scalable Hardware Monitoring Grid design, there

is a key question of how to assign programs to monitors.

Intuitively, the assignment of monitors should reflect the

processing workload. However, due to variations in workload,

there may be a situation where more processors need to

execute a particular program than monitors are available. In

this case, some processors temporarily block (until a monitor

becomes available, at which point they continue processing).

We provide a brief analysis of the blocking probability of

the system and the resulting throughput for different cluster

configurations.

A. Monitor Configuration

We consider a processor/monitor cluster consisting of n pro-

cessors and m monitors. The workload of the system consists

of p different programs that each monitor may execute. To

make the system practical, we require m ≥ n and m ≥ p.

For each program i (1 ≤ i ≤ p), we denote the average

processing time with ti and the proportion of traffic that
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requires this program with qi. We require
∑p

i=1
qi = 1, which

implies that each packet is processed only by one program.

(The analysis can be extended to consider more complex

workload configurations.) The total amount of “work,” wi, that

the network processor needs to do for each program i is the

product of the traffic share and the processing time:

wi = qi · ti. (1)

In order to make the assignment of monitors to programs

match the operation of the network processors, we need to de-

termine how many of the n processors are executing program

i at any given time. We assume that processors randomly draw

from available packets (and thus the associated programs)

when they are available. We also assume a fully utilized

system, where no processor is idle. Thus, the probability of

a processor being busy with processing program i, bi, is

proportional to the amount of work, wi, that is incurred by

the program (see Equation 1):

bi =
n · wi

∑p

j=1
wj

. (2)

That is, more processors are busy with program i if program

i is either used by more traffic or has a longer average

processing time.

Monitors should be configured to match the proportions of

bi for each program. The fraction of monitors, ai, that should

be assigned to monitor program i is

ai = max
(m

n
· bi, 1

)

. (3)

Since each program needs to have at least one monitor

assigned to it, the lower bound for ai is 1.

In practice, the number of monitors per program needs to be

an integer. We denote the integer allocation of monitors with

Ai. One way to translate from ai to Ai is to use a max-min

fair allocation process.

B. Blocking Probability and Throughput

Given a monitoring system where Ai monitors are allocated

to program i, we need to figure out what the probability is

that the number of processors executing program i exceeds

Ai (leading to blocking). The number of processors executing

program i, Bi, is given by a binomial probability distribution

Pr(Bi = k) =

(

n

k

)(

bi
n

)k (

1−
bi
n

)n−k

. (4)

The expected number of processors, Ri, that are blocked

because of program i not having enough assigned monitors

is

Ri =

n
∑

j=Ai+1

(j −Ai)Pr(Bi = j). (5)

The total number of blocked processors, R, across all pro-

grams is

R =

p
∑

i=1

Ri. (6)
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Fig. 9. Throughput depending on overprovisioning of monitors for different
numbers of processors (n) per cluster.
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Fig. 10. Throughput depending on number of clusters for different numbers
of total processors (c · n).

Note that in this case, the probabilities in Ri are not indepen-

dent since
∑p

i=1
Bi = n.

The fraction of blocked processors is then R
n

and the

throughput, t, of the system is

t = 1−
R

n
. (7)

C. System Comparison

To illustrate the effect of blocking due to the unavailability

of monitoring resources, we present several results based

on the above analysis. For simplicity, we assume p = 2
programs with w1 = w2. Figure 9 shows the throughput as

a function of how many more monitors than processors are

in the system. We call this “monitor overprovisioning” (i.e.,

m/n). In the figure, the overprovisioning factor ranges from

1 (equal number of monitors and processors) to 2 (twice as

many monitors as processors). The figure shows that only for

very small configurations (e.g., n = 2 processors), there is a

significant decrease in throughput. For larger configurations,

there is only a slight decrease for low overprovisioning factors.

For our prototype implementation, we choose a configuration

of n = 4 processors and m = 6 monitors (i.e., m/n = 1.5),

which achieves a throughput of over 96%.

The effect of clustering is shown in Figure 10. Since we

need to cluster monitors to achieve scalability in the system

implementation, a key question is how much worse a clustered

system performs compared to a system with no clustering
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(i.e., full interconnect between all processors and monitors).

We denote the number of clusters with c. The figure shows

the throughput for configurations with the same total number

of processors and a monitor overprovisioning factor of 1.5.

The full interconnect (c = 1) always achieves full throughput.

As the number of clusters increases, small systems degrade

in throughput slightly. However, if the number of processors

per cluster does not drop below 8, throughput of over 99%

can be achieved. These results indicate that using a clustered

monitoring system instead of a full interconnect can achieve

nearly full performance, while being much less costly to

implement.

VI. PROTOTYPE IMPLEMENTATION AND EVALUATION

To demonstrate the effectiveness of our Scalable Hardware

Monitoring Grid, we have implemented a prototype system.

A. Experimental Setup

We have implemented a prototype network processor in

an Altera Stratix IV FPGA on an Altera DE4 board. This

board contains four 1 Gbps Ethernet ports to receive and

send network traffic. We implemented one SHMG cluster in

the FPGA, consisting of four processor cores (soft processors

created using a synthesizable PLASMA processor [21]) and

six hardware monitors (i.e., n = 4 and m = 6). The flexible,

multiplexer-based interconnect shown in Figure 8 is used to

allow any processor to connect to any monitor within our

cluster.

To evaluate the functionality and performance of the mon-

itoring system, we transmit traffic through the prototype

system. Packets are received on two of the Ethernet ports

and transmitted on the other two. For each packet, a simple

flow classifier determines the appropriate NP program for

processing. After the packet is processed by a core, it is sent

to the appropriate output queue for subsequent transmission.

We use two types of packets, which need different types of

processing and thus different monitors: (1) IPv4 packets and

(2) IPv4/UDP packets that require congestion management

(CM) for processing. The processing code for IPv4 does

not exhibit vulnerabilities, but the IPv4+CM processing code

exhibits the integer overflow vulnerability described in [3].

We introduce 1% of attack packets, which can trigger a stack

smashing attack in the IPv4+CM processing code as described

in [3].

To generate the monitoring graph, the program is first passed

through the standard MIPS-GCC compiler flow to generate

assembly-level instructions. The compiler output allows the

identification of branch instructions and their branch target

addresses. The instructions and branch information are then

processed to generate the data structure used inside the hard-

ware monitor. This data structure is then loaded into the

SHMG system.

B. Results

Our system was verified through a series of experiments

that were run on the FPGA in real time.

Normal packet IPv4 forwards packet to Tx2

Fig. 11. Simulation waveforms showing correct forwarding of an IPv4 packet.

IPv4+CM selected for processing IPv4+CM forwards packet to Tx0

Fig. 12. Simulation waveforms showing forwarding of an IPv4+CM packet.

Attack packet

Attack detected and 

packet dropped

Fig. 13. Simulation waveforms showing identification of and recovery from
an IPv4+CM attack packet.

1) Correct Operation: To illustrate the operation of our

SHMG, we have assigned two cores to process IPv4 and two

cores to process IPv4+CM. Of the available six monitors, two

are configured to monitor IPv4 and four are configured to mon-

itor IPv4+CM (since the latter is more processing-intensive).

All four NP cores execute program code from internal FPGA

memory. The initial configuration of the monitors, program

code, and the processor-to-monitor interconnect is set when

the design is compiled to the FPGA and the bitstream is loaded

into the design on system powerup.

Figure 11 shows the operation of a processor core and

its corresponding monitor on the IPv4 program. (Waveform

figures are generated through simulation in order to obtain

signals; however, the same functionality has been verified in

real-time operation of the system on network traffic.) Similarly,

Figure 12 shows the operation of a core on the IPv4+CM

program. In this case, the packet is benign and no attack

occurs. Figure 13 shows the processing of an attack packet

in IPv4+CM. The monitor identifies the attack since the

stack gets smashed and the control flow is redirected to code

that differs from what the program analysis has determined

as valid. The processor core is then reset and continues

processing the next packet. The reset operation completes in

two cycles and thus does not affect the throughput performance

of the system (and cannot be used as a target for denial of

service attacks). Other processor cores continue processing

without being affected.

A key functionality of SHMG is the dynamic assignment

of processors to hardware monitors. In our prototype system,

we can trigger the reassignment of processors to monitors

on-demand. In our experimental setup, we switch one of the

processor cores from IPv4 (Figure 11) to IPv4+CM (Figure

12). The processor-to-monitor interconnect for the core that
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TABLE I
RESOURCE UTILIZATION IN PROTOTYPE SYSTEM.

Available DE4 Network SHMG
in FPGA interface processors monitors interconn.

LUTs 182,400 33,427 15,025 816 96

FFs 182,400 36467 8,367 147 0

Bits 14,625,792 2,263,888 1,048,567 786,432 0

was previously processing IPv4 packets is switched to connect

the core to an unused IPv4+CM monitor. The affected NP core

and newly connected monitor are then reset, and processing

by the core commences. After this run-time reconfiguration,

three NP cores process packets for IPv4+CM, while one core

processes IPv4.

Thus, we are able to show dynamic reassignment of pro-

cessors to monitors at runtime as well as the correct detection

of and recovery from attacks.

2) Resource Requirements: The resource requirements for

the FPGA in our prototype system are shown in Table I. The

lookup table (LUT), flip flop (FF), and memory resources

(Bits) required for the network processor cores, monitors,

switches and other circuitry are illustrated shown in Table I.

A LUT is a 6-input, 1-output logic element that can perform

any logic function of six inputs. Each monitoring graph can

hold up to 4096 separate entries. The FPGA in the system is

able to operate at 125 MHz. For this relatively small cluster

size, the amount of logic needed for processor-to-monitor

interconnection is less than 1% of the total logic needed for

the monitors, cores, and processor-to-monitor interconnect.

VII. SUMMARY AND CONCLUSIONS

The use of general-purpose processors to implement packet

forwarding functions in routers has opened the door for a new

class of attacks in the data plane of the network. Prior work has

shown examples for such attacks and their devastating effects.

Hardware monitors that are co-located with network proces-

sors can provide defenses against these attacks. However, prior

and related work has only focused on single-core monitors

with static processing code. To provide practical protection

for network processors, which are multi-core systems with

highly dynamic workloads, we have presented our design of a

Scalable Hardware Monitoring Grid. This monitoring system

groups multiple processors and monitors into clusters and

provides an interconnect to dynamically assign processor cores

to monitors based on their current workload. We present the

hardware design of an efficient interconnect for these clusters

and show through analysis that even small configurations

can achieve throughput performance. We also present the

results from an FPGA prototype implementation that shows

the correct operation of our system and the ability to perform

dynamic assignment of processor cores to monitors. We show

that the system can correctly identify attacks and recover the

attack core so that it can continue processing. The system

overhead for our monitoring system is less than 6% compared

to the processor system. Thus, our Scalable Hardware Moni-

toring Grid provides an effective and efficient mechanism for

defending network infrastructure from a new class of attacks.
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