An Open-Source SATA Core for Virtex-4 FPGAs

Cory Gorman, Paul Siqueira, and Russell Tessier
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, USA

Abstract—In this demonstration, we present an open-source
Serial ATA core designed for Virtex-4 FPGAs. This core utilizes
the RocketIO Multi-Gigabit Transceiver (MGT) of the Virtex-4
to interface with hard drives at SATA Generation 1 (SATA 1, 1.5
Gb/s) and Generation 2 (SATA 11, 3.0 Gb/s) speeds. A full design
hierarchy from host software to the physical layer is provided
with the distribution to facilitate design use. A simple, FIFO
interface allows for easy integration with other FPGA modules.
The demonstration illustrates the correct write and read behavior
of the core using a Xilinx ML405 board and a solid state disk.
The peak transfer rate of the core for SATA I (130 MBY/s) is
demonstrated. Our goal for the demonstration is to educate the
reconfigurable computing community regarding the availability
of the core and to illustrate its capabilities.

I. INTRODUCTION

The need for bulk, non-volatile storage in FPGA-based
systems is significant for a large variety of applications [1].
FPGA system developers can most easily adapt these inter-
faces to applications using an open-source solution. In this
demonstration, we present the successful operation of a Serial
ATA (SATA) host controller core which can transfer data
at close to peak SATA I protocol speeds. This interface is
optimized for Xilinx Virtex-4 FPGAs, a widely-used FPGA
family. Our demonstration involves 1024 consecutive data
block write and read operations. The validity of the transfers
is confirmed via messages sent to a computer screen.

Via a poster, our presentation also carefully describes the
structure of our open-source synthesizable core which will be
made available to the reconfigurable computing community.
The core supports read and write operations with SATA-
compliant hard drives and solid state drives (SSDs). It features
an easy-to-use FIFO interface to allow for integration into
larger hardware designs. An embedded Linux system (e.g.
running on a MicroBlaze soft processor) can be used to create
a complete file system on the disk, or the core can be used in
a hardware-only setup.

Some features of the new core have been adapted from
another open-source SATA design [2] that targets Virtex-6
designs. However, the limitations of this previous design have
required the development of a number of new features for this
new core:

1) Since the Multi-Gigabit Transceivers (MGT) of older
Virtex-4 devices are more limited in their capabilities
than their Virtex-6 counterparts, an entirely new Physical
Layer design has been provided.

2) New error control circuitry has been added which re-
sends data if a transmit error is detected.

3) A new clocking scheme has been developed to allow for
the synchronization of read requests.
4) The design is integrated with a MicroBlaze soft proces-
sor to provide a flexible control interface.
To our knowledge, this core is the first open-source SATA
core for Virtex-4 devices.

II. BACKGROUND
A. SATA Protocol

SATA is a peripheral interface standard created in 2003 to
replace Parallel ATA (PATA). The fastest PATA speed is 133
MB/s, while SATA Generation 1 (SATA I) operates at 150
MB/s. SATA has a number of other features that make it
superior to ATA, including a smaller cable, fewer pins, and
a lower operating voltage. The SATA protocol uses a layered
architecture where each layer uses the services of the layer
below it. The Application Layer typically represents the soft-
ware using the SATA device and the Command Layer emulates
PATA commands for backward compatibility. The Transport
Layer handles creating and formatting data frames called
Frame Information Structures (FISs) and valid sequences of
FISs. Beneath that layer is the Link Layer, which encodes and
encapsulates the FISs, handles control signals, and checks for
FIS integrity.

The lowest layer of the stack is the Physical Layer, which
handles the transmission and reception of the electrical sig-
nals and maintains data alignment. SATA uses low-voltage
differential signaling (LVDS) to send and receive data and
8b/10b encoding for clock and data recovery. The encoding
assigns a 10-bit character for each 8-bit data value. Instead
of sending 1’s and 0’s relative to a common ground, the sent
data value is based on the difference in voltage between two
conductors sending data. The Physical Layer also establishes
communication with the disk. This action is performed with
out-of-band (OOB) signaling, where the communication lines
of the transmitting pair are driven to the same voltage to create
an absence of a signal difference. This action is performed in
a pre-defined burst pattern to send an OOB primitive. Three
OOB primitives (COMRESET, COMINIT, and COMWAKE)
are defined for SATA, which are used as part of an initializa-
tion handshake to begin communication with a SATA device.

B. Xilinx SATA Core Distributions

A commercially-available SATA core for the Virtex-4 is
described in a Xilinx application note [3]. A demonstration
of the core is provided for the ML405 evaluation board,
which contains a Virtex-4 device. This core design, termed

User FIFO
|
Command Layer - Replay Buffer
| I
Link/Transport Layer ~ Error Detection
| I
Physical Layer |-I_|
RX Init Clock 1| Debug
00B Control O
Controller 'y ®
X Init ‘e
|
150 _ |
Mz "] GT1MCLK ‘MG'I" IIVIGT.
TX RX TX RX

Fig. 1. SATA host controller block diagram

the embedded SATA storage system (ESS), is only available
under a for-purchase license. Although the internal details of
the core are unavailable, its presence indicates the feasibility
of implementing SATA I and II interfaces on a Virtex-4 device.

In 2012, an open-source SATA core for Virtex-6 devices was
made available to the reconfigurable computing community by
researchers from the University of North Carolina, Charlotte
[2]. This UNCC core was demonstrated using an ML605
board. The core implements all layers of the SATA protocol,
combining the Link Layer and Transport Layer into one mod-
ule. A simple, FIFO interface is presented to the Application
Layer so that other hardware modules can easily read and
write data. The UNCC core implements the DMA Read and
DMA Write commands of SATA, but not other commands and
features, such as power management. As described in the next
section, portions of the upper layers of the UNCC core were
used in this work, although modifications for debugging and
error checking were added. Additionally, the Physical Layer
hardware which controls the MGT was completely replaced.

The Groundhog SATA adapter [4] provides an additional
open-source SATA option for FPGA users. This host bus
adapter is targeted to Xilinx Virtex-5 devices. The core features
support for native command queueing (NCQ), which allows
for the out-of-order execution of commands. This feature
forms part of the SATA II protocol.

III. SATA HoST CONTROLLER DESIGN

A block diagram of the new SATA host controller appears
in Fig. 1. In the following subsections, the behaviors of the
different blocks are detailed.

A. Physical Layer Design

The Virtex-4 RocketlO MGTs [5] are used for the high-
speed serial communication required for SATA. These built-in

FPGA hard blocks are designed for high speed I/O. The MGT's
handle the electrical and low-level aspects of the Physical
Layer, and can run at line rates from 622 Mb/s to 6.5 Gb/s.
SATA T uses a line rate of 1.5 Gb/s and SATA II uses a rate
of 3.0 Gb/s. The MGTs have their own clocking resources
(e.g. PLL - phase-locked loops) on the FPGA, and require a
dedicated, low-jitter reference clock. The ML405 board has a
150 MHz oscillator for this purpose. However, to support a line
rate of 3.0 Gb/s, a 300 MHz oscillator is required, so SATA 11
is not demonstrated on this board. We have successfully used
the core in SATA II mode on a Virtex-4 based board [6] used
for radar signal processing.

The Virtex-4 device on the ML405 board has eight Rock-
etlO transceivers, two of which are connected to SATA
connectors. These two transceivers share clocking resources.
RocketlO MGTs contain SERDES blocks to serialize and
deserialize the data coming from and going to the FPGA
fabric. They also contain a PLL for clock recovery from the
incoming bitstream. For SATA I, the PLL’s oscillator runs at
3000 MHz, and this frequency is divided down to form a 750
MHz clock. The SERDES uses both edges of this clock to
achieve the line rate of 1.5 Gb/s. The MGT contains internal
clock dividers and presents 37.5 MHz clocks to the FPGA
fabric for sending and receiving data. The RocketlO also
includes a built-in 8b/10b encoder and decoder block, which
is used in this design. The built-in CRC cannot be used for the
SATA protocol since all data, including CRCs, are scrambled
at the Link Layer to reduce EMI.

Virtex-4 RocketlO MGTs include support for OOB signals,
which is necessary for SATA. However, this support is not
as robust as OOB support for the Virtex-6. The Virtex-6
GTX transceivers have built-in OOB primitive features that
can detect and generate the COMRESET, COMINIT, and
COMWAKE primitives used by SATA. The Virtex-4 MGT
modules have only two OOB ports. One port indicates whether
a signal is detected on the communication line, and the other
is used to send an OOB signal by driving output pins to a
common voltage. Thus, generating and detecting primitives
on the Virtex-4 must be done with a user configuration of
resources. In this design, multiple OOB modules were created
to perform this action.

The RocketlO Wizard tool, part of the Xilinx ISE toolkit,
was used to generate wrapper modules and set parameter
values for the MGTs. The wizard also generates initialization
modules for the MGT blocks. For this design, an interface
width of 4 bytes (1 Dword) was chosen. This value is
convenient because all Link Layer primitives are 32 bits wide.
The (transmit) TX and (receive) RX FIFOs located in the
MGT are bypassed to reduce latency and meet the timing
requirements of SATA. Rather, specially-designed FIFOs are
developed from FPGA block RAM resources to serve as
interfaces between the Physical and Link Layers. The OOB
controller contains sub-modules that handle generation and
detection of the OOB primitives. This controller also handles
ALIGN primitive insertion which helps determine the negoti-
ated transfer speed. An OOB sequence issue arises since the

MGT’s PLL is not able to lock to the incoming datastream
within the time specified by the SATA protocol. Our core
continues the OOB sequence anyways, waiting for the eventual
lock. If the OOB start-up sequence fails, it will automatically
be retried until it is successful.

B. Error Control Circuitry and Debugging

Debugging to ensure reliability was an important part of
the design process. Integrated Xilinx Chipscope logic analyzer
cores were included at each layer of the design. Additional
debugging modules were also created to help the debugging
process. These modules are included in the open-source dis-
tribution, but they can easily be turned off using a compile-
time parameter. Circuitry to implement a SATA event logger
was also added to the design. Chipscope, while useful, can
only capture a limited number of consecutive samples. Events
that occur far from each other in time generally cannot be
captured. To overcome this limitation, we created a monitor
module in the Link Layer that records significant events and
sends them over the RS232 serial port. This monitor watches
the TX and RX datapaths of the Link Layer and the main
Transport Layer state machine. Also, it tracks the received
data for newly received primitives and for alignment errors.
Events are timestamped, so that the designer can get an idea of
how far apart in time these events are occurring. This allows
for debugging of problems that are too far apart in time for
Chipscope to capture.

Although most data write transfers will finish without
problems, we found that a small number (less than 0.001%)
would result in an error. As written, the UNCC core does
not have any error detection features. Errors cause the core to
pause (or “hang”) until it is reset. It is desirable for the core to
recover from these errors gracefully, preferably in a way that
is invisible to the rest of the design. To facilitate this recovery,
a replay buffer has been added to the Command Layer. The
replay buffer mirrors the most recently sent Data FIS. When
an error occurs, a flag is raised. If the error occurred on a Data
FIS, the Command Layer sends the data to the MGT from the
replay buffer rather than from the User FIFO which stores the
next value to be transmitted. Thus, to the rest of the hardware
design, it appears as if there was no error; instead, it seems
that the SATA core is operating more slowly.

A new handshaking signal has been added to the Link
Layer that indicates successful transmission of a FIS. After
transmission, the Command Layer flushes the replay buffer
and sends the next FIS to the Link Layer. The replay buffer
is 8 KB in size, which is the maximum allowable size for a
single FIS. A bit error is the simplest error which leads to
straightforward recovery. This action occurs when the SATA
device reports a bad CRC or a parity error. With the new error
detection and recovery features, the Command Layer simply
starts a new transfer using the replay buffer.

C. Host Controller Clocking and Interface Control

The choice of clocking configuration for the host controller
core is very important for reliability. One possibility is to

TABLE I
SATA CORE RESOURCE UTILIZATION

Resources Our core | XAPP716 [7]

Slices 5,128 (61%) 6,839 (80%)

Block RAMs 7 (10%) 36 (52%)
Corsair SSD

150 ¢=———0——0———0—0—0—0—0—0—0—0 100
80

100 60
8 50 40
= 20
0 0
2 8 32 128 512 2048 8192
1 4 16 64 256 1024 4096 16384
Block Size

—8— \IB/s == Reliability (%)

Fig. 2. Corsair SSD performance test. Block sizes on the x-axis are measured
in sectors. Each sector contains 512 bytes

use derivatives of the transmit (TXOUTCLKI1) and receive
(RXRECCLKI1) clocks used by the MGT. Incoming data is
written to a small clock-domain-crossing FIFO. Data in this
FIFO is written using the receive clock and read using the
transmit clock. This configuration raises the issue of FIFO
underflow. The transmit clock is slightly faster than the receive
clock, so data will be read slightly faster than it is written. A
small module in the Physical Layer monitors for this underflow
condition and delays the datastream when it occurs. At the
top level, the SATA core presents a simple FIFO interface
that other modules use to store and retrieve data. In our
experimentation, a MicroBlaze soft core processor is used to
perform write/read tests.

IV. EXPERIMENTAL RESULTS AND DEMONSTRATION

The SATA core was tested on an ML405 evaluation board
and a custom board [6] that has a Virtex-4 XC4VFX140.
Version 14.2 of the Xilinx ISE tools was used to synthesize the
Verilog and VHDL code. The core was tested for functionality
using a Corsair NOVA CSSD-V30GBA, a SATA Generation
2 SSD. The SATA core uses a modest amount of resources.
Table I compares the resources used by our new core to the
resources reported for the previous SATA core for a Virtex-
4 FPGA [3]. Our SATA core uses fewer resources than the
commercial core presented in XAPP716, although the earlier
design also includes resources to connect the core to an
embedded PowerPC processor.

A. Experimental Results

A MicroBlaze soft core processor is used to perform the
tests. A small control module was created to interface the
SATA core with the MicroBlaze. This allows the processor
to set various parameters, such as sector count and address,
and initiate data transfers. The control module also gives
status information to the processor. A simple software test
application runs the tests and returns data to a console window

e

Fig. 3. Virtex-4 SATA core demonstration setup

on a PC over the serial port. This application issues 500 write
commands of varying block sizes. After each command, the
number of cycles taken to complete the transfer is stored and
used to calculate the average throughput in MB/s. A transfer
is considered a failure if it takes more than 3 seconds to
complete. In this case, the application resets the SATA core
and continues. The data written to the disk in the test is read
from a simple counter and fed into the user FIFO of the SATA
core. The FIFO is always kept full to test the true maximum
transfer rate.

As seen in Fig. 2, the SSD has a maximum write speed
of 130 MB/s at block sizes of at least 128 sectors (64 KB).
Larger block sizes take advantage of the larger data transfer
per transfer initiation.

B. Description of Demonstration

In the demonstration, the correct operation of the core and
its peak performance for SATA I is shown. The equipment
shown in Fig. 3 is used for the demonstration. The SATA host
controller core is connected to a MicroBlaze processor in the
Virtex-4 FPGA which configures its operation. A counter is
used to generate data at peak rate which is then transferred to
a Corsair SSD at SATA T rates. A total of 1024 block writes
is performed. The data is then read from the disk and each
data value is verified. The read and expected data values are
transferred to an attached laptop via a serial port and displayed
on a terminal (Fig. 4) to illustrate the correct behavior. A peak
transfer rate of 130 MB/s is demonstrated.

V. CONCLUSIONS AND FUTURE WORK

In this demonstration, an open-source Serial ATA core
designed for Virtex-4 FPGAs is presented. The core is shown
to transfer information to and from a SATA I solid state drive
at a rate approaching 1.5 Gb/s using a Xilinx ML405 board.
Separately, successful SATA II transfers have been shown
in our laboratory using a different board. User circuitry can

2 Terminal v1.9b - 201301168 - by Br@y++ o L S

COM Port Baud rate Data bits | Paiity Stop bits | [Handshaking

Disconnect

B0 14400 57600 || g & none || & nane

o COMT =l = 1200 € 19200 C 115200 || ~ odd RTSATS

H 2400 C 28800 128000 Ceven || © 15 || C XONAOFF

gbout. || cOMs |||~ pp0 3pa00 256000 | © 7 " mark RTS/CTS+XON/XOFF
oo | (v 9600 56000 " custom || ¥ 8 || space|| T2 || ATSonTX [invet

Settings
seton | [Aulo Dis/Connect [~ Time [~ Stieamlog
[~ AutoStart Seript ¥ CR=LF [~ Stayon Top

custom BR Ax Clear ASCI table| _Scripting E=c1s =i
[3a0 [+ 3] " Gaph | _FRemoe | osR R

Receive

CLEAR | [AucScol _ReselCnt | [13 3] Cnt=0 [FER Siatlog Reg/Resp | |- oz [B0
0x€17364d2 -

0xE17364d3
0x617364d4
0zE17364d5
0xE17364dE
0x617364d7
0xE17364dE
0x617364d9
0x617364da
0x617364db
0x617364dc
0x617364dd
0xE17364de
0x617364dE
0x6173640
0xE17364e1
0x617364e2
0xE17364e3
0xE17364e2
0x617364e5
0xE17364€
SATA Re=d Finished!

Enter 'w' to write to the disk

Enter 'r' to read from the disk

Enter 'p' to begin the Derformance Test
Any other character te quit

{11

Transmit
CLEAR Send File 0 4| [CR=CR+LF EREAK

Macios
Set Macros |

EioTR 3RS

M1 M2 | M3 | M4 | M5 |_ME | M7 M8 M3 | M0 | M1l | M2

b13 | b4 | _M15 | W16 | M7 | _M13 | 13 | 20 | _Mzi | w22 | _Mz3 | M2t
I W (|

W
a=df
x

Connected R 3376 T 12 Rx 0K

Fig. 4. Demonstration interface for SSD read verification

interact with the new core via a FIFO interface. This SATA
core is available for use by additional projects in the research
community.

ACKNOWLEDGMENTS

We thank Xilinx for the donation of the ISE 14.2 and
ISIM software. The assistance of Justin Lu in preparing the
demonstration is appreciated.

REFERENCES

[1] K. Pocek, R. Tessier, and A. DeHon, “Birth and adolescence of reconfig-
urable computing: A survey of the first 20 years of field-programmable
custom computing machines,” in Highlights of the First Twenty Years
of the IEEE International Symposium on Field-Programmable Custom
Computing Machines, Apr. 2013, pp. 3-19.

[2] A. Mendon, B. Huang, and R. Sass, “A high performance, open source
SATA2 core,” in International Conference on Field-Programmable Logic
and Applications, Aug. 2012, pp. 421-428.

[3] S. Tam and L. Jones, “Embedded serial ATA storage system,” in Xilinx
Application Note 716, Oct. 2006.

[4] L. Woods and K. Eguro, “Groundhog - a serial ATA host bus
adapter (HBA) for FPGAs,” in IEEE International Symposium on Field-
Programmable Custom Computing Machines, Apr. 2012, pp. 220-223.

[5] “Virtex-4 RocketIO multi-gigabit transceiver: user guide,” Xilinx Corpo-
ration, Application Note UG076, Nov. 2008.

[6] S.J. Lu, P. Siqueira, V. Vijayendra, H. Chandrikakutty, and R. Tessier,
“Real-time differential signal phase estimation for space-based systems
using FPGAs,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 2, pp. 1192-1209, Apr. 2013.

[7] “Serial ATA I/Il host controller (SATA_HI). product specification,”
ASICS World Services. May 2008.

