FPGA Latency Optimization Using System-level
Transformations and DFG Restructuring

Daniel Gomez-Prado, Maciej Ciesielski, and Russell Tessie
Department of Electrical and Computer Engineering
University of Massachusetts, Amherst

{dgomezpr, ciesiel, tessig@ecs.umass.edu

Abstract—This paper describes a system-level approach to design latency requires effective functional unit use iditon
improve the Iatencylo.f FI_DGA designs by performing o.ptimization to achieving a high design clock frequency.
of the design specification on a functional level prior to high- In this work, a high-level design representation, the Taylo

level synthesis. The approach uses Taylor Expansion Diagrams . . -
(TEDs), a functional graph-based design representation, as a €Xpansion diagram (TED), is used to transform dataflow

vehicle to optimize the dataflow graph (DFG) used as input to the graphs prior to the final application of traditional high éév
subsequent synthesis. The optimization focuses on critical path synthesis optimizations in an effort to improve the lateofy
compaction in the functional representation before translating FPGA designs. This analysis considers FPGA-specific opti-
it into a structural DFG representation. Our approach engages .-stion such as critical path compaction including expéct

several passes of a traditional high-level synthesis (HLS) pross . . .
in a simulated annealing-based loop to make efficient cost trade- routing when evaluating expected FPGA design latency. TED

offs. The algorithm is time efficient and can be used for fast design Optimizations involve a series of design restructuringselia
space exploration. The results indicate a latency performance on desired design operations. In this paper we show that
improvement of 22% on average versus HLS with the initial it is possible to rapidly explore and modify dataflow graph
DFG for a series of designs mapped to Altera Stratix Il devices. representations at the behavioral level to improve FPGAgdes
latency with limited impact on design area. An interesting
aspect of our approach is the use of some HLS operations
As field-programmable gate arrays (FPGAs) mature, tiggiring TED optimization to evaluate the benefit of specific
level of design representation used to target the devicetineo optimization steps. Effectively, a minimal set of HLS oper-
ues to move upward from the register transfer level (RTL) @tions is provided "in the loop” in assessing the impact of
algorithmic and behavioral level specifications. Much FPGhigher-level transforms. A full set of standard HLS operas
design exploration work has focused on optimizations whidh performed once the TED-based restructuring is complete.
are performed during traditional high-level synthesis §JL Our new design flow consists of the following phases:
such as operation scheduling, register binding, and fanati 1) High-level algorithmic transformation using TEDs.
unit allocation. These algorithms are typically appliedato 2) High-level synthesis using GAUT [3]. This tool is used
dataflow graph (DFG) which represents the desired computa- to evaluate intermediate behavioral design representa-
tion. In many HLS systems, these graphs are treated as a fixed tions and convert the final behavioral design to RTL.

I. INTRODUCTION

starting point, limiting the exploration of design implenta- 3) RTL design synthesis and physical design (place and
tions. Flexible FPGA architectures provide an opportuffity route) using Altera Quartus Il for commercial Stratix Il
algorithmic approaches which restructure a DFG at a level FPGA devices.

above traditional HLS. We demonstrate that TED transformations can directly lead

The use of FPGAs for design implementation necessitatgsan average of 22.6% post-mapped improvement in design
specific DFG restructuring that accommodates the lookugxency for a set of previously-used HLS benchmarks mapped

tables, memory blocks and multipliers commonly found in the Stratix 1| FPGAs versus mapping using only the initial,
devices. For example, whenever two or more functional uni¢satic DEG.

write into a register, a multiplexer is required at the infuthe

register. In the case of FPGAs, a multiplexer made from Igokd!- FPGA DESIGNLATENCY OPTIMIZATION DURING HIGH

tables may require as much logic as a second functional unit, LEVEL SYNTHESIS

altering tradeoffs [1][2]. Critical path analysis durindP6A Most high-level synthesis optimizations for FPGAs conside

design mapping must carefully consider both FPGA functionaritical path reduction and multiplexer minimization. Attugh

block and interconnect delay at multiple hierarchical Isve these optimizations are performed during HLS, rather than a

These resources are configurable on a per-application, levelhigher design level, they provide insight into the types of

allowing for a variety of area and performance tradeoffs. Felesign explorations that can be considered by TEDs.

HLS, operations require multiple clock cycles, so minimgi HLS algorithms have been widely explored in the context
of latency optimization. The problem of register allocatend

978-3-9815370-0-0/DATE1@)2013 EDAA binding and its impact on the final architecture of synthediz

designs have been extensively studied. In Chen and Cong [1], v v
a register binding algorithm with multiplexer optimizatios ,
modeled as a minimum cost flow in a network, and then a O ()
greedy algorithm is used to optimize performance. The prob-)

lem of register binding for clock period minimization withib G
register overhead is formulated in Huang and Chen [4]. In ’
Conget al. [5], the overall resource usage of functional units, & =
registers and multiplexers is simultaneously optimizede T

synthesis process is not broken into a sequence of optiimizat A A A A A A
steps, as is traditionally practiced. Instead, the sclaedul
transmits global optimization information between eaep sif
the algorithm. In Kim and Liu [6], a simultaneous registedan
functional unit binding algorithm targeting multiplexemput ,) ,
reduction to shorten the total interconnect length is deed!. To illustrate the concept.of functlpnal—level transfqrmas
The improvements are based on the observation that not SPPorted by TED, consider a simple computatibh =

functional units operate at the same time. When a functioriif (B +-2C), whose TED is shown in Fig. 1(a). Solid edges in
unit is idle, it can be reconfigured as pass-through logic fd#€ 9raph correspond to multiplications, dotted edgesesspnt

data transfer, reducing interconnect requirements. Aigho 2dditions, weights on edges represent constant multifgics,
these approaches provide significant steps forward in dgterind node ONE is a multiplication by 1. Because of the canon-
optimization, they do not attempt testructurethe dataflow Cal nature of a TED (for a given variable order, in this case
graph targeted to FPGAs in an effort to enhance regist@r B, C) the function encoded in the TED can be interpreted
allocation and binding. as F = 3A(B + 2C), which requires two multiplications,
Perhaps the work most similar to ours is the low-powetne addition and one shift. Fig. 1(b) shows a DFG obtained

architectural synthesis system (LOPASS) [7]. This appioa&om this TED by performing TED decomposition under this
performs a simulated-annealing optimization over therentivariable order.
synthesis process of scheduling, resource selection dozhal ~DFG Generation: In general, an ordered, minimized TED
tion, functional unit binding, register binding, and intennec- can be converted to a DFG with a minimum number of
tion estimation to effectively reduce power. The main otijec arithmetic operations by means of functional decompasitib
of this approach is to reduce the overall connectivity betwe the TED [8] involving factorization and common subexpres-
functional units and registers (including multiplexers)da Sion elimination (CSE). The arithmetic expression obtdiby
to reduce the total design interconnections, which ultelyat Such a decomposition, callétbrmal Factored Forn{NFF), is
leads to a reduction in power consumption. In their work, thénique and minimal (in the number of arithmetic operatoos) f
DFG is fixed, and an annealing algorithm is applied to swab TED with a fixed variable order. The normal factored form
the type of functional units being used (e.g., Wallace mliggi ~ for the TED in Fig. 1 isF' = 3A(B + 2C). A structural DFG
versus other multiplier types), merge functional unitsd arféPresentation can then be readily constructed by remacin
swap functional unit operands. the arithmetic operations (additions and multiplicatjongth

Our method is complementary to the previous approach@ardware operators,pb andMuLT, as shown in Fig. 1(b).
as it restructures a dataflow graphior to high level synthesis It should be noted that, unlike NFF, the DFG representation
in an attempt to create a DFG which minimizes design latentg/not unique. While the number of operations remains fixed, a
by increasing design clock frequency, reducing the number BFG can be further restructured and/or balanced to minimize
clock cycles per high-level operation, or both. The modifieltency. This offers an additional potential for optimipatin
DFG is then used as input to a high level synthesis flow whegich the best DFG can be constructed, depending on the
the approaches mentioned above can still be performed as paguired cost function, be it resource optimization, laten

2

Fig. 1. a) TED of F = 3A(B + 2C); b) DFG of FF = 3A(B + 2C).

of the synthesis process. optimization, or an optimization under resource or latecay-
straints. Several methods employed by logic and HLS can be
IIl. REVIEW OF TAYLOR EXPANSION DIAGRAMS used for this purpose [9]. In addition, constant multipticas

Taylor expansion diagrams were originally developed in trean be replaced by shifters and adders [8].

context of formal verification for data-intensive compidgas DFG Selection and Optimization While TED decompo-
and arithmetic datapaths. A TED is a canonical, graph-bassiion minimizes the total number of arithmetic operations
data structure that can efficiently represent designs egpte the resulting normal factored form (and in the correspogdin
as multivariate polynomial expressions, often encounténe DFG), it does not address the issue of optimizing the final
signal processing and computer graphics applications. li-muhardware implementation. Specifically, it does not minimniz
variate polynomial expressioi;(z1, - - ,z,), is decomposed the number of hardware resources (adders and multipliers)
recursively using Taylor series expansion, one variabla atactually used in the final, scheduled implementation; nei-
time. The resulting decomposition is stored as a directélder does it minimize the latency of the design. Such an
acyclic graph, the TED. optimization is only possible by performingchedulingand

resource allocationon the structural level for the selectedevel synthesis tool, in this case GAUT. The TDS system has
DFG. That is, the usage of the operators and the resultibgen used as a framework for design latency optimization for
design latency depends on the scheduling and allocatips sttPGA designs, which is described in the remainder of the
of the subsequent high level synthesis that has not begaper.
considered during the TED decomposition.

For the TED-based decomposition to be practical, it must
gain insight into the construction of an actual DFG from the Although the TED data structure encodes a functional
resulting NFF. It can then choose the structure which reguirrepresentation of the design, it provides limited struaitur
fewer resources (to minimize area) or provides more hardwanformation necessary for final implementation. Therefdtres
parallelism (to minimize latency). The enhancements applidifficult to directly use a TED graph to characterize impatta
to the TED decomposition to address this issue include: dfyuctural design properties, such as the complexity of the
hashing all the extracted terms to avoid resource replinaf) steering logic, the number of multiplexers, or the amount of
modifying the factorization and extraction methods to &str resources required by the control unit.

IV. SYSTEM LEVEL EXPLORATION

the minimum clique partitioning; and 3) forcing all irredbke In this work, apseudo critical path discoverglgorithm is
TEDs to become reducible through a guided variable orderiigplemented and used to partition the TED into two clusters.
according to the selected optimization goal. One cluster targets latency minimization and the otheretarg

" area minimization. Then we use the resource usage in each
A. TED-based Decomposition System (TDS) cluster as a cost function to guide the TED space exploration

A guided TED-based decomposition provides a means fphe overall objective of this approach is to reduce the numbe
effective design space exploration. This idea is illustlain of iterations between the TED decomposition and high level
Fig. 2. In a traditional synthesis flow,singleDFG is extracted synthesis by pruning those solutions that are not likely to
from an initial (functional) specification and used as inpuiprove the design latency obtained after FPGA place and
to high-level synthesis to generate the final hardware implgyute.
mentation. Optimization of the resulting implementatian i Estimating resource usage within the TED The as soon
therefore limited to local modifications between the solisi as possibl{ASAP) andas late as possibleALAP) schedules
that are obtainable from only that DFG. derived as a bi-product of TED decomposition, which invelve
factorization and common subexpression elimination, gine
early estimate of the resource requirements of a decomposed
TED. For example, the TED shown in Fig. 3(a) is decomposed
into a set of product termsAT") and sum terms q7), as
shown in Fig. 3(b). The resulting structure is then balanced
hiearchically to minimize the delay of the DFG generated
from this TED. Specifically, each term can be implemented
as a balanced tree to minimize its contribution to the overal
latency, and the higher level structure composed of ndtdEs
and ST'1 can then be implemented as a balanced tree, while
considering the internal path delay imposed by each of its
terms. Furthermore, when subtrees have different pathysela

Fig. 2. Space exploration with TDS. the slack (obtained from the ASAP and ALAP schedules) is
used to reduce the resource requirements of the tree with the

Fig. 2 shows a set of such solutions, each representedsamllest path delay.

a cone associated with a DFG. To improve the solution, anFor example, the sum term depicted at the left in Fig.
attempt can be made to transform the DFG into another DF&c) by a balanced tree seems to imply that two adders are
However, such a transformation, if at all possible, is lgdit required, but when the delay of the operators are considered
to a set of structural modifications of the graph, such as trédee slack between both trees can be used to reduce the resourc
height reduction and balancing, which are limited in scopeaquirement. Assuming that the MULT operator has a delay
In contrast, transformation of the functional specificatio of 2 and theaDD operator has a delay df, the delays of the
obtained by means of TED decomposition, can producesam and product term a2 and 4, respectively. Therefore, it
family of functionally equivalent DFGs. One such DFG cais possible to accommodate one more addition in the adder
be selected on the basis of a given objective and desigee or delay one of its operations by one cycle, thus reducin
constraints to generate the final hardware implementation. the total number of adders in the scheduled design to 1.

This approach has been implemented in a system calledComputing the critical path delay from a TED: Since
TDS [8], which transforms the function extracted from @ TED is an acyclic graph, its critical path delay can be
design specification into a TED and uses a host of TED-badedind in O(n + e), wheren and e denote the number of
decomposition and DFG optimization techniques to obtain aodes and edges in the TED. The critical path delay algorithm
optimized DFG; it then passes the modified DFG to a highaverses all nodes of the TED and computes the height of the

Functional

TED not to discover the best solution, but rather to prune the
search.

The following design written in C is used as an example to
demonstrate the core procedure of the iterative synthesis.

main(int a, int b, int ¢, int * out) {
const static int nmeni5];
int pathr, path4, path5;
int pathl = a+b+neni0];
int path2 = bxneni 1] *cxa;
i f (pathl>path2) path4 = pathil;
el se path4 = path2;
int path3 = path2*neni2];
i f (path2<path3) path5 = pathr;
el se path5 = pat h3;
pathr = path2;
*out = pat hd4x(nmenf 2] +b) + menf 3] *pat h5;

The high level synthesis tool, GAUT, first compiles the
C code with a modified gcc compiler into a control data
flow graph (CDFG). The obtained CDFG, shown in Fig. 4(a),
expresses all the operations specified in the original code.
CDFG is then transformed through scheduling, allocatioth an
binding into an architecture as shown in Fig. 4(b).

(©)

Fig. 3. (a) Initial TED for the functionF’ = z3,(2a1 + a2 + a3 +

a4). (b) Decomposed TED with a product and a sum term, PT1 and
ST1. (c) Resulting netlist (DFG) with latency equal tov®LT and

a resource requirement of MULT and 1ADD.

adder tree formed by the incoming edges of a node. When (a)
an edge connecting a node to its children contains a register
the height contributed by that child is assigned 0 as if it
were a primary input. Another special case arises when a
node belongs to a multiplicative or an additive chain. Irsthi
case, the height is not computed immediately but postponed
until the entire chain is discovered, at which point the loca
height is adjusted accordingly. The critical path compatat
obtained from the TED helps generate an initial clusterig f
target optimizations. Critical paths are considered folayge
minimization and paths with slack are considered for area
minimization. The clustering is dynamically updated besgau
the discovered critical path delay assumes unlimited ressu
and, hence, some misclassification is bound to occur. (b)

REGE

REGS

REG4

Iterative high level synthesis It is fair to say that, when rig 4 (a) The CDFG netlist generated by GAUT from the C design.
targeting FPGAs, the area and delay results obtained duri®y The original datapath architecture generated from the CDFG.
high level synthesis can be far from accurate. Even though
these metrics could be somewhat improved by logic synthesisThe list scheduler of GAUT prioritizes the set of operations
tools, interconnect might ultimately be the principal cawd to be executed next according to the arrival and required
delay in an FPGA design. We use multiple iterations of sincompletion times. When more than one operation of the same
plified high-level synthesis operations to explore aratiitees type needs to be completed at a certain time, the scheduler in
that improve the design latency after mapping and routirg tktantiates another resource of that type. The resourceasibm
design into an FPGA. We use the metrics derived from ttend binding then establishes which operations are perfiirme

in which hardware resource, which in turn determines how
many registers will be needed to store the partial compariati
throughout the data flow. The number of multiplexers gener-
ated when connecting the registers to and from the operator
ports is optimized [7]. These steps are performed in a loop
which includes TED restructuring to determine the lowest
latency design. In the loop, GAUT uses the target design
latency (clock periodx number of clock cycles) and clock
period of the design to determine the number of cycles :
the scheduler can use. If the scheduler cannot reach thet targ

latency, regardless of the number of instantiated ressutbe (@)
synthesis process fails to successfully complete the sitbed
for that TED and further TED restructuring can be considered

N\
palhr\ mem[3]

GAUT Quartus Il
Cycles Mux Reg Area +x [LUTs FFs Freq (MHz) Des. Lat. (m$)
Orig. desigh 14 96 7 208 1 2 533 126 159.5 87.8
Restr. desigjn 11 128 6 208 1 2 528 107 160.6 68.5

Design

TABLE |
GAUT AND QUARTUS || REPORT FOR THE ORIGINAIDFG (FG.
4(B)) AND THE RESTRUCTURED DESIGNFIG. 5(B))

The results reported by GAUT (high-level synthesis) and
Quartus 1l (logic synthesis, place and route) for the o@djin (b)
design in Fig. 4 are Showr? n Tab.le l. The design !atencel(g. 5. (a) Reduced latency CDFG obtained after TED manipula-
corresponds to the clock period obtained by Quartus migtipl ;& (b) Datapath for the optimized CDFG.
by the number of cycles scheduled by GAUT. It is important
to note in Table | that two multipliers are instantiated ahdltt
for the given original CDFG, GAUT cannot generate any other

architecture which results in fewer clock cycles. Additdiyg,

note that the §econd multipli_er irjstantiated by GAUT, in the \we have successfully integrated the TDS, GAUT, and Quar-
datapath architecture shown in Fig. 4(b), has no multiplexe (s system and applied it to a series of DSP algorithms [16]. A
its input ports, because the second multiplier was insi&&di mentioned in the previous section, TDS and GAUT are used
by the scheduler after other multiplications have alrea€§mb i, 5 simulated annealing loop where GAUT provides design
scheduled on the other multiplier. The key idea, theref_me, latency estimates. Each iteration of the annealing algorit
to. restructurg segments of the CDFG that could benefit frop.judes a TED reordering operation and TED-based decom-
this second instance to reduce the number of clock cycles a;%jsition based on paths with critical delay. Non-criticaths
the overall design latency. are transformed to minimize area. Then, the GAUT tool is used
The CDFG shown in Fig. 4(a) is imported into the TDS0 generate a datapath and get an estimated hardware cost. As
system, and the different algebraic paths in the CDFG dlke temperature in the annealing algorithm decreases &e T
translated into multiple TEDs. Each extracted CDFG pafttased decomposition and TED-to-DFG transformation option
becomes a TED output, which can be classified by its criticate gradually reduced to those that provide the best refults
path delay. Each TED variable has an associated initialadrri the current design. The final, best result is output by GAUT
time that is used to compose a more suitable CDFG to reduseVHDL and run through Altera Quartus synthesis, place and
design latency. After performing TED optimizations in aroute to validate the improvements reported by GAUT. For
attempt to reduce resource requirements, the cost of the neéa¢h benchmark, we used the smallest Stratix Il device that
CDFG is evaluated using GAUT. The annealing algorithrwould fit the design. The Quartus Il tool was set to maximum
accepts and rejects the new costs which calibrates the windeffort in all cases with an unreachable target clock fregyen
size into which a TED performs reordering and decompositioaf 1 GHz. DSP block extraction and automated shift register
For example, Fig. 5(a) shows an improved CDFG and tieéain insertion was turned off.
corresponding architecture is shown in Fig. 5(b). This new Table Il illustrates the results obtained using our apphnoac
design requires fewer cycles to complete the computatiah aBxecution times include both the time required by TED
improves the design latency of the overall design, as showrploration and the time consumed by GAUT. The GAUT
in Table 1. tool has been used in a number of academic projects and its

V. EXPERIMENTAL RESULTS

HLS algorithms for binding, allocation, and scheduling are D%S)I/?:?es O”g'nl""zl TDg -2/%Ao
well documented [3]. The column namedginal corresponds k| Registers 145 260
to results obtained by processing the original design CDFGs 2 g Muxes 240 160
with GAUT and Quartus without TED manipulation. The € o E;’;’JM_;;? 48"é674'1' 80"13%85
column namedI'DS corresponds to the results obtained from o § LUTs 15139 13292 | -12.2
optimizing the TEDs. The results in the table indicate that o 3| FFs 2332 4033
goal of reducing design latency (labelleatencyin the table) #ﬁ;eeng) (ms) 324 igi -27.3
has been achieved. Overall, the average design latency has Cycles) 8T 110
been reduced by about 22% versus GAUT synthesis without £ | Register 12 18
TED manipulation. This latency decrease caused an average | § | muxes < oo oo
lookup table (LUT) increase of 10.1%. In all cases, design | § @ [Freq (MH2) 1634 1817
frequency improved. The worst case TDS/GAUT execution | © | § | LUTs 247 218 | -11.7
time across all designs was 154 seconds, a small value in S | Lhtency (ms) e 351 200
comparison to the half hour Quartus compile times. Time (s) 7 '
VI. CONCLUSIONS _ ggg'izfer ig ig "13.9
. -]
In this paper a new FPGA design latency optimization tool 8|3 Muxes 208 272
has been demonstrated. Our system uses TEDs to restructure| £ |— g’qur'(',\'AX'_S 2155‘0 215f0
dataflow graphs and a high-level synthesis tool to quickly | ~ § LUTs 592 359 | -39.4
evaluate the datapath design space at a behavioral lev&. HL 3 | FFs 223 325
passes are used in a loop with TED restructuring to fully #ﬁ;i”‘(:;’)(ms) 100 80 139
explore the design space. Once a final DFG is selected, GAUT Cycles 3 6§ 750
performs a final HLS pass and the resulting design is sent to E | Register 180 288
FPGA physical design tools for final implementation. For a | € | § Il\-|/IVL\JIX$S ‘< 23-518- 72_21%4_
collection of benchmark designs our approach shows a 22% | 8 @ [Freq (MH2) 573 2240
reduction in design latency versus the direct use of HLS | & | € | LUTs 2693 7349 | 173.0
binding, allocation, and scheduling on an unmodified graph. & | FFs 1448 2310
. Latency (ms) 65 27 | -59.1
In the future, further operations at the HLS level could bedus Time (s) 109
to guide TED manipulation. Cycles 13 13 0.0
'5 Register 203 204
VIlI. ACKNOWLEDGEMENT 5 | | Muxes 544 448
. . 0} . - -
This work has been supported in part by a grant from the | 8 | E:;qu'(MXH;? 1730101 2830
National Science Foundation, award CCF-0702506. £ LuTs 7386 7708 | 4.4
3 | Registers 3231 3277
REFERENCES © Latgelncy (ms) 96 90 -6.1
[1] D. Chen and J. Cong, “Register binding and port assignnfent Time (s) 89
multiplexer optimization,” inProc., Asia and South Pacific Design Cycles 19 17| -10.5
Automation Conferencelan. 2004, pp. 68-73. 15 Register 13 18
[2] J. Cong and J. Xu, “Simultaneous FU and register bindingetaon @ | < | Muxes 288 400
network flow method,” inProc., IEEE/ACM Design and Test in Europe 15 O | Hw +,-x,< 1,-4,- 1-23
ConferenceMar. 2008, pp. 1057-1062. § % | Freq (MHz) 138.0 138.8
[3] P. Coussy, et al., “GAUT: A High-Level Synthesis Tool f@SP g | LUTs 463 502 8.4
Applications,”High-Level Synthesis: From Algorithm to Digital Circuits & | Registers 227 289
Springer, Berlin, Germany, 2008. Latency (ms) 138 123 | -11.0
[4] S.-H. Huang and C.-H. Cheng, “Minimum-period register diig,” Time (s) 21
IEEE Trans. on Computer Aided Design of Integrated Circuitel Cycles 9 9 0.0
Systemsvol. 28, no. 8, pp. 1265-1269, Aug. 2009. I5 Register 11 11
[5] J. Cong, B. Liu, and J. Xu, “Coordinated resource optirtiz@a in }3 < | Muxes 208 192
behavioral synthesis,” ifProc., IEEE/ACM Design and Test in Europe 2 O | Hw +,-x,< 2,131 3,14,1
ConferenceMar. 2010, pp. 1267-1272. £ | 2| Freq (MHz) 270.0 278.6
[6] T. Kim and X. Liu, “A functional unit and register bindinglgorithm = S| LUTs 183 248 35.0
for interconnect reduction/EEE Trans. on Computer Aided Design of 8 FFs 119 138
Integrated Circuits and Systemsl. 29, no. 4, pp. 641-646, Apr. 2010. Latency (ms) 33 32 -3.1
[7] D. Chen, et al., “LOPASS: a low-power architectural dyegis system Time (s) 9
for FPGAs with interconnect estimation and optimizatidEEE Trans. Geomean Freq 127.9 14441 129
on VLSI Systemwol. 18, no. 4, pp. 564-577, Apr. 2010. Geomean LUTs 1207 1329 10.1
[8] M. Ciesielski, D. Gomez-Prado, Q. Ren, J. Guillot, and Bufilon, Geomean FFg 537 739 37.4
“Optimization of data-flow computation using canonical TEPnesen- Geomean Design Latenc 90 70 | -22.6
tation,” IEEE Trans. on Computer Aided Design of Integrated Circuits
and Systemsvol. 28, no. 9, pp. 1321-1333, Sept. 2009. TABLE Il
[9] G. DeMlcheh, Synthe§|s and Optimization of Digital Circuits NeW TABLE OF RESULTS FOR OPTIMIZED AND ORIGINALDFEGS. TIME
York, N.Y.: McGraw-Hill, Inc., 1994. (S) INDICATES THE RUN TIME OF THETDS/GAUT ANNEALING
[10] K. Parhi, VLSI Digital Signal Processing SystemsNew York, N.Y.:

LOOP. LATENCY (MS) INDICATED THE DESIGN LATENCY OF THE

John Wiley & Sons, Inc., 1999. FINAL DESIGN.

