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Abstract—In recent years, Artificial Intelligence (AI) systems
have achieved revolutionary capabilities, providing intelligent
solutions that surpass human skills in many cases. However, such
capabilities come with power-hungry computation workloads.
Therefore, the implementation of hardware acceleration becomes
as fundamental as the software design to improve energy effi-
ciency, silicon area, and latency of AI systems. Thus, innovative
hardware platforms, architectures, and compiler-level approaches
have been used to accelerate AI workloads. Crucially, innovative
AI acceleration platforms are being adopted in application
domains for which dependability must be paramount, such
as autonomous driving, healthcare, banking, space exploration,
and industry 4.0. Unfortunately, the complexity of both AI
software and hardware makes the dependability evaluation and
improvement extremely challenging. Studies have been conducted
on both the security and reliability of AI systems, such as
vulnerability assessments and countermeasures to random faults
and analysis for side-channel attacks. This paper describes and
discusses various reliability and security threats in AI systems,
and presents representative case studies along with corresponding
efficient countermeasures.

Index Terms—AI accelerators, machine learning, neural net-
works, hardware reliability, fault tolerance, hardware security,
side-channel attacks

I. INTRODUCTION

The high number of operations and parameters in modern
Deep Neural Networks (DNNs), i.e., hundreds of matrix
multiplications per layer and up to trillions of parameters,
requires complex and high-performance parallel AI accelera-
tors. Graphics Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs), or specific hardware, such as low-
power EdgeAI devices and Tensor Processing Units (TPUs),
are examples of devices used to accelerate the training and in-
ference of neural networks. These platforms generally support
the efficient implementation of algorithms to deploy Machine
Learning (ML) workloads, such as General Matrix Multipli-
cations (GEMM) [1]. In particular, modern devices resort to
specialized architectures to speed up the execution of ML
workloads. GPUs resort to specialized in-chip ML accelerators
(i.e., Tensor Core Units – TCUs) to improve performance
and efficiency in the execution of convolution, as GEMM
operations in ML workloads. These TCU units are included

as part of the GPU’s hierarchy, inside the parallel symmetric
streaming multiprocessors cores, and resort to specialized
scheduling strategies (combining software and hardware) to
speed up the execution of small fragments (tiles) from large
GEMM operations [2]. FPGAs can provide excellent perfor-
mance per watt for artificial neural networks [3]. Since they are
rather expensive, large companies like Google, Amazon Web
Services and Microsoft, provide access to FPGA hardware
through the cloud, similar to a GPU [4], or provide ML as a
Service (MLaaS) [5]–[7]. In addition to that, multi-tenancy on
FPGAs is of great interest for maximizing resource utilization.

Despite having a very different architecture and program-
ming framework, all AI hardware platforms have in common
the capability of executing several operations or tasks in
parallel. Parallelism has unquestionable benefits in terms of
efficiency. However, it introduces three significant challenges
when reliability is concerned: (1) Due to the large area and
the high amount of resources available, the radiation-induced
error rate of the available commercial off-the-shelf (COTS)
products for AI is very high [8], [9]. (2) The corruption of
critical or shared resources impacts several parallel processes,
increasing the chance of radiation-induced misdetections [10]–
[12]. (3) The complexity of the architecture makes the design
and/or operation overhead necessary to create an intrinsically
radiation-tolerant chip too costly for parallel accelerators. In
this scenario, it is fundamental to perform experiments to
evaluate if the available COTS devices are sufficiently reliable
for being adopted as part of safety-critical applications. If the
error rate is found to be too high, the design of effective and
efficient hardening solutions for DNNs is necessary.

While reliability is related to the protection of the sys-
tem from unintended faults, security focuses on protecting
systems from intentional threats, such as malicious attacks,
that may recover secret assets and jeopardize privacy (data
theft). This is achieved through side-channel analysis attacks,
where valuable information can leak and be retrieved by an
attacker spying on the system. Recent studies have shown
that this kind of attack vector is indeed exploitable to obtain
information about the ML algorithm, architecture, and data
deployed in a device [13]–[16]. These attacks are performed



remotely without physical access to the device, which makes
them even more dangerous.

While AI accelerator platforms offer high performance and
efficiency, they are still not well known and explored from a
dependability point of view. Therefore, examining early their
reliability and security aspects is crucial in identifying poten-
tial issues, that require to be solved before being deployed in
mission-critical systems. In this paper, we describe and discuss
such main challenges, along with possible solutions.

The paper is organized as follows. Section II first discusses
existing reliability assessment approaches for AI accelerators,
then focuses more in detail on reliability threats and protec-
tions for GPUs, and finally the evaluation and mitigation of
radiation-induced transient faults are showcased. Section III
discusses remote side-channel attacks on FPGA-based neural
networks accelerators and possible countermeasures; an image
extraction attack and countermeasure are presented. Finally,
Section IV concludes the paper.

II. CURRENT CHALLENGES AND SOLUTIONS FOR
ASSESSING THE RELIABILITY OF HARDWARE PLATFORMS

FOR MACHINE LEARNING

Several studies have demonstrated that the latest transistor
technologies in modern devices are prone to increase faults
during operative stages (i.e., silent data errors [17]) due to
internal defects, such as electromigration, premature aging,
and wear-out, as well as external impacts from harsh environ-
mental conditions, such as the exposure to high temperature
or radiation [18]. Faults may corrupt the ML model pre-
diction drastically [8], [19]. Unfortunately, the fault-induced
misprediction probability can be so high as to impede a
safe deployment of DNN models at scale, creating a need
for efficient and effective hardening solutions. Several beam
experiments have been conducted to characterize the radiation
response to various natural particles of AI accelerators [10],
[20]–[22]. These technology vulnerabilities in combination
with the structural parallelism and programming complexity
of modern GPUs and their applications (i.e., CNNs) impede
the efficient use of traditional methods of reliability evaluation
and demand the development or adoption of more effective
reliability assessment methods.

A. Methods for reliability assessment of AI accelerators

The reliability of ML hardware is a critical concern for
several domains. Thus, efficient and adequate methods for
resilience characterization are crucial for the effective iden-
tification of vulnerable structures as well as the proposal of
countermeasures [23]. These methods can be organized in six
main strategies:

1) formal evaluations: that consist of analytical and the-
oretical evaluations of the algorithms implementing an ML
application [24]. These analyses might include the general fea-
tures of the structures in a system. However, these hardware-
agnostic analyses are far from the reliability assessment of
specific components, such as the underlying hardware accel-
erator used to deploy the system.

2) application-based evaluations: that focuses on the
model’s architecture of an ML application, such as corruption
on neurons and functions. These evaluations resort to software
corruptions (i.e, bit-flip) on data path elements, including
inputs, weights, and feature maps among the channels of
an application [25]. Unfortunately, these evaluations neglect
the workload’s distribution on a device and the effects of
errors produced by hardware faults on its underlying hardware.
Moreover, these analyses can represent, at most, corruption
effects from memories in hardware.

3) software-based assessment: that consist of the instru-
mentation of the application’s code with functions to represent
effects on the running instructions from corruption due to
faults in the structures of a device [26]. These evaluations use
real devices and might accurately describe corruption effects
on an application from hardware faults. However, the code
instrumentation requires special frameworks and demands
considerable engineering effort to ensure the intended func-
tionality. Similarly, the evaluation accuracy directly depends
on the definition of the error functions from hardware faults.
Moreover, the analyses might be limited to data-path structures
in a GPU (e.g., register files, memories, and functional units),
and more recently some controllers [27].

4) structural and architectural evaluation: that consist of
functional or fine-grain evaluations of the ML hardware by
resorting to structural models or low-level micro-architecture
models of a device (at RT- or gate-level). The low-level micro-
architecture evaluations resort to simulation (e.g., using logic
simulators and frameworks) and emulation-based (e.g., using
FPGA platforms) schemes and provide high accuracy in the
resilience evaluation, but directly depend on the availability
of hardware descriptions [28], [29]. Moreover, for GPUs,
their structural complexity and transistor density restrict the
adoption to specific evaluations (e.g., on functional units [30],
or controllers [31]). For instance, the RT level analysis of
a GPU on a CNN layer might require up to 10,000 days!
[32]. The functional evaluations are slightly more efficient
in performance and can support the characterization of the
software/hardware interaction of a system [33], but are re-
stricted to data path structures (e.g., memories and functional
units). Figure 1 depicts the corruption patterns on a GEMM
operation obtained through structural analyses of faulty TCUs
inside a GPU. Unfortunately, these analyses might introduce
inaccuracies in the resilience evaluations [34].

5) physical evaluations: resort to evaluations (e.g., beam
experiments) of the ML model’s architecture on real devices
on special facilities to evaluate the system’s reliability. These
evaluations are supremely effective for the overall system
evaluation but might hardly provide fine-grain evaluations on
specific structures of a hardware accelerator.

6) hybrid mechanisms: (a.k.a. cross-layer or multi-level)
combine two or more strategies to provide an efficient trade-
off between evaluation accuracy, and performance to determine
vulnerable structures in ML hardware and the impact on
ML applications. These strategies allow the evaluation of
some hardware structures that cannot be covered by other
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Fig. 1: Corruption patterns in GEMM outputs from faults in
TCUs [33].

strategies (e.g., faults in controllers, functional units, and
schedulers [27], [32], [35], [36]). However, the integration of
hybrid strategies for evaluation require considerable engineer-
ing effort and the description of efficient mechanisms (error
functions, tables, corruption masks) for the interaction among
the analyzed abstraction levels.

B. Reliability vulnerabilities and mitigation opportunities in
GPUs

Memory vulnerabilities in the first GPUs were mostly
corrected by Error Correction Codes (ECCs), error contain-
ment mechanisms, memory row remapping, and dynamic
page offlining for main memories and registers files [37].
Unfortunately, these protection schemes do not fit all GPUs
structures, such as temporal near-register files or buffers,
and local memories, leaving open the possibility of silent
corruption effects on some of the threads of an application.

Functional units and special cores in GPUs, integer, FPU,
and TCU cores are massively reused during the execution
of ML workloads to compute fragments of large GEMM
operations [38]. Consequently, a faulty unit may produce one
or several silent computation errors in the results. In [36],
several spatial corruption patterns by faults are identified in
the instructions on the output feature maps of convolutional
layers. In [33], scalar and spatial corruptions from faults are
identified in the TCU’s structure, as depicted in Figure 1.

Finally, in crucial structures in GPUs, such as controllers
and scheduler units, a faulty unit might corrupt and collapse
the system’s/application’s operation. In most cases, errors from
GPU schedulers and controllers cause hanging and crashing
effects. However, several reliability assessments [27] indicate
that some faults in controllers might propagate silently and
cause errors in application results. Similarly, several corruption
patterns are identified in results from faults in a GPU controller
[32], as depicted in Figure 2.

Since resilience evaluations support the identification of
vulnerable structures in large hardware accelerators, including
GPUs, they also contribute to determine opportunities to
increase fault tolerance. At application level, mitigation strate-
gies mostly focus on algorithmic optimizations to increase
reliability, such as ABFT [10], [39], and compression schemes.

At structural level, a reliability assessment on GPUs in-
dicates that the scheduling policies in hardware controllers,
to access and use the available parallel units (SMs, FPUs,

Fig. 2: Some corruption patterns in the GEMM’s output by
faults in a scheduler controller [32].

(a) GRR (b) DB

(c) GRR (d) DB

Fig. 3: Accumulated number of corruptions in the GEMM’s
output by a faulty TCU in a GPU with 7 SMs and 28 TCUs
(Top) and a GPU with 2 SMs and 4 TCUs (Bottom), both GPUs
under two scheduling policies: Global Round Robin (GRR)
and Distributed Block (DB). As depicted, the core organization
of a device and the scheduling policy impacts the corruption
effects on GEMM operations.

INTs, and TCUs), impact the generation of error corruptions
on ML workloads. Thus, the clever management of the policies
provides an opportunity to reduce the fault vulnerability of
a system. Figure 3 depicts the corruption effects on GEMM
outputs from faulty TCUs on the same GPU with different
scheduling policies [40].

In memories, ECC and spare hardware are the principal
mechanisms adopted in commercial devices for mitigation
purposes. Similarly, redundancy and spare mechanisms for
parallel functional units were proposed for GPUs [41]. In
addition, several works proposed and analyzed the impact of
trans-/mixed-precision solutions to increase the reliability of
ML applications with promising results, during the training
and inference stages [42]. Other mitigation analyses and
strategies resort to approximate computing [43], quantization
strategies on ML workloads [44], and the use of emerging
number formats and hardware [33], [45], [46]. Furthermore,
less invasive strategies resort to software-based solutions to
partially schedule workloads in GPUs, as well as software-



TABLE I: ECC efficiency for different models on two NVIDIA
GPUs, and theoretical efficiency of a Selective ECC.

ECC On/Off
Ratio

Critical
SDC (%)

SDC DUE ECC Off ECC On

Kepler
GPU

YoloV1 0.2 1.1 8.0% 61.1%
Faster

R-CNN 0.1 1.4 5.5% 25.0%

ResNet 200 0.2 1.5 8.0% 15.5%

Ampere
GPU

ViT B16-224 0.4 1.5 7.7% 2.4%
ViT B16-384 0.3 1.6 8.0% 3.9%
ViT L14-224 0.2 2.4 37.3% 10.0%

Theoretical
Selective ECC∗

LeNet 5 N/A N/A 1.77% 0.03%
ResNet 18 N/A N/A 8.44% 0.01%

∗Theoretical selective ECC data only consider errors in the memory

based hardening solutions at the scalar level to reduce the
impact of large-magnitude errors [47].

In the remainder of this section, we describe our exper-
iments using neutron beams to determine GPU failure rate
and identify potential weaknesses that could compromise DNN
reliability. Our findings allowed us to propose effective hard-
ening techniques that significantly reduce DNN misprediction
rates.

C. Characterizing and Mitigating Radiation-induced Faults

We have chosen a set of representative DNN models to
evaluate the effect of radiation-induced transient faults. These
models include YOLOv1 and Faster R-CNN for object de-
tection [48], [49], ResNet [50] and LeNet [51] for image
classification, and Large Vision Transformers (ViTs) for image
classification [52], [53].

1) Experimental setup: experimental tests were conducted
at ChipIR in Rutherford Appleton Laboratory (RAL, UK) and
LANSCE in Los Alamos National Laboratory (LANL, US).
Both facilities provide a neutron beam to simulate atmospheric
neutron effects in electronic devices. This allows for the
measurement of realistic failure rates of the device while
executing a code. These experiments measured the probability
of a neutron causing a failure in the GPU. The failure rate
calculated in these experiments can be used to estimate the
terrestrial failure rate caused by neutrons on a GPU. For a
detailed description, please refer to [10], [54], and [55].

We continuously run the code in the irradiated GPU with a
known input, checking that the application output is correct.
Any expected and produced output mismatches are classified
as Silent Data Corruptions (SDC). As the DNNs are approxi-
mate methods, we classify the SDCs into two categories: (1)
Tolerable SDCs, which do not change the inference even if
the output tensors differ; (2) Critical SDCs, the classification
or detection is changed. Finally, if the application crashes
or the operating system stops responding, it is a Detected
Unrecoverable Error (DUE). We have extracted data from
neutron beam experiments conducted on three NVIDIA GPUs,
namely Kepler (Tesla 40), Pascal (Quadro P2000), and Ampere
(Quadro RTX A2000).

2) ECC Efficacy on DNNs: modern GPUs are equipped
with Single Error Correction Double Error Detection
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Fig. 4: ABFT and Value Clipping efficiency when employed
on YOLOv1, SwinV2 ViT, and EVA2 ViT.

(SECDED) ECC, which helps to enhance their reliability while
maintaining high performance [56]–[58]. Table I presents
the ratio of the observed failure rate for SDCs and DUEs
((ECC On rate)/(ECC Off rate)) and the percentage of
the observed Critical SDCs for two NVIDIA GPU architec-
tures. The table also presents the results of a selective ECC
approach we proposed that can improve the error correction
efficiency of DNNs by targeting only the parameters that lead
to critical SDCs [54], [59].

While the ECC can reduce the SDC failure rate by an order
of magnitude, the ECC can reduce neither the number of
critical nor multiple errors that come from unprotected GPU
units. Even with ECC protection, we show that the critical
error rate is not neglectable, on average 33.9% for Kepler
GPU and 5.4% for Ampere GPU. Contrarily, the Selective
ECC that protects only the necessary parameters of the DNN,
focusing on the Critical SDC, can reduce the Critical SDCs
to 0.03% for LeNet 5 and 0.01% for ResNet 18. ECC is a
fault tolerance method for memories that neglects the high
number of computation units necessary to compute the large
modern DNNs. In the following subsection, we present how
the computation operations can be hardened by using simple
approaches, i.e., by applying ABFT on GeMM kernels and
value clipping on the output of the layers.

3) Hardening based on ABFT and Value Clipping: while
the GPU executes the DNN, a transient fault changes the
circuit’s expected value. The fault propagates through the soft-
ware instructions until it reaches the output tensor produced
by a layer. The fault can corrupt the DNN internal tensors in
different ways, e.g., single or multiple values within a tensor,
an entire row or column (often referred as line), or a block
of values (details at Section II-A). These errors propagate
through the network and eventually reach the last layer of
the DNN, which can produce an incorrect inference. As ECC
protect only errors that affect memory values, recent works
have leveraged GeMM-based protection methods applied for
DNNs, i.e., ABFT for GeMM [10], [58], [60].

As large machine learning models become increasingly
prevalent in safety-critical applications, ABFT applied to



GeMM presents some limitations [58]. Due to the high number
of memory accesses required by ABFT, its implementation
can add more than 60% overhead for large DNNs [58].
Additionally, recent works have demonstrated that radiation-
induced faults can drastically change the magnitude of the
internal layer values. Since the floating-point representation
range is large [10], [55], [61]–[65], the corrupted values can
go to infinity or even become Not a Number (NaN). In order to
increase the reliability of DNNs, we propose to not propagate
the corrupted values, but instead clip them to acceptable
values. On YOLOv1, we modified the MaxPooling layers to
propagate the value inside a range – 10× the largest value of
the given MaxPooling layer – instead of the largest value. For
ViTs, we modified the Identity layers to clip corrupted values
to 1.3× the maximum value in a given Identity layer.

We measured the efficiency of both ABFT and Value Clip-
ping in protecting against neutron-induced faults for DNNs
on GPUs. Figure 4 shows the percentages of Critical and
Tolerable SDCs observed on beam experiments for each fault
tolerance tested on YOLOv1 and two Large ViT models.
YOLOv1 runs on an NVIDIA Tesla K40 (Kepler GPU), and
the SwinV2 and EVA2 ViTs run on an NVIDIA Quadro
P2000 (Pascal GPU). As Kepler GPU has native ECC, the
Base version considers only the DNN running with only the
ECC enabled without software protection. For Pascal GPU,
the Base version is the ECC-disabled version. ABFT can
correct about 60% of the SDCs. If only the critical SDCs
are considered, an ABFT-protected YOLOv1 is more resilient
than an ECC-protected version. This is because ABFT corrects
all the detected errors that affect GEMM computation.

For all cases, value clipping techniques applied to YOLOv1,
SwinV2, and EVA2 lead to a lower percentage of Critical
SDcs than the base DNN. Value clipping helps reduce the
Critical SDCs percentages to 14.1% for YOLOv1 and 4.8% for
SwinV2. On EVA2, protected by clipping, no Critical SDCs
were observed. For EVA2, if we consider the error bars based
on the results of neutron beam experiments (calculated using
Quinn and Tompkins approach for zero failures [66]), we can
expect a maximum of 31% of critical SDCs when the model
is protected by clipping. As a comparison, the critical SDCs
percentage of unprotected EVA2 is 37.2%

III. REMOTE SIDE-CHANNEL ATTACKS ON FPGA-BASED
NEURAL NETWORKS ACCELERATORS AND POSSIBLE

COUNTERMEASURES

ML circuits implemented in FPGA logic, especially in
multi-tenant situations, are susceptible to attack. In this sec-
tion, we focus on side-channel attacks in which adversaries
attempt to obtain information about the FPGA-implemented
ML circuit using circuitry embedded in the device.

In remote cloud FPGAs, the most straightforward way to
snoop on unsuspecting victim circuits is to observe small
drops in supply voltage due to both resistive and inductive
drops in the Power Distribution Network (PDN). Since the
signal delay in digital circuits varies as supply voltage changes,
custom circuits can be used to sense on-chip voltage changes.

For FPGAs, these circuits are often implemented as Ring
Oscillators (ROs) [67] or Time-to-Digital Converters (TDCs)
[68]. ROs, which are typically based on an inverter chain
with an odd number of inverters, are simple to implement
but require significant time periods for voltage estimation.
Alternatively, TDCs [67] measure circuit delay within a clock
cycle by determining the distance through a tapped delay line
a signal can travel during the cycle [68]. This characteristic
makes TDCs effective in obtaining side-channel information.
Compared to an RO sensor, a TDC sensor needs careful
placement and calibration to ensure its delay is matched to
the clock period, or else its output value can saturate. The
high-speed carry logic in modern FPGAs makes a suitable
delay line with taps that are on the order of picoseconds,
allowing for accurate voltage change estimations following
sensor calibration [69].

TDCs have been used to collect side-channel information
from a wide variety of ML circuits implemented in FPGAs.
Tian et al. [70] implemented a remote power attack that
extracts details of a neural network accelerator implemented in
an FPGA. The accelerator uses a domain-specific instruction
set architecture to implement ML algorithms. The TDC tracks
voltage fluctuations which helps the adversary identify groups
and parameters for executed accelerator instructions. This
work was later expanded [71] to identify power consumption
signatures involving the FPGA’s external bus interface and sys-
tem DRAM. Crucially, voltage change patterns related to inter-
face use and the accelerators can be used to trigger an attack.
This trigger eliminates the need for external signal monitoring
to launch an attack on a victim circuit. A more recent TDC-
based approach [72] extracts parameters from folded neural
network layers. Folded implementations reduce circuit area
and power consumption by limiting the instantiation of layer
hardware in the FPGA. Although tracking voltage changes in
this environment is more challenging, folded parameters can
be successfully extracted. This information can also be used
to deduct neuron count in the ML circuit.

Several research projects have examined the extraction of
images input into an FPGA-based ML circuit. In Huegle et al.
[15], small voltage fluctuations determined by a TDC are used
to recreate pixels. A generative CNN is used to analyze these
fluctuations following training. Several datasets with greyscale
images are used for analysis, and images are recreated with
greater than 90% accuracy in most cases under a variety of
operating conditions.

In the next subsection, we examine the extraction of
greyscale images that are input into an FPGA-based ML cir-
cuit. Histograms derived from TDC-detected voltage changes
[73] are used to reconstruct the input image. This approach has
been validated on a commercial cloud platform, the Amazon
Web Services (AWS) EC2 F1 [4]

A. TDC-Based Image Extraction Architecture

Our example considers a multi-layer CNN that takes in
MNIST greyscale images with 28×28 eight-bit pixel values as
input. As shown in Figure 5, the outputs of each CNN layer
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(feature maps) are passed as input to the next layer. Layers
in the CNN include a non-linear function (creating complex
input-output mappings), pooling (reducing the dimensionality
of input feature maps by different methods, e.g., max pool-
ing), batch normalization (normalizing input feature maps to
decrease their variance), fully-connected layers (where each
element of an output feature map is calculated by point-wise
multiplication between a whole input feature map and a kernel
of the same size), and convolution layers. Our attack focuses
on the operation of the first (convolution) layer, which is shown
in green. Binarized neural networks (BNNs), representing each
element of the convolution kernel as a single bit, are used.

In this work, the TDC measures delay changes as the
first CNN layer (BNN accelerator) computation is performed
(Figure 6). The data from the TDC is used by the adversary
to estimate the voltage drop across the FPGA PDN during the
execution of the convolution layer, as the BNN accelerator
does the image classification. The acquired voltage estimates
serve as a side channel that can be used to extract the victim’s
input image data. The recovered image approximates the input
image by distinguishing between foreground and background
pixels of the image.

In the first convolution layer, an image is convolved with
multiple distinct kernels to generate multiple output feature
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Fig. 7: Detailed view of the convolution unit. Output is generated
from the 3×3 input image, shown in the red box, and the kernel.

maps. In our attack, we use a voltage estimate trace from
the execution of the first kernel of the first convolution layer
for an input image. Since we assume that the same image is
evaluated by the FPGA accelerator multiple times, multiple
(N ) similar traces are collected using the same input image.
After collecting multiple traces, the adversary takes the mean
of the data values in the traces to obtain a single average
trace of the voltage estimates during the execution of the first
kernel of the first convolution layer. A high-pass filter is then
used to remove noise. We leverage the observation that the
background and foreground pixels can then be distinguished
by analyzing the different magnitudes of the voltage in a
trace of measurements. This information can be represented
by a histogram of instance counts of magnitude values in the
filtered trace. Points in the histogram are used to label pixels
as belonging to the image foreground or background based
on the magnitude of their voltage measurement. An image-
denoising filter is applied to this preliminary recovered image
to improve clarity. The result of the analysis is a reconstructed
image that approximates the input image to the BNN.

The convolution unit uses a line buffer architecture to hold
and provide data values to the convolution. As shown by the
line buffer at the right in Figure 7, the line buffer is arranged in
three rows, each of which processes one line of the convolution
operation. The line buffer is a shift register that receives one
pixel from the input feature map (the image) per clock cycle
and shifts its values to the right. The length of each row in
the line buffer matches the length of the input feature map
of the convolution operation (28 for the first layer in our
implementation). The rightmost word of each row of the line
buffer enters the next row from the left, and the rightmost
word of the last row is discarded. The rightmost three words
of each of the three rows of the line buffer constitute the image
window whose values are multiplied with values from the 3×3
kernel. Since binary kernels are used in a BNN, each image
pixel in the current image window is added to or subtracted
from (based on a kernel value of +1 or -1) the other pixels in
one clock cycle using a combinational adder tree. One output
feature map value is generated every clock cycle.

An adversary can take advantage of the shared FPGA
PDN to sense local supply voltage changes, which can reveal
information about the per-cycle power consumption in the
convolution unit. The power consumption is due in part to
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Fig. 8: Average of TDC voltage drop traces averaged over 6,000 runs
on AWS F1. Histogram of the filtered TDC trace and the selected
threshold.

the switching activity in the BNN accelerator, including the
convolution unit, which causes supply voltage to be correlated
to the data processed (larger magnitude data values lead to
increased switching). The small PDN fluctuations are reflected
in the sampled values of the TDC, and the TDC samples are
then used to recover a facsimile of the input image.

TDC-Based Image Extraction Results: the attack archi-
tecture was implemented on AWS F1 instances. The AWS
virtual machine (VM) is able to send input images to the
FPGA and read TDC outputs from the FPGA, using built-
in peek() and poke() functions. The TDC modules are
physically separated from the BNN Accelerator without any
direct communication. Since AWS F1 instance FPGAs cur-
rently only support use by a single customer at a time, this
setup approximates a multi-tenant scenario.

To illustrate the range of voltage changes due to the con-
volution of the input image, a histogram of the absolute value
of voltage drop measurements following high pass filtering is
shown in Figure 8. The histogram contains 40 bins evenly
distributed in value. The boundary between foreground and
background pixels can be distinguished with a threshold.
Generally, the processing of background pixels leads to small
voltage drops, clustered on the left of the histogram, and the
processing of foreground pixels leads to a range of larger volt-
age drops, on the right side of the histogram. The threshold can
be identified by locating a downward gradient in occurrence
counts over multiple bins. Figure 9 shows an original image
and reconstructed images with and without denoising.

Countermeasures are needed to reduce the effectiveness
of on-chip voltage measurement attacks. The extraction of
voltage estimates could be impeded by the significant circuit
switching of interfaces or other design components in the
proximity of the convolution unit (e.g., active fences [74],
[75]). Additionally, the pixel order of convolution unit process-
ing could be scrambled on a per-image basis to make image
reconstruction more difficult.

(a) (b) (c)

Fig. 9: (a) Input image, (b) The recovered image of same-SLR,
experiment on AWS F1 for 6,000 runs - w/o denoising, (c) same as
(b) with denoising

B. Training-Based Hiding Countermeasures against Input Re-
covery Side-Channel Attacks

Our work introduces an innovative training-based approach
to reduce the impact of this threat of remote side-channel
attacks. We train the classifier of the potential victim that needs
to be protected in such a way that the classification task can
still be performed as intended, as well as reduce the observable
side-channel leakage. For that, we first replicate the input side-
channel attack shown by Huegle et al. in Power2Picture [15],
using the Zynq UltraScale+ MPSoC platform. Then, we mod-
ify the training algorithm for the victim network to account for
the leakage that is used in that side-channel attack. We validate
the feasibility of this countermeasure by performing the side-
channel attack again and comparing the attack’s results for
both the original and protected network.

1) Methodology: in the proposed approach, we adapt the
training of the victim classifier to fulfill two training objectives
at the same time: (i) Perform the original image classification
as intended, meaning that the model is able to solve the
underlying problem with high accuracy. (ii) Integrate the
model’s leakage as loss into the training process, minimizing
the victim classifier’s leakage through the side-channel. Since
the exact way of how the input and the weights of the victim
network influence the measured trace is not known in our
scenario, we cannot directly optimize the weights of the victim
network to minimize the leakage. In technical terms, we cannot
back-propagate through the side-channel, since it is unknown
if this function is differentiable.

Our solution to address this problem is to implement and
train a surrogate model, which gets the image and weights of
the victim network as input, and output the trace this config-
uration would produce on the real FPGA. This model is dif-
ferentiable and, thus, closes the gap between weights/images
and the resulting power trace. For the training of the victim
classifier, we first pass an image to the classifier and get its
result. Then we take the original image and the weights of
the classifier and pass them as input to the surrogate model,
which then outputs the corresponding power trace.

Our objective is to force a constant output of the surrogate
model for all inputs we use. For example, this can be either
an all-zero output, or the average of all traces. The surrogate
model itself is trained beforehand and is not modified when
retraining the victim network to minimize its leakage. In fact,
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Fig. 10: A comparison between the real world scenario and
our trainable simulation. Instead of using the side-channel, our
surrogate model is used. The surrogate model was trained ear-
lier, thus only the weights of the accelerator receive updates.

since our objective is to update the weights of the victim
network and these weights are part of the input for the
surrogate model, we optimize for input and not for weights
in the surrogate model. The loss then gets combined with the
loss of the image classification. An illustration of the setup is
shown in Figure 10.

In summary, our method is implemented as follows: (i) Gen-
erate a training data set consisting of a large variety of
image/weights combinations and their real world trace using
the unprotected victim classifier. (ii) Train a surrogate model
that outputs a trace given an image and the weights of the
victim network. (iii) With the help of the surrogate model,
train the victim network to perform the original classification
task, while having minimized information leakage.

To support this setup, opposed to running the FINN NN
Accelerator in const memory mode, as also presented in [15],
we operate it in decoupled mode. In that mode, the weights
can be changed at runtime without reprogramming the entire
design. Overall, we use the same type of board (Xilinx
Ultrascale+ ZCU104 Board), and similar neural network. Next
to our countermeasure results, we report results for both the
const and decoupled setup.

2) Result Metrics: to evaluate the effectiveness of the
attack, we use result metrics as follows:

Reclassification Accuracy: As mentioned before, the test
output of the generator consists of images recovered from the
traces of the test data set. We can feed these images once more
through the original (victim) classifier and measure the portion
of images that were classified correctly. We call this metric
Reclassification Accuracy. The closer the recovered images
are to the original images, the more likely the classifier will
classify them correctly. Thus, a higher reclassification accuracy
is indicative of a more successful attack.

Average Pixel-Level Distance (APLD): To calculate the
APLD, every recovered image is compared to its original by
computing the average pixel-wise difference. The more similar
the recovered images and the corresponding originals are, the
smaller the pixel-level distance is. Ideally, for an attacker, there

TABLE II: Reclassification accuracy, Mean Structural Similar-
ity Index (MSSIM) and Average Pixel-Level Distance (APLD)
for an accelerator without and with applied countermeasure.

model
attack success metrics

reclassification
accuracy

MSSIM APLD

ideally secure 10% (guessing) close to 0.0 close to 255
perfect attack 100% 1.0 0.0
const (baseline) 65.75% 0.56 26.73

decoupled 38.70%
(-29.8%)

0.34
(-39.3%)

32.19
(+20.4%)

countermeasure 22.07%
(-66.4%)

0.25
(-55.4%)

35.15
(+31.5%)

is no difference, resulting in a pixel-level distance of zero.
Mean Structural Similarity Index (MSSIM): The MSSIM

was developed by Wang et al. [76] and is a metric to evaluate
the preservation of structural information in two images. It
follows directly from the definition of the Structural Similarity
Index (SSIM). Since our original images are highly structured,
this metric provides useful insight into the quality of our
results. The SSIM compares three aspects: luminance, contrast,
and structure of both images. The MSSIM is defined by
computing the SSIM multiple times. Here, the SSIM is not
calculated for the entire image at once. In fact a sliding
window is moved over the image, calculating the SSIM in
every step. These values get averaged afterwards. For our
results, we use a window size of 11. To get a single value
for the data set, we simply average all MSSIMs pair-wise.

3) Results and discussion: overall, the countermeasure has
shown to reduce the amount of information that is recoverable
through the chosen side-channel, while maintaining a high
classification accuracy. The results are summarized in Table II.
The unprotected baseline approach with const memory mode
reaches a reclassification accuracy of 65.75%. By applying
the decoupled mode, we can already achieve results below
the baseline, which is due to the additional streaming of
the weights hiding some of the leakage. For our training-
based countermeasure the reclassification accuracy dropped
significantly down to only 22.07%. This drop means that the
adversary could not restore the images with the same accu-
racy, indicating that our protection countermeasure effectively
reduces the attack feasibility. This is also confirmed by the
trend of the MSSIM and APLD metrics. Furthermore, it is re-
markable that the initial classification accuracy of the protected
neural network has only suffered a minimal loss with less than
1% accuracy degradation to the unprotected model. This is
very important since we do not want our countermeasure to
largely affect the primary task of the accelerator.

Overall, our countermeasure has shown to reduce the attack
success by about 43%. With the countermeasure, the victim
is able to improve its privacy by making the attack more
difficult for the attacker with negligible losses in classification
accuracy. As per our design, the countermeasure does not
need additional hardware resources or runtime for inference,
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Fig. 11: Examples of (a) Original MNIST images, (b) recov-
ered images in const memory mode (c) recovered images in
decoupled memory mode, and (d) recovered images with the
countermeasure applied.

since we only adapt the weights of the network. However, we
were not able to completely prevent information being leaked
through the side-channel. Besides the need for more research
on this specific topic, our countermeasure is a complement in
an existing security concept and not a standalone solution to
prevent side-channel leakage.

IV. CONCLUSION

Applications of artificial intelligence continue to grow
in importance and complexity. Contemporary AI applica-
tions typically require power-hungry compute acceleration
to achieve expected performance. Unfortunately, the use of
accelerators opens up the possibility of faults in the silicon
and malicious attacks. In this paper, we have described these
threats and associated countermeasures through a series of
experimentation-based case studies.

We started our discussion in this paper by examining threats
to AI computation on GPUs. More specifically, the impact
of transient faults on device reliability is explored through
a series of evaluations. These faults may be induced by
radiation. Hardening can be achieved using algorithm-based
fault tolerance and value clipping to mitigate the impact of
radiation-induced faults. In memories, error-correcting codes
and hardware redundancy provide protection.

In the second part of the paper, we examine the vulnerability
of FPGA-based ML circuit inputs. We first outline a practical
attack that allows for direct reconstruction of input images.
This effort is supported by a time-to-digital converter-based
sensor that can detect small voltage fluctuations during circuit
operation. These fluctuations allow for image reconstruction
one pixel at a time. We then describe an effective counter-
measure that uses parameter training in an effort to prevent
these fluctuations. Parameter classification is performed prior
to circuit execution. The instrumentation of these parameters
prevents side channel leakage when the ML circuit is executed.

As AI hardware continues to evolve, increased fault toler-
ance and security will be musts. New devices must be designed
to withstand faults and attacks. This paper provides insights
into several promising directions for this effort.
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