
1

HAL—The Missing Piece of the Puzzle for
Hardware Reverse Engineering, Trojan

Detection and Insertion
Marc Fyrbiak, Sebastian Wallat, Pawel Swierczynski, Max Hoffmann, Sebastian Hoppach,

Matthias Wilhelm, Tobias Weidlich, Russell Tessier, and Christof Paar Fellow, IEEE

Abstract—Hardware manipulations pose a serious threat to numerous systems, ranging from a myriad of smart-X devices to military
systems. In many attack scenarios an adversary merely has access to the low-level, potentially obfuscated gate-level netlist. In general,
the attacker possesses minimal information and faces the costly and time-consuming task of reverse engineering the design to identify
security-critical circuitry, followed by the insertion of a meaningful hardware Trojan. These challenges have been considered only in
passing by the research community. The contribution of this work is threefold: First, we present HAL, a comprehensive reverse
engineering and manipulation framework for gate-level netlists. HAL allows automating defensive design analysis (e.g., including arbitrary
Trojan detection algorithms with minimal effort) as well as offensive reverse engineering and targeted logic insertion. Second, we present
a novel static analysis Trojan detection technique ANGEL which considerably reduces the false-positive detection rate of the detection
technique FANCI. Furthermore, we demonstrate that ANGEL is capable of automatically detecting Trojans obfuscated with DeTrust. Third,
we demonstrate how a malicious party can semi-automatically inject hardware Trojans into third-party designs. We present reverse
engineering algorithms to disarm and trick cryptographic self-tests, and subtly leak cryptographic keys without any a priori knowledge of
the design’s internal workings.

Index Terms—Hardware Reverse Engineering, Hardware Trojans, Hardware Trojan Detection

F

1 INTRODUCTION

HARDWARE is the root of trust in virtually any modern
computing system, ranging from traditional computer

networks using the Internet of Things (IoT) to military
systems. Malicious manipulations of the underlying hard-
ware can have catastrophic consequences for the safety and
security of the target systems. However, modern Application
Specific Integrated Circuit (ASIC) design and fabrication
processes are heavily globalized with various (untrusted)
stakeholders, including Intellectual Property (IP) providers
and off-shore foundries [1]. Both are able to inject malicious
circuitry prior to fabrication with devastating consequences
to system security, either for their own advantage or as
a requirement by nation-state adversaries. For market-
dominating Static Random Access Memory (SRAM)-based
Field Programmable Gate Arrays (FPGAs), the situation
is similarly gloomy, since protective bitstream encryption
can be invalidated for the majority of currently employed
families [2], [3], allowing adversaries to inject malicious
circuitry [4]. We also note that most current low-cost FPGA
families do not offer bitstream encryption.

Despite intense work on hardware Trojans in the scien-
tific community, see Bhunia et al. [5] for a comprehensive
overview, there has only been a scant treatment regarding

• M. Fyrbiak, P. Swierczynski, M. Hoffmann, S. Hoppach, M. Wilhelm,
T. Weidlich, and C. Paar were with the Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Germany. E-mail: {prename.surname}@rub.de

• S. Wallat, R. Tessier, and C. Paar were with the University of Massachusetts
Amherst, USA. E-mail: {swallat, tessier}@umass.edu

Manuscript received July 31, 2017;

the practicability of actually inserting hardware Trojans into
designs, since the vast majority of work supposes access to
the Hardware Description Language (HDL) source code or
neglects the crucial step of reverse engineering, see [6], [7],
[8], [9], [10], [11], [12].

Even though reverse engineering has attracted little
scrutiny from the scientific community, understanding its
considerable complexity is indeed essential. This holds for
developing sound threat assessments of hardware Trojans,
as well as providing guidelines for developing countermea-
sures such as hardware obfuscation and physical design
obfuscation [13], [14]. Also, understanding hardware re-
verse engineering is crucial for developing countermeasures
against the pressing problem of IP theft. Similar to the
hardware design process, hardware reverse engineering
requires frameworks and tools to automate custom time-
consuming tasks and simplify the steps for a human analyst.
Given that nation-state adversaries, who arguably pose the
most credible threat regarding hardware Trojans, might have
developed hardware reverse engineering frameworks and
tools, a better understanding of such frameworks is crucial
for the security community at large. While hardware reverse
engineering frameworks and tools exist in the industrial
sector [15], [16], to the best of our knowledge, no publicly
available reverse engineering and manipulation framework
for gate-level netlists exists. We would like to note that
several academic reverse engineering tools exist [17], [18],
[19], however, these are not frameworks that are gate-level
library agnostic (e.g., usable for both FPGAs and ASICs), they
do not provide built-in extensibility to interactively integrate
custom tools, nor do they have a rich-featured interactive

2

Graphical User Interface (GUI), suited for manual analysis.
These are relevant requirements for reverse engineering.

Goals and Contributions. In this paper, we focus on
reverse engineering of high-level information from low-
level unfolded, placed-and-routed, gate-level netlists. Our
goal is to demonstrate actual netlist reverse engineering
and manipulation capabilities for offensive and defensive
applications under realistic assumptions. To this end, we
first address the lack of netlist-level reverse engineering
frameworks in the open literature and present HAL, a
holistic framework to support and automate custom time-
consuming tasks such as Trojan insertion and detection, or
assessment of IP violations. HAL’s primary purpose is to
facilitate hardware security research, allowing researchers
to focus on the innovative aspects of their work and unify
collectively-acquired knowledge. Moreover, we present our
novel static analysis hardware Trojan detection technique,
ANGEL, which outperforms a previously-proposed static
analysis detection method, FANCI [20]. In particular, we
demonstrate that we are able to automatically find Trojan
triggers which were obfuscated with the Trojan obfuscation
scheme DeTrust presented at CCS’14 [10], as well as k-
XOR-LFSR Trojans [21]. We then present multiple reverse
engineering and manipulation case studies with a focus
on how gate-level netlists of cryptographic designs can be
surreptitiously weakened. In particular, we demonstrate how
security-relevant parts can be semi-automatically reverse
engineered, and how custom-tailored malicious circuitry
can be injected to invalidate the system security. These
manipulations are possible even after validation processes
such as formal verification, code reviews, or functional tests
have been performed. Our offensive case studies focus on
representative real-world cases and are supported by an
evaluation with multiple FPGA families and a variety of
synthesis optimization strategies. In summary, our main
contributions are:

• Netlist Reverse Engineering Framework. We
present the design and implementation of HAL, an
interactive framework for virtually any user-defined
gate-level library, including ASIC and FPGA libraries.
HAL supports and automates reverse engineering
tasks and enables tailored manipulations with ease.
HAL also assists users in debugging, testing, and struc-
tural analyses to make sense of large and complex
gate-level netlists. A core feature of HAL is its extend-
ability, and we demonstrate that the development of
custom tools for reverse engineering, Trojan detection
and Trojan injection is surprisingly fast and efficient.

• Hardware Trojan Detection. We present our novel
hardware Trojan detection technique ANGEL which is
based on Boolean function analysis and graph neigh-
borhood analysis. In particular, we demonstrate that
graph neighborhood analysis considerably reduces
the crucial false-positive rate by several factors and
can detect Trojans armed with the obfuscation scheme
DeTrust as well as k-XOR-LFSR Trojans.

• Low-level Hardware Trojan Insertion. We detail the
many-faceted workflow of semi-automated hardware
Trojan insertion with accompanied reverse engineer-
ing under realistic assumptions. In several case stud-

ies, we demonstrate how meaningful Trojans can
be injected into third-party gate-level netlists. Our
custom-tailored hardware Trojans semi-automatically
invalidate security measures of cryptographic imple-
mentations, including bypassing self-tests and leaking
crypto keys.

• Novel Reverse Engineering Techniques. Our case
studies include novel reverse engineering techniques
to algorithmically disclose security-relevant parts
such as cryptographic self-tests and interfaces of cryp-
tographic implementations. We provide results for
numerous cryptographic implementations, a variety
of FPGA families, and several design optimization
goals.

We believe that the insights provided by HAL are in
particular relevant since it can be speculated that large-scale
adversaries, such as nation-states will most likely invest in
similar tools for hardware manipulations, and the work
at hand provides a guideline for threat assessment and
countermeasure design.

2 BACKGROUND AND RELATED WORK

Since HAL processes gate-level netlists for reverse engineer-
ing, some fundamental background on hardware security
and reverse engineering is required to understand the
mechanics of HAL. To this end, we first discuss the threat
model, i.e. how an adversary obtains gate-level netlists in
several real-world scenarios.

2.1 Threat Model
We assume an adversary with access to the flattened (placed
and routed) gate-level netlist without any a priori knowledge
of the design’s internal workings. More precisely, the adver-
sary has no information of module hierarchies, synthesis
options, or names of gates and signals. The high-level goal of
the adversary is to inject a hardware Trojan into the gate-level
netlist. To this end, the adversary has to reverse engineer
(parts of) the design in order to identify the relevant gates
and signals where the hardware Trojan has to be attached.
The gate-level netlist can be obtained through several means:
(1) chip-level or layout reverse engineering [14], [22] in the
case of ASICs, (2) bitstream-level reverse engineering [4], [23]
in the case of FPGAs, or (3) directly from the IP provider [1].

Note that our threat model is consistent with prior
research on hardware security [1], [5], [24], [25], [26].

2.2 Gate-Level Netlist Reverse Engineering
Modern digital circuit design is typically realized at the
Register Transfer Level (RTL) which models the signal
flow among registers. Logic synthesis tools convert RTL
descriptions to gate-level netlists, i.e. a list of gates and their
interconnection. Subsequently, place and route algorithms
process the gate-level netlist and determine where gates
are placed and how the interconnections are routed. From
a reverse engineering perspective, valuable information is
lost during this translation: module boundary information
and hierarchy information [17], [27]. In addition, diverse
optimizations are performed to achieve a predefined op-
timization goal such as improved area or timing. Thus, a

3

reverse engineer targets this information to then recover
crucial high-level information about the design.

In 1999, Hansen et al. [28] described several steps for a
human reverse engineer to retrieve high-level information
from gate-level netlists such as the identification of common
library structures and the detection of recurrent modules.
Shi et al. [29] reported a technique to algorithmically extract
Finite State Machines (FSMs). Later, Shi et al. [30] described
a method to extract diverse functional modules from a gate-
level netlist. In 2012, Li et al. [31] developed a technique
to match unknown sub-circuits against library components
based on pattern mining of simulation traces and model
checking. In further work, Li et al. [32] described how
word-level structures can be uncovered automatically. Based
on this work, Subramanyan et al. [17], [33] extended the
arsenal of reverse engineering algorithms by extraction of
functional components such as register files and adder units.
Functional identification also requires identifying the correct
order of input bits (of the component under inspection),
i.e. least to most significant bit. Thus, a reverse engineer
has to brute-force the correct permutation or derive it from
already reversed components. Gascón et al. [34] addressed
this problem with a template-based solution. Wallat et al. [35]
presented several insights on offensive aspects of reverse
engineering such as the removal of watermarks for IP
protection and the manipulation of stream ciphers.

While previous works focused primarily on ASICs, we
additionally address FPGA platforms in our case studies.
Furthermore, we take a step forward and demonstrate how
reverse engineering and manipulation techniques act jointly
to inject hardware Trojans in security-critical circuitry of
third-party gate-level netlists.

2.3 Hardware Trojans
Since an initial report by the US DoD in 2005 [36], the
scientific community has extensively researched offensive
and defensive aspects of malicious hardware manipulations,
see Bhunia et al. [5] for a comprehensive overview. Typically, a
hardware Trojan consists of a payload delivering the malicious
functionality (e.g., leakage of cryptographic keys or denial
of service) and an optional payload activating trigger (e.g.,
a counter or sensor). Note that if a trigger is not used, the
Trojan is always active.

Defensive research focuses on the detection of hardware
Trojans based on diverse characteristics such as physical
attributes, trigger features, and payload features [37]. In
order to detect characteristics, various approaches based
on side-channel analysis [5], and static or dynamic design
analysis [20], [21], [38], [39], [40], [41] have been proposed,
see Section 4.3 for more details on the different detection
techniques. Several works targeted manipulations at layout-
level design methodologies such as dopant-level Trojans [9],
analog Trojans [12], or parametric Trojans [11]. In contrast
to the vast amount of defensive research, considerably less
public research focuses on offensive aspects. The majority
supposes access to the HDL source code or neglect reverse
engineering of crucial high-level information (see [6], [7],
[8], [10]). Our work addresses this important gap and
we demonstrate how hardware Trojans can be injected at
the gate-level even after validation processes have been
performed.

2.4 FPGA Security
In order to analyze and potentially manipulate an FPGA
design post-deployment, an adversary has to analyze the
bitstream configuring the FPGA. In the case of market
dominating SRAM-based FPGAs, the bitstream is stored in
an external non-volatile memory (e.g., a flash chip). Thus,
the bitstream can be extracted with relatively low effort by
directly dumping the memory contents or via wiretapping
during boot-up.

To counteract IP theft, various FPGA manufacturers have
included bitstream encryption in their product series. Unfor-
tunately, past research has demonstrated that the majority of
these schemes are vulnerable to Side-Channel Analysis (SCA)
attacks, i.e. that the secret key can be extracted [2], [3], [42].
This enables an adversary to obtain a decrypted bitstream
which can be manipulated and re-encrypted. Even though
the bitstream is a proprietary encoding of a gate-level netlist,
it has been shown that this encoding can be (automatically)
reverse engineered [23], [43], [44], [45], [46].

Despite intense research in FPGA security, only a few
works have focused on bitstream-level manipulations to
practically extract cryptographic keys from block ciphers [4],
[47], [48], [49]. More specifically, these works addressed the
analysis and exploitation of Block-Ram and Look-up table
(LUT) configuration. In contrast to the limited bitstream-
level manipulation attacks, we focus on an adversary with
access to a gate-level flattened netlist, i.e. the entire hardware
configuration.

3 HAL - DESIGN AND IMPLEMENTATION

We now describe HAL’s overall architecture, workflow, and
implementation. To this end, we want to stress that HAL itself
is not a tool but a comprehensive framework that can be used
to create tools, a common task during reverse engineering.

3.1 HAL System Architecture
HAL was written according to modern software design
and architecture standards to achieve easy maintainability,
extendability, and high modularity. Therefore, HAL consists
of several separated building blocks, each focusing on a
logical feature set. In the following we outline the workflow
of HAL, before providing more detail on the main building
blocks. To guide the reader, we will refer to the numbered
circles of Figure 1 which provides an overview of the
workflow of HAL.

HAL - General Workflow. The user invokes HAL with
a gate-level netlist 1 . HAL uses one of its parsers 2
(e.g., VHDL or Verilog) to transform the input netlist into
its internal graph representation 3 . After this translation
step, user-defined plugins 5 can be invoked via the
plugin manager 4 to automatically analyze and possibly
manipulate the gate-level netlist. All changes to the graph
throughout the plugin operations including meta data added
by plugins or the user (e.g., meaningful names and hierarchy
information) are synchronized with a local database 0 .
To further support the user, the whole workflow is also
accessible via an interactive GUI 9 and an interactive
Python shell 10 . When all requested plugins and tasks have
been processed, the graph may be written back 6 to a

4

Netlist
Modified
 Netlist

mod

User

HAL

HDL Parser HDL WriterGraph
 Core

GUI

Python Shell

Plugin Manager

Analysis
 Report

Database Database
 File

Input: Output:

Plugin 1

Plugin n

Plugin 2

...

Figure 1. Overview on HAL’s architecture and workflow.

gate-level netlist for synthesis or simulation 7 in any of the
supported HDL languages.

3.2 HAL- Building Blocks

HDL Parser and Writer. HAL transforms an input netlist 1
(e.g., in VHDL or Verilog) into a directed multi-graph
representation of the design. To be more precise, a gate-
level netlist includes a series of gates (nodes) and how
they are connected via nets (directed edges) where a gate A
may have two output ports and both connect to the input
of gate B (multi-digraph). Typically, a netlist includes a
set of atomic gates defined in a gate-level library which
specifies their behavior. However, in cases of chip-level
reverse engineering the gate-level library is often not known
beforehand and is disclosed during the process itself. To
support incorporation of custom netlist libraries and even
HDL languages, we developed an extensible parser and
writer interface which is independent of the gate-library and
source language. Currently, we support all Xilinx FPGA and
ASIC gate libraries for the TrustHub benchmark suite [50].
Adding libraries is straightforward and can be done without
recompiling HAL.

After the analysis and manipulation step, a reverse engi-
neer may be interested in a synthesizable netlist containing
the modified graph 7 . To provide this functionality, HAL
includes multiple HDL file writers 6 , including VHDL and
Verilog, which transform the modified design back to its
netlist representation in the user-preferred supported HDL
language. For example, if the input is a VHDL netlist we can
also output a Verilog version which is handy since several
open-source tools such as Verilator [51] do not support
VHDL.

Graph Core. The operational heart of HAL is the graph
core 3 which allows netlist exploration. Our graph represen-
tation is a high-level abstraction of any arbitrary gate-level
netlist independent of the underlying gate library or HDL
language, analogous to intermediate representations used in
software program analysis. Note that such a step is favorable
in practice since automated techniques can be developed on
the high-level representation rather than a single technique
for each gate library. Furthermore, dedicated algorithms from

graph theory can be employed, leveraging existing research
from math theory. In essence, the graph core provides graph
traversal functionalities and methods to edit the graph itself.
The graph can be reshaped by adding new gates and nets
or removing existing ones. Moreover, the grouping and
annotation of gates and nets into subgraphs (modules in
HDL) is supported which is important for reconstruction of
a design’s module hierarchy.

Furthermore, we implemented a dynamic and generic
decorator interface to add user-defined behavior and state to
gates and submodules during HAL execution. For example,
we developed decorators to provide Binary Decision Dia-
gram (BDD) representations of gates and special memory
access functionality for LUT gates. Since we are using C++ ,
static inheritance (instead of decorators) is not a favorable
solution to dynamically attach additional functionality.

On top of these fundamental operations, the Application
Programming Interface (API) provides the user with access to
high-level graph analysis algorithms (e.g., Dijkstra’s Shortest
Path, Strongly Connected Components). Since all plugins
typically make heavy use of the graph core, it is optimized
for speed and failure safety.

To enable persistent storage of revealed information and
to facilitate joint reverse engineering on a specific design,
we integrated a database synchronization engine 0 . The
database not only stores the graph itself, but also any user-
defined meta data such as names and hierarchy information.
Since textual representations of flattened gate-level netlists
are in the range of several megabytes, we decided to employ
a performance-optimized NoSQL database and implemented
a custom key format to store arbitrary user data. With our
database engine we enable collaborative analysis of the same
netlist and snapshot generation since the database files can
easily be shared among a team of users or saved as a backup.

Plugin System. To separate the development of the core
framework from user-defined applications and algorithms,
we use a plugin-based system architecture to dynamically
include external code. Here, a plugin-based approach is
favorable since this approach is highly extensible and HAL
itself does not have to be recompiled when new plugins are
implemented. We use a plugin manager 4 which handles
registration, loading, usage, and eventually unloading of

5

plugins during run-time. Multiple plugins can be executed
in parallel or consecutively invoked to automatically engage
each other.

Analysis Report. Using a sophisticated logging system
the user can create rich analysis report files 8 for result
logging or as debugging information. The logging system
was created with support for multiple channels and severity
levels, as well as intuitive output formatting.

GUI. An engineer can already accomplish a lot by using
HAL only via its command line interface with the plugin
system. However, with textual output alone it can be difficult
to make sense of huge designs with potentially billions
of gates. To mitigate the manipulation of overwhelming
amounts of textual information, we included an interactive
GUI to enable visual representation of the gates and nets
of the processed graph 9 . For optimal presentation, we
created a unique graph view layout tool from the ground
up to meet our high requirements of interactive design
exploration. Note that layout planning of large gate-level
netlist graphs is a challenging problem since the vertex and
edge arrangement has to be computed quickly and focused
on comprehensibility (e.g., to support the mental map for
manual reverse engineering). Therefore, we integrated a
generic interface to support multiple graph layout algorithms
as different layout techniques focus on different visual
representations. For example, we integrated an orthogonal
layouter, which arranges a graph in a rectangular 2D grid,
as well as a hierarchical layouter that leverages additional
information about the distance of nodes to I/O ports.

The GUI is also enhanced with interaction. The graph can
be visually traversed by moving from pin to pin by clicking
on the graphical representation or using keyboard shortcuts.
Additionally multiple docks provide rich information about
selected components and plugin-generated annotations. For
example, a reverse engineering plugin that automatically
detects a cryptographic module can adjust the color of
identified gates and nets to aid the analyst. We stress that
the GUI is of immense interest for a human reverse engineer,
since making sense of a complex design is notably easier with
a visual representation than just with textual information.

Python Shell. To allow simple execution of arbitrary
core functionalities, for example for testing or even batch
execution of long running analysis tasks, we integrated an
interactive Python3-based shell console widget 10 into HAL.
Our Python shell allows access to the fast C++ HAL API from
within the Python interpreter by mapping each core function
from C++ to Python. This enhances the static plugin system
with interactive code execution to improve the usability
during semi-automated design exploration.

Since we believe that HAL aids researchers in analyzing
their designs and because of its rich set of features and
the optimized core, we plan to publicly release HAL to the
research community.

3.3 HAL Implementation

We implemented HAL in C++ 14 due to its efficiency and
high performance capabilities that are especially critical for
processing large hardware designs consisting of hundreds of
thousands of gates. To keep HAL maintainable and extensible,

we focused on clean and well documented code, as well as
the predominant design principles of software architecture.

Software Libraries. We employ several components of
the BOOST library (version 1.58), namely the BOOST GRAPH
LIBRARY (BGL), and the Boost Filesystem. The BGL forms
the backbone of our graph core as it already provides a
rich set of graph algorithms. To ease functional analysis we
use the BUDDY library (version 2.4) [52] to automatically
generate BDD dynamic extensions for single gates or entire
combinational subgraphs. For database serialization, we
decided to use KYOTO CABINET, a collection of fast, server-
less, NoSql database types which operates cross-platform so
that database files can be easily exchanged among engineers.
The GUI is built on top of the QT5 (version 5.6) application
framework. Qt is also platform independent and integrates
well with C++ 14. The interactive Python shell is built using
PYTHON3 (version 3.6) and PYBIND11 (version 2.1.1) [53] to
connect the C++ functions of the HAL API with Python.

To manage the build process and dependencies platform-
independently, we employ the cross-platform build man-
agement tool CMAKE (version 3.6). It generates configured
build files for GNU MAKE and other build systems such
as NINJA. For the build process itself, we support both
GCC (version 6.3) as well as LLVM (version 4). Supporting
multiple compilers also results in more robust code, as
the compilers perform different optimizations and provide
differing output.

Currently, HAL is supported on Ubuntu, Arch Linux and
macOS. Note that Microsoft Windows support is prepared,
but not fully functional yet.

4 GATE-LEVEL TROJAN DETECTION - ANGEL
We now present our novel static analysis technique ANGEL
(Analyzing the Neighborhood of Graphs to Expose Leakers)
based on (1) Boolean function analysis, and (2) graph
neighborhood analysis.

4.1 ANGEL- Technique

ANGEL builds on previous state-of-the-art research in static
analysis hardware Trojan detection, namely FANCI originally
presented at CCS’13 [20], [54]. Similar to FANCI we focus on
detection of weakly-affecting inputs through Boolean func-
tion analysis, but additionally consider the neighborhood of
combinational gates for each gate to address fundamental
limitations of FANCI. To this end, we first sketch the idea of
the Boolean function analysis and subsequently we present
the novel idea of incorporation of the graph neighborhood. In
addition, we want to emphasize that static analysis is indeed
a powerful tool since it does not rely on a golden model or
verification tests which is favorable in practice since fewer
potential weak-points for attackers have to be trusted.

Boolean Function Analysis. To estimate the impact of an
input signal on a corresponding output of a gate g, FANCI
proposed a so-called control value CVo which is a vector for
the output o of Boolean differences BDo for each input i
standardized by the number of inputs I , i.e. CV = BDo(i) ·
2−I , see [10]. The Boolean difference BDo(i) computes the
total number of patterns under which flipping input i results
in a change of the output o. For example, let us consider a

6

simple AND gate with 3 input signals (i0, i1, i2) and 1 output
signal: the Boolean difference is 2

23 = 0.25 for each input
signal, since there is a difference for two input patterns, i.e.
011 and 111 for i0, 101 and 111 for i1, and 110 and 111 for
i2.

Since the complexity of ANGEL (and FANCI) exponen-
tially grows with the number of inputs for a graph cut
(or a gate for FANCI), we utilize the technique developed
in the original FANCI work: we approximate the control
vector computation by choosing a certain number of inputs
uniformly (e.g., 215) and compute the Boolean difference for
these values to keep analysis time practical.

Graph Neighborhood Analysis. Since a Boolean differ-
ence computation on the single gate, as used in FANCI [20],
[54], results in a high false-positive rate, as demonstrated
by Zhang et al. [10], we consider the neighborhood of the
combinational gate as well. To this end, we determine a
d-feasible graph cut [17] for each gate g. In other words
we apply a backward breath-first search starting from g for
depth d. Afterwards, we compute the Boolean difference
not on the individual gate-level, but rather on the overall
neighborhood of each gate. Note that the consideration
of local predecessors is favorable since a Trojan trigger
is typically implemented with multiple gates. Hence, an
analysis of the Boolean difference of multiple coherent
gates will increase the detection probability in case of low
controllability and simultaneously decrease the chance that
genuine gates are flagged as malicious.

Ignoring Sequential Stages Boundaries. Due to ad-
vances in hardware Trojan design research, a Trojan trigger
may be spread across multiple sequential stages [10], [21].
To cope with such obfuscation, we simply ignore the se-
quential registers and latches and build the graph cut using
predecessors of data input ports. In this way, we are able
to track the Boolean difference of local combinational gates
even if they are (intentionally) in different sequential stages.
Note that genuine circuits typically do not possess a low
controllability across sequential stages, hence we expect that
the false-positive rate does not increase if we ignore sequential
stages.

We want to emphasize that a similar idea was noted
as FANCIX by Haider et al. [21], but they did not perform
an evaluation since they proposed “to monitor the circuits
up to multiple sequential stages at a time, while ignor-
ing any FFs in between” which consequently results in a
high computational complexity. We build upon this idea
and demonstrate that with an incorporation of the local
neighborhood of a predefined depth d, the computational
complexity is still practical on commodity hardware while
simultaneously providing a low false-positive detection rate.

Algorithm 1 formalizes the idea of ANGEL. In line 2
we compute a feasible graph cut of depth d while ignoring
any Flip Flops (FFs) or latches in between. Lines 3 - 9
determine the Boolean difference for each cut. To this end
determine truth table combines all Boolean functions of the
graph cut into a single large truth table. We used the mean-
and-median heuristic 7 , since it performs best [20].

Implementation. We now want to highlight several
steps that accelerate the computation of ANGEL. First, each
gate 1 can be analyzed in parallel, as well as the compu-

Algorithm 1 ANGEL
Input: D - Design gate-level netlist
Input: d - Depth
Input: t - Threshold

Output: S - Set of suspicious gates
1: for gate g ∈ D do
2: cut c← get feasible graph cut(D, g, d)
3: truth table t← determine truth table(c)
4: for output o of g do
5: control vector CV ← ∅
6: for input i of c do
7: CV.push back(compute heuristic(c, i, o))
8: if check heueristic(CV) < t then
9: S ← S ∪ {g}

10: return S

tation of the Boolean difference for each input signal 6 .
Hence, this approach scales with more computation power.
Second, we store the heuristics for each cut so that we can
perform the heuristic check 8 for multiple threshold values,
since it only involves comparison of real values (which is
faster than the computation of the Boolean difference).

Before we present and discuss the results of our evalu-
ation, we briefly sketch two state-of-the-art Trojan design
strategies that aim for increased stealthiness by applying
special constructions to the Trojan so that automatic detection
algorithms are deceived.

DeTrust Hardware Trojans. Zhang et al. [10] presented
DeTrust, a systematic way to design hardware Trojans which
could not be detected by FANCI. The general idea is to hide
the combinational Trojan trigger in several sequential stages.
Zhang et al. reported that a threshold of around 0.1 exposes
several Trojan related gates, however it suffers from a large
amount of false-positive gate detections. Note that ignoring
sequential stages in our graph cut determination specifically
handles these DeTrust obfuscation Trojans. Analogous to
Salmani [41], we realized the DeTrust obfuscation by inserting
additional FFs at the output of each Trojan trigger gate.

k-XOR-LFSR Hardware Trojans. Haider et al. [21] pre-
sented the k-XOR-LFSR hardware Trojan design strategy to
construct stealthy triggers with implicit malicious behavior.
Basically, an Linear Feedback Shift Register (LFSR) consisting
of k registers is leveraged to design a counter so that
several selective connections of the LFSR state determine the
trigger condition for the Trojan. Hence, the adversary is able
to design more complex trigger conditions and a higher
signal dimension, i.e. number of wires used to trigger the
payload. For comparison to Salmani [41], we use the same
4-XOR-LFSR Trojan that leaks data for a specific LFSR state,
see [41] Figure 10 (a), which was originally described by
Haider et al. [21].

4.2 Evaluation
To demonstrate the efficiency of ANGEL, we used bench-
marks from the popular TrustHub suite [50]. Table 1 shows
the results of our evaluation for four TrustHub designs,
(1) s15850, (2) s35932, (3) s38417, and (4) s38584. Design
(1) has 1666 combinational gates and 517 sequential gates, (2)
has 3717 comb. gates and 1729 seq. gates, (3) has 3739 comb.

7

Table 1
Evaluation of the identification accuracy of ANGEL compared to FANCI [20] for hardware Trojans equipped with DeTrust (see Section 4.2 for details).

The X symbol indicates that (parts of) the Trojan were identified, the 7 symbol indicates that no part of the Trojan was identified.

Design Defense Threshold to
Detect Trojan

Computation
Time

Number of Suspicions Gates
in % for Threshold t

t = 0.0001 t = 0.001 t = 0.01 t = 0.13

s15850 FANCI 2−3 1.81 s 0 7 0 7 0 7 27.8 X
ANGEL (d = 2) 2−8 13.59 s 2.4 7 3.2 7 8.2 X 25.0 X
ANGEL (d = 3) 2−11 4.68 m 4.4 X 5.5 X 9.7 X 21.62 X

s35932 FANCI 2−3 3.37 s 0 7 0 7 0 7 15.6 X
ANGEL (d = 2) 2−8 10.25 s 0.01 X 0.1 X 0.3 X 24.8 X
ANGEL (d = 3) 2−12 18.41 s 0.1 X 4.7 X 4.8 X 48.8 X

s38417 FANCI 2−3 4.34 s 0 7 0 7 0 7 42.6 X
ANGEL (d = 2) 2−7 52.91 s 2.7 7 5.0 7 13.0 X 34.3 X
ANGEL (d = 3) 2−11 1.48 h 7.4 X 11.3 X 16.9 X 23.2 X

s38584 FANCI 2−3 5.34 s 0 7 0 7 0 7 30.1 X
ANGEL (d = 2) 2−6 44.25 s 3.2 7 4.5 7 10.3 7 27.2 X
ANGEL (d = 3) 2−11 10.63 m 3.6 X 4.2 X 6.7 X 13.6 X

gates and 1602 seq. gates, and (4) has 5202 comb. gates and
1282 seq. gates prior to obfuscation. Overall, we see that the
false-positive rate decreases by several magnitudes when we
increase the depth, so that the number of suspicious gates
is in a range that can be analyzed manually. Our results on
FANCI are similar to the evaluation results of Zhang et al. [10]
for the threshold 0.13 (false-positive rate around 30% to 40%,
cf. Figure 10 (a) in [10]). Note that minor deviations occur
since the control value approximation is non-deterministic
and we did not have access to the original implementations.

The table compares the identification accuracy of FANCI
to the accuracy of ANGEL where the output of FANCI can
be seen as the output of ANGEL with depth d = 1. It can
easily be seen that ANGEL outperforms FANCI at higher
depths. Additionally, our results for threshold t = 0.01,
t = 0.001, and t = 0.0001 show that ANGEL is able to
successfully detect the malicious circuity even for thresholds
where FANCI is not able to detect any Trojan. We selected
the exemplary threshold values 0.13 for two reasons: First,
FANCI requires a threshold of > 0.125 to identify the Trojans
thus we rounded this value up to report the number of false-
positive detected gates. Second, this threshold is crucial for
Trojans designed with the obfuscation DeTrust [10], which
we briefly discuss in Section 4.3.

k-XOR-LFSR Hardware Trojans. We also evaluated AN-
GEL with respect to the 4-XOR-LFSR Trojan (described in the
previous section). Note that the number of suspicious gates
is similar to the DeTrust designs for FANCI and ANGEL with
depths d = 2 and d = 3, since we only change the relatively
small Trojan and thus we deliberately did not provide an
additional table. FANCI was only able to detect the selective
connections of the 4-XOR-LFSR Trojan with a threshold of
0.13, however, for this threshold the number of suspicious
gates is rather high (similar as for the DeTrust Trojans), i.e.
around 30% - 40%. ANGEL was able to successfully detect
the Trojan for both depths d = 2 and d = 3 for all threshold
values while resulting in a far lower false-positive rate, i.e.
4.3% for s15850 with d = 3. Note that an additional DeTrust
obfuscation for the selective connections would not increase
the stealthiness, since ANGEL simply ignores sequential stage
boundaries.

As demonstrated in Table 1, ANGEL significantly reduces
the false-positive rate and thus enables automatic detection by
static analysis for DeTrust obfuscated Trojans. This observa-
tion is also true for the k-XOR-LFSR Trojan.

4.3 Discussion
DeTrust and k-XOR-LFSR Trojans. As noted before, our
evaluation results regarding FANCI are the same as provided
by Zhang et al. [10], cf. Figure 10 (a) in [10]. Since ANGEL
with depth d = 1 basically performs the same evaluation as
FANCI, both techniques yield the same number of suspicious
gates in this case. Note that minor variations exist since the
control vector approximation is non-deterministic and hence
results differ across multiple executions. For higher depths,
ANGEL significantly outperforms FANCI. In addition, we
want to highlight another static analysis strategy for k-XOR-
LFSR Trojans. Recently, Wallat et al. [35] demonstrated how
LFSRs can be automatically extracted from gate-level netlists.
Note that we implemented this LFSR detection using HAL,
so any LFSR structure is automatically and reliably exposed
in seconds. Since HAL supports development for multiple
analyses and manual inspection afterwards, an analyst can
examine reports from plugins to verify whether a Trojan is
present or not (e.g., using both ANGEL and LFSR detection).

Threshold. A major concern for both FANCI and ANGEL
is finding an appropriate threshold value. Even though it
should be a small value, to the best of our knowledge, no
automated means to approximate an optimal threshold exists.
Our implementation aids the identification of a threshold for
a given design since all control values are computed before
heuristic checking.

Comparison to Other Static Schemes. We now discuss
similarities and differences between ANGEL and two state-
of-the-art static analysis Trojan detection techniques, namely
(1) correlation-based clustering [40], and (2) COTD [41].
Similar to ANGEL, both strategies attempt to identify crucial
Trojan trigger logic by computing a form of controllability,
since Trojan triggers are typically associated with gates
that possess low controllability. However, both techniques
are orthogonal to ANGEL. For correlation-based clustering,
simulation data of tests for manufacturing faults are analyzed

8

and a correlation-based similarity weight is determined
for input/output gate values. Afterwards, a density-based
clustering algorithm is used to flag outliers, i.e. potential
Trojan trigger gates. As pointed out by Salmani [41], the
accuracy depends on observing sufficient signal activity. For
COTD, a controllability and observability value is deter-
mined by SCOAP and afterwards an unsupervised clustering
analysis splits signals into malicious and genuine lists. The
complexities of the different strategies are ANGEL/FANCIX:
O(gm2m), and COTD: O(n) for g = number of gates, m
= (sub)circuit inputs, and n = number of wires [41]. Note
that the dynamic scheme HaTCh possesses a complexity of
O((2n2)d), with d = signal trigger dimension. The runtime of
COTD is considerably faster than ANGEL, however, ANGEL’s
runtime is not impractical. Even though ANGEL possesses
the exponential factor m, we leverage the approximation of
the control value computation, thus this exponential factor is
bound (e.g., 215) and the complexity is bounded by O(gm).

Lastly, we want to emphasize that with the assistance of
HAL, we were able to implement a high-performance, gate-
level library agnostic version of ANGEL with merely several
hundred lines of C++ code. Since we also plan to publish
the implementation of ANGEL in addition to HAL, other
researchers can build upon our implementation and focus on
novel research aspects rather than redoing implementation
and experiment setup work from scratch. Furthermore, with
multiple accurate and reliable hardware Trojan detection
strategies such as correlation-based clustering, COTD, and
ANGEL, and the (semi-)automated reverse engineering capa-
bilities of HAL, we believe that we can significantly impede
the insertion of stealthy malicious Trojans.

5 GATE-LEVEL REVERSE ENGINEERING AND MA-
NIPULATION - TWO CASE STUDIES

We now present two offensive case studies to demonstrate
HAL’s applications for gate-level Trojan injection into benign
third-party gate-level netlists. In particular, we introduce
generic semi-automatic reverse engineering and manipula-
tion techniques implemented with the assistance of HAL
to inject hardware Trojans into gate-level netlists of crypto-
graphic designs. More precisely, we show how to (1) trick and
disarm cryptographic power-up self-tests (Section 5.1), and
(2) subtly wiretap and leak cryptographic keys via unused
Input/Output (I/O) pins (Section 5.2).

Cryptographic Designs. To realize security properties
such as confidentiality or integrity, it is of crucial importance
that the deployed cryptographic module is not compromised.
Given that most cryptographic primitives in use, such as the
Suite B ciphers [55], are robust against traditional attacks, i.e.
brute-force and cryptanalysis, adversaries are often forced to
exploit implementation attacks to undermine the security of
systems and applications. Most prominent implementation
attacks are SCA and Fault Injection (FI) which have been
investigated in great detail in the context of hardware security
in the scientific and industrial communities, see [56], [57]
for comprehensive overviews. Even though SCA and FI
countermeasures do not solve all problems, there is a sound
understanding of attacks and countermeasures.

We focus on hardware Trojans to weaken security by
manipulating the underlying hardware. To evaluate the se-

vere consequences of low-level hardware manipulations at a
larger scale, we obtained numerous publicly available, third-
party Advanced Encryption Standard (AES) implementations
from OpenCores and an NSA website to achieve variability.
Each AES IP core provides an interface to set a key and
encrypt or decrypt user data. To communicate with the
environment, we extended each design to include a Universal
Asynchronous Receiver Transmitter (UART)/RS-232 inter-
face that can be used as part of an FPGA implementation. To
be as close as possible to a practical scenario, we furthermore
augmented each AES IP core with a self-test1, see Section 5.1.
Note that we made no changes to the underlying AES design,
but merely integrated necessary hardware components with
a full-fledged IP core.

SRAM-based FPGAs. In our offensive case studies, we
focus on SRAM-based FPGAs. As noted in Section 2.4, the
majority of currently deployed SRAM-based FPGAs from
Xilinx and other vendors can be affected by post-deployment
hardware Trojan injections since the bitstream is either not
protected or the cryptographic protection can be circum-
vented by means of SCA attacks. Thus, an adversary can
read-out and transform the proprietary bitstream file format
to a readable gate-level netlist, perform reverse engineering
and manipulation of security-critical design parts, and re-
generate and deploy the bitstream.

Notation. We use the following notations: p - Plaintext
(16 bytes), k - Key (16 bytes), c = AESk(p) - Ciphertext (16
bytes), (pref, cref) - Plaintext/ciphertext pair for the self-test,
kst - Key for the self-test, ku - Key for user data.

5.1 Case Study: Disarm Cryptographic Self-Tests

Several works have demonstrated that targeted manipulation
of third-party cryptographic hardware implementations
have serious consequences, ranging from key leakage to
surreptitiously weakened ciphers, even for high-security
real-world devices, see [47], [48], [49], [59]. These attempts
are usually detected by mandatory self-tests in cryptographic
IP cores [58]. To utilize these powerful attacks for realistic
IP cores, an adversary must disarm the self-test prior to the
manipulation. In this case study, we demonstrate for the first
time how the self-test circuitry can be both algorithmically
reverse engineered and manipulated in a way that the
aforementioned attacks can be performed.

Detailed System Model. We assume the following
generic workflow for the cryptographic IP core:

1) Upon initialization, the IP core conducts a power-up
self-test with an internally stored self-test key kst and
a reference plaintext pref.

2) The IP core checks whether the computed ciphertext
is equal to the internally stored reference ciphertext,
i.e. cref

?
= AESkst(pref).

3) If the self-test is successful, a user key ku is passed
to the AES core and used to encrypt or decrypt user
data. Otherwise, the cryptographic module enters an
error state.

1. “A cryptographic module shall perform power-up self-tests and
conditional self-tests to ensure that the module is functioning properly”,
see FIPS PUB 140-2 [58].

9

Device Synthesis AES Design
Option 1 2 3 4 5 6 7 8 9 10 11 12 13

Spartan-3E area n.a.

XC3S1600E
balanced n.a.

speed n.a. G#

Spartan-3 area n.a. n.a.

XC3S1000 balanced n.a. n.a.
speed n.a. n.a.

Spartan-6 area G# G# G# n.a.

XC6SLX16 balanced n.a.
speed n.a.

Virtex-4 area n.a. n.a.

XC4VLX25 balanced n.a. n.a.
speed n.a. n.a.

Virtex-5 area

XC5VLX50 balanced
speed

Virtex-6 area G# G# G#

XC6VLX75 balanced G#
speed G#

7 series area G# G# G#

XC7K70T
balanced G#

speed G#
Table 2

Evaluation results of self-test reverse engineering. : successfully reverse engineered, G#: reverse engineering required minor manual netlist
inspection, n.a.: the given AES could not be implemented for the device, blank: reverse engineering did not yield a result.

Note that we do not make assumptions about how the IP
core is integrated into a larger system or whether the user
key ku is stored internally or supplied from the external
environment.

Adversary’s Goal. The high-level goal of the adversary
is to perform targeted manipulation of the cryptographic
computation to reveal the employed key ku or weaken the
cipher (e.g. by an S-box substitution [47], [48], [49], [59]). To
perform a successful manipulation, the adversary is required
to disarm the self-test circuit and trick it in a way that it
always returns successful irregardless of the manipulated
cryptographic implementation.

5.1.1 Algorithmic Reverse Engineering of Self-Test Circuits
To disarm and manipulate the self-test, the adversary has to
first reverse engineer which gates and signals implement this
functionality. To this end, we first detail how cryptographic
self-tests are usually implemented and second we present
our novel technique to determine how such structures can
be automatically identified.

Cryptographic Power-Up Self-Tests. A self-test of a cryp-
tographic module is usually realized as several additional
states in the design’s FSM that runs the cryptographic algo-
rithm on some a priori computed, internally stored reference
data. If the reference and the dynamically computed values
are not equal, the design transitions into an error state (and
does not perform any further operation), cf. [55].

Hereinafter, we describe the automatic reverse engi-
neering strategies for two distinct device family series
from Xilinx. In particular, we highlight how the different
FPGA architectures (designed for 4-input LUTs or 6-input
LUTs) affect our reverse engineering strategy. We want to

emphasize that our search mainly focuses on the crucial 128-
bit comparator which checks the equivalence of cref and the
dynamically computed AESkst(pref).

Reverse Engineering. The general idea of our automated
reverse engineering technique is to search for the comparator
circuit that computes the equivalence of cref and AESkst(pref).
Even though comparators can be realized by numerous
FPGA gates (e.g, LUTs, multiplexers, AND, or carry gates),
we developed a generic approach shown in Algorithm 2.

Algorithm 2 Self-Test Circuit Reverse Engineering
Input: D - Design gate-level netlist

Output: S - Set of self-test circuits
1: set S ← ∅
2: list L ← ∅
3: for gate g ∈ D do
4: if check hamming weight(g) = true then
5: L.append(g)
6: set of comparators C ← merge(L)
7: return S ← merge comparators(C)

In lines 3 - 5 , the function check hamming weight
analyzes whether each gate’s Boolean function of all active
input pins (neither static GND nor VCC) implements a
function that returns a distinctive output bit (e.g., logical 1 or
logical 0 for exactly one input) and the complementary bit for
all other active input pin assignments. We then analyze the
neighborhood of each candidate gate and merge connected
ones 6 . Therefore, we first check whether candidate gates
are direct successors or predecessors of each other as well
as whether the output of several candidate gates merge in

10

further target gates. We repeat this action until no further
candidate or target gate can be added to the comparator. We
then merge the identified comparators to determine whether
they form a multi-comparator 7 , i.e. that checks more than
one value. Note that this multi-comparator is not identified
in 6 , since the gate that combines two comparators usually
consists of a Boolean OR. Finally, we output all identified
(multi-)comparators and output their respective bit-width
which is derived by counting the number of different inputs.

With the assistance of HAL, we developed a plugin
that yields a list of comparators and their corresponding
width. Prior to the large-scale evaluation of the comparator
detection algorithm, we briefly describe how such identified
comparators can be manipulated.

5.1.2 Manipulation of a Self-Test
We present two implementation strategies to bypass a self-
test: (1) always bypassed, and (2) conditionally bypassed.

Always Bypassed. To bypass the self-test for any input,
we manipulate the final gate in the comparator which
decides whether an input value matches the expected one.
For example, if the final gate is a LUT, we change its
configuration to always output a logical 1 (or 0 depending on
what the comparator interprets as true). Otherwise, we simply
alter each identified LUT in the comparator appropriately so
that it always (erroneously) outputs true.

Conditionally Bypassed. If the comparator of the self-
test is utilized by other circuitry, we can simply add a trigger
condition to the design that checks whether the comparator
is used for the self-test or not. Typically, this requires some
additional reverse engineering of the design’s control logic,
see [18], [29].

5.1.3 Evaluation
For the large-scale evaluation of our proposed self-test
detection, we target a range of Xilinx FPGA families and
several synthesis options for each of the AES designs. Note
that we employed the ATHENa framework [60] to automate
this process of gathering diverse variants of each design.

Our large-scale analysis results are depicted in Table 2.
Note that we targeted 128-bit comparators due to the state
width of AES. The vast majority of the comparators were
detected for the diverse FPGA families, synthesis options,
and designs. In the cases marked with G#, the comparator
deviates more distinctively from 128 or the comparator was
only found in two distinct parts. This occurred due to the
fact that additional logic is performed by some LUTs in
the comparator which complicates the algorithmic reverse
engineering, however these cases can be easily resolved
with manual analysis. In the small number of cases where
the comparator reverse engineering was not successful, the
self-test comparator was split up into more than two single-
comparators or the recovered bit-width exceeded 128.

Practical Verification. To confirm that we manipulated
the self-test circuit correctly, we performed an S-Box substitu-
tion attack [47] and verified the erroneous AES computation
for the XC6SLX16 on a sample basis. Note that we used the
always bypass manipulation. For the other FPGA families,
we simulated the overall design’s behavior and verified the
successful manipulation of the different AES IP cores on a
sample basis.

5.1.4 Discussion

We acknowledge that the self-test used for evaluation was
implemented by us, however, to the best of our knowledge,
there is no open-source available FIPS-certified AES imple-
mentation which includes a crucial self-test. Our approach
is easy to adapt for different implementation structures
and with HAL the identification process can successfully
be automated with little effort.

5.2 Case Study: Wiretapping Keys in IP Cores

In contrast to the prior case study, we demonstrate that we
are able to semi-automatically insert hardware Trojan circuits
into an existing IP core to wiretap and leak utilized AES
keys.

Detailed System Model. For this case study, we assume
the same system model as described in Section 5.1.

Adversary’s Goal. The primary goal is to insert a Trojan
that leaks sensitive data while an AES core is actively used.
Therefore, the adversary attempts to wiretap the entire
state after the SubBytes transformation in the first round.
Subsequently, the adversary aims to leak the sensitive data
to the external environment to enable key recovery.

TTL2RS232

UART

Trojan Interface
(UART)

S-box
Inst
01

S-box
Inst
02

S-box
Inst
16

...

AES-Core

UART
Core

Configured Hardware Design

Trojan with additional
UART-Core and Buffer

rx

tx

tx

Figure 2. Xilinx SP601 development board used for experimentation. A
wiretap Trojan was inserted into an existing low-level netlist. Sensitive
data is leaked via an additional Trojan UART connected to a TTL2RS232
USB module.

5.2.1 Algorithmic Key Detection

Since the adversary intends to leak the state after the
SubBytes transformation in the first round, we used HAL
to perform the S-Box detection techniques described by
Swierczynski et al. [47]. The algorithm outputs a list of S-Box
instances and the bit order of the S-Box output. Note that the
algorithm does not reveal any information regarding which
state byte belongs to which S-Box instance so the correct
permutation is unknown.

11

5.2.2 Key Recovery
In the following, we explain the key recovery for our AES
core under attack. The core is a round-based implementation
and therefore utilizes sixteen S-Box instances in the SubBytes
step and four S-Box instances to implement the AES key
schedule. Note that we confirmed this architecture by means
of the number of identified S-Box instances. Furthermore,
it is noteworthy that our procedure is not limited to this
AES core, but with minor modifications applicable to other
designs as well.

To gain knowledge of the correct byte permutation of the
leaked 16-byte state, we analyzed which S-Box sub-circuit
processes which byte of the state by means of simulation.
Additionally, we observed the AES state over time. With
this information we know which data buses are the relevant
ones to be wiretapped and at what point in time we need to
wiretap.

Once wiretapping is done, the retrieved data must
be forwarded to the external environment. Therefore, we
inserted a UART/RS-232 core and merged it with the given
low-level netlist. The UART transmitter was connected to
an unused I/O pin. To retrieve the wiretapping result we
attached an additional TTL2RS232 USB receiver to this pin, cf.
Figure 2. Once the wiretapped state is obtained, the adversary
can easily compute the employed AES key by applying
the inverse S-Box operation followed by an XOR with the
plaintext.

5.2.3 Discussion
With HAL we are able to add any plain high-level IP core
into an existing low-level design. Using the FPGA vendor’s
toolchain, a new bitstream can be generated to verify the
functionality of the modified design. Although we only
analyzed one specific core in this case study, our results are
transferable to different designs as our technique is generic.

A more elegant technique of leaking the data would
include the design and use of an antenna circuitry in the
FPGA design [61]. As long as the user does not probe each
I/O pin or the near-field, both leakage approaches remain
relatively stealthy.

6 DISCUSSION

Implications. Since hardware security covers a broad re-
search landscape, HAL can be utilized to accompany and
support various directions for offensive and defensive intents
and purposes. For example, reverse engineering provides
valuable information for security engineers and improves the
understanding of SCA attacks and countermeasures since
more information about a hardware design implementation
facilitates a more fine-grained security evaluation. We show
that hardware reverse engineering and joint manipulation
can indeed be carried out for FPGAs and ASICs after the
device or design has been tested, its code reviewed, and
formally verified.

A common countermeasure against reverse engineering
is obfuscation [26]. Although obfuscation increases the effort
a reverse engineer has to invest, it generally does not
hinder eventual success. Using HAL, de-obfuscation methods
can be integrated into the analysis to include automated
means for obfuscation removal. For example, in recent work

Wallat et al. [35] demonstrated automated de-obfuscation of
opaque predicates used for IP watermarks.

In general, one could argue that instead of reverse
engineering and manipulating a design, it would be easier to
completely replace it. However, this is not a realistic scenario
since the reverse engineer does not know the exact design
specifications beforehand. Thus, fully replacing the design
without prior reverse engineering typically leads to a design
which deviates from the original implementation or requires
massive effort.

Other Vendors. Despite our case studies targeting Xilinx
FPGAs, our research is not specific to Xilinx devices and can
be adapted to devices from other FPGA vendors as well. For
example, the bitstream encryption scheme of Intel’s Stratix
II and Stratix III SRAM-based FPGA families can also be
circumvented by means of SCA attacks [42]. To the best of
our knowledge, bitstream file format reverse engineering for
these families has so far not been practically demonstrated,
but we expect that this step can be conducted as well.
Project IceStorm [46] demonstrated successful bitstream
reverse engineering to a human-readable netlist for iCE40
FPGAs. In 2012, Skorobogatov et al. [62] demonstrated key
extraction from a Actel/Microsemi ProASIC3 device. This
action can result in the decryption and extraction of bitstream
information.

Future Work. We plan to explore further (semi-) auto-
matic reverse engineering techniques and evaluate their
capabilities for ASIC and FPGA designs. The more that is
publicly known about what information can be algorith-
mically disclosed, the better sound threat estimation and
countermeasure development can be performed. Addition-
ally, we plan to address the big picture: examination of
how human reverse engineers make sense of hardware
designs [27]. Once an understanding of this process is
revealed, obfuscation techniques can be designed which
target not only automatic reverse engineering techniques,
but also the thought processes of the human analyst.

7 CONCLUSION

Hardware Trojans have become a major threat for today’s
systems and applications. For both offensive and defensive
research in the hardware Trojan area, the reverse engineering
of high-level information from low-level placed-and-routed
netlists is indispensable (e.g., to disclose security-critical
circuitry, to inject Trojans, or to disclose the presence of
malicious circuitry).

In this work, we closed several important research gaps:
First, we introduced our generic netlist reverse engineering
and manipulation framework HAL. The framework allows
for the development of custom tools to automate time-
consuming and complex reverse engineering. Second, we
presented our hardware Trojan detection technique ANGEL
which is based on Boolean function analysis and graph
neighborhood analysis. The algorithm was implemented
as a plugin for HAL. Third, we demonstrated the manifold
applicability of HAL in a variety of case studies that focus on
the real-world threat posed by hardware Trojans in crypto-
graphic hardware designs. We extended the adversary tool
arsenal to demonstrate how to automatically invalidate cryp-
tographic self-tests and wiretap cryptographic key circuitry.

12

More importantly, we demonstrated that the development
of automated custom tools for reverse engineering and
hardware Trojan injection is not as challenging and time-
consuming as previously thought, i.e. the time needed to
reverse engineer and surreptitiously weaken a design is only
several hours with the help of HAL.

Since we believe that our work raises awareness of a real-
world attacker’s capabilities, HAL represents a fundamental
building block for future research. We plan to publicly release
HAL and our analysis plugins, such as ANGEL, to the research
community.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
feedback. We also thank all of our students working on and
with HAL, in particular, Adrian Drees and Sebastian Maaßen.
Part of this work was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020
Research and Innovation programme (ERC Advanced Grant
No. 695022 (EPoCH)), and National Science Foundation
(NSF) awards CNS-1563829 and CNS-1318497.

REFERENCES

[1] M. Rostami et al., “A Primer on Hardware Security: Models,
Methods, and Metrics,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[2] A. Moradi et al., “On the Vulnerability of FPGA Bitstream Encryp-
tion against Power Analysis Attacks: Extracting Keys from Xilinx
Virtex-II FPGAs,” in ACM CCS, 2011, pp. 111–124.

[3] ——, “Side-Channel Attacks on the Bitstream Encryption Mecha-
nism of Altera Stratix II,” in ACM/SIGDA FPGA, 2013, pp. 91–100.

[4] P. Swierczynski et al., “Interdiction in Practice—Hardware Trojan
against a High-Security USB Flash Drive,” Journal of Cryptographic
Engineering, pp. 1–13, 2016.

[5] S. Bhunia et al., “Hardware Trojan Attacks: Threat Analysis and
Countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1229–
1247, 2014.

[6] S. T. King et al., “Designing and Implementing Malicious Hard-
ware,” in USENIX LEET, 2008, pp. 1–8.

[7] L. Lin et al., “Trojan Side-Channels: Lightweight Hardware Trojans
through Side-Channel Engineering,” in CHES. Springer, 2009, pp.
382–395.

[8] J. Rajendran et al., “Blue team red team approach to hardware trust
assessment,” in IEEE ICCD, 2011, pp. 285–288.

[9] G. T. Becker et al., “Stealthy Dopant-level Hardware Trojans,” in
CHES. Springer, 2013, pp. 197–214.

[10] J. Zhang et al., “DeTrust: Defeating Hardware Trust Verification
with Stealthy Implicitly-Triggered Hardware Trojans,” in ACM CCS,
2014, pp. 153–166.

[11] S. Ghandali et al., “A Design Methodology for Stealthy Parametric
Trojans and Its Application to Bug Attacks,” in CHES. Springer,
2016, pp. 625–647.

[12] K. Yang et al., “A2: Analog Malicious Hardware,” in IEEE Sympo-
sium on Security and Privacy, 2016, pp. 18–37.

[13] J. Rajendran et al., “Security Analysis of Integrated Circuit Camou-
flaging,” in ACM CCS, 2013, pp. 709–720.

[14] A. Vijayakumar et al., “Physical Design Obfuscation of Hardware:
A Comprehensive Investigation of Device and Logic-Level Tech-
niques,” IEEE Trans. Information Forensics and Security, vol. 12, no. 1,
pp. 64–77, 2017.

[15] R. Torrance, “The State-of-the-Art in IC Reverse Engineering,” in
CHES. Springer, 2009, pp. 363–381.

[16] Texplained, https://www.texplained.com/process, [Online; ac-
cessed 19-May-2017].

[17] P. Subramanyan et al., “Reverse Engineering Digital Circuits Using
Structural and Functional Analyses,” IEEE Trans. Emerging Topics
Comput., vol. 2, no. 1, pp. 63–80, 2014.

[18] T. Meade et al., “Netlist Reverse Engineering for High-Level
Functionality Reconstruction,” in ASP-DAC, 2016, pp. 655–660.

[19] ——, “Gate-Level Netlist Reverse Engineering Tool Set for Func-
tionality Recovery and Malicious Logic Detection,” International
Symposium for Testing and Failure Analysis (ISTFA), 2016.

[20] A. Waksman et al., “FANCI: Identification of Stealthy Malicious
Logic using Boolean Functional Analysis,” in ACM CCS, 2013, pp.
697–708.

[21] S. K. Haider et al., “Advancing the State-of-the-Art in Hardware
Trojans Detection,” IEEE Trans. Dependable and Secure Computing,
vol. PP, no. 99, pp. 1–1, 2017.

[22] S. E. Quadir et al., “A Survey on Chip to System Reverse Engineer-
ing,” JETC, vol. 13, no. 1, pp. 1–34, 2016.

[23] K. D. Pham et al., “BITMAN: A Tool and API for FPGA Bitstream
Manipulations,” in DATE, 2017, pp. 894–897.

[24] Y. Alkabani et al., “Active Hardware Metering for Intellectual
Property Protection and Security,” in USENIX Security Symposium,
2007.

[25] R. S. Chakraborty et al., “HARPOON: An Obfuscation-Based SoC
Design Methodology for Hardware Protection,” IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[26] B. Shakya et al., Introduction to Hardware Obfuscation: Motivation,
Methods and Evaluation. Springer, 2017, pp. 3–32.

[27] M. Fyrbiak et al., “Hardware Reverse Engineering: Overview and
Open Challenges,” in IVSW, 2017.

[28] M. C. Hansen et al., “Unveiling the ISCAS-85 Benchmarks: A Case
Study in Reverse Engineering,” IEEE Design & Test of Computers,
vol. 16, no. 3, pp. 72–80, 1999.

[29] Y. Shi et al., “A Highly Efficient Method for Extracting FSMs from
Flattened Gate-Level Netlist,” in ISCAS, 2010, pp. 2610–2613.

[30] ——, “Extracting Functional Modules from Flattened Gate-Level
Netlist,” in ISCIT, 2012, pp. 538–543.

[31] W. Li et al., “Reverse Engineering Circuits Using Behavioral Pattern
Mining,” in IEEE HOST, 2012, pp. 83–88.

[32] ——, “WordRev: Finding Word-Level Structures in a Sea of Bit-level
Gates,” in IEEE HOST, 2013, pp. 67–74.

[33] P. Subramanyan et al., “Reverse Engineering Digital Circuits Using
Functional Analysis,” in DATE, 2013, pp. 1277–1280.

[34] A. Gascón et al., “Template-based circuit understanding,” in
FMCAD, 2014, pp. 83–90.

[35] S. Wallat et al., “A Look at the Dark Side of Hardware Reverse
Engineering – A Case Study,” in IVSW, 2017.

[36] D. S. B. W. DC, “Report of the Defense Science Board Task Force
on High Performance Microchip Supply,” 2005.

[37] M. Tehranipoor et al., “A Survey of Hardware Trojan Taxonomy
and Detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp.
10–25, 2010.

[38] M. Hicks et al., “Overcoming an Untrusted Computing Base:
Detecting and Removing Malicious Hardware Automatically,” in
IEEE Symposium on Security and Privacy, 2010, pp. 159–172.

[39] J. Zhang et al., “VeriTrust: Verification for Hardware Trust,” in
ACM/EDAC/IEEE (DAC), 2013, pp. 1–8.

[40] B. Cakır et al., “Hardware Trojan Detection for Gate-level ICs Using
Signal Correlation Based Clustering,” in DATE, 2015, pp. 471–476.

[41] H. Salmani, “COTD: Reference-Free Hardware Trojan Detection and
Recovery Based on Controllability and Observability in Gate-Level
Netlist,” IEEE TIFS, vol. 12, no. 2, pp. 338–350, 2017.

[42] P. Swierczynski et al., “Physical Security Evaluation of the Bitstream
Encryption Mechanism of Altera Stratix II and Stratix III FPGAs,”
ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 4, pp. 1–23, 2014.

[43] J.-B. Note and É. Rannaud, “From the bitstream to the netlist,” in
ACM FPGA, 2008, pp. 264–264.

[44] F. Benz et al., “BIL: A tool-chain for bitstream reverse-engineering,”
in IEEE FPL, 2012, pp. 735–738.

[45] Z. Ding et al., “Deriving an NCD file from an FPGA bitstream:
Methodology, architecture and evaluation,” Microprocessors and
Microsystems - Embedded Hardware Design, vol. 37, no. 3, pp. 299–
312, 2013.

[46] C. Wolf et al., “Project IceStorm,” 2015.
[47] P. Swierczynski et al., “FPGA Trojans Through Detecting and

Weakening of Cryptographic Primitives,” IEEE TCAD, vol. 34,
no. 8, pp. 1236–1249, 2015.

[48] A. C. Aldaya et al., “AES T-Box tampering attack,” J. Cryptographic
Engineering, vol. 6, no. 1, pp. 31–48, 2016.

[49] P. Swierczynski et al., “Bitstream Fault Injections (BiFI) – Automated
Fault Attacks against SRAM-based FPGAs,” IEEE TC, vol. PP, no. 99,
pp. 1–1, 2017.

[50] H. Salmani et al., “On Design vulnerability analysis and trust
benchmarks development,” in IEEE ICCD, 2013, pp. 471–474.

https://www.texplained.com/process

13

[51] W. Snyder, “Verilator,” .
[52] J. Lind-Nielsen, “BuDDy: A Binary Decision Diagram library,”

http://buddy.sourceforge.net, [Online; accessed 19-May-2017].
[53] “GitHub pybind11,” https://github.com/pybind/pybind11, [On-

line; accessed 19-May-2017].
[54] A. Waksman et al., “A red team/blue team assessment of func-

tional analysis methods for malicious circuit identification,” in
ACM/EDAC/IEEE DAC, 2014, pp. 1–4.

[55] NIST, “Suite B Cryptography,” 2001.
[56] S. Trimberger et al., “FPGA Security: Motivations, Features, and

Applications,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–1265,
2014.

[57] B. Badrignans et al., Security Trends for FPGAS: From Secured to
Secure Reconfigurable Systems, 1st ed. Springer, 2011.

[58] NIST, “Security Requirements for Cryptographic Modules,” 2001.
[59] T. Kerins et al., “A Cautionary Note on Weak Implementations of

Block Ciphers,” in Workshop on Information and System Security, 2006,
p. 12.

[60] K. Gaj et al., “ATHENa - Automated Tool for Hardware EvaluatioN,”
in FPL, 2010, pp. 414–421.

[61] J. Couch et al., “An Analysis of Implanted Antennas in Xilinx
FPGAs,” in ReConFig, 2011, pp. 1–6.

[62] S. Skorobogatov et al., “In the blink of an eye: There goes your AES
key,” IACR Cryptology ePrint Archive, pp. 1–7, 2012.

Marc Fyrbiak received his B.Sc. degree in com-
puter science from TU Braunschweig, Germany
in 2012 and his M.Sc. degree in IT security from
Ruhr-Universität Bochum, Germany in 2014. He
is currently working towards the Ph.D. degree
at the Chair for Embedded Security, under the
supervision of C. Paar. His research interests
include reverse engineering of hardware and
software systems, as well as security analysis
of real-world devices.

Sebastian Wallat received his B.Sc. degree
in computer science from University Duisburg-
Essen, Germany in 2012 and his M.Sc degree in
IT security from Ruhr-Universität Bochum, Ger-
many in 2016. He is currently working towards the
Ph.D degree at the University of Massachusetts,
Amherst, USA under the supervision of C. Paar.
His research interests include malicious hard-
ware Trojan design strategies to explore mitiga-
tion techniques, as well as reverse engineering
of hardware and software.

Pawel Swierczynski received the B.Sc. and
M.Sc. degrees in IT-Security from Ruhr-
Universität Bochum, Germany, in 2010 and 2013,
and was working towards his Ph.D. degree at
the Chair for Embedded Security, under the su-
pervision of C. Paar. His research was focused
on the physical security of FPGAs as well as
on practical attacks on real-world devices with a
special emphasis on cryptographic FPGA design
manipulation.

Max Hoffmann studied IT-Security at Ruhr-
Universität Bochum, Germany. He finished his
B.Sc. in 2015 and M.Sc. in 2017. Since he started
his Ph.D. studies at the Chair for Embedded
Security of C.Paar in 2016, his research has
focused on hardware reverse engineering and
obfuscation techniques.

Sebastian Hoppach received his M.Sc. degree
in IT security from Ruhr-Universität Bochum,
Germany in 2017. His research interests focus on
the security of embedded hardware and software,
including hardware reverse engineering and side-
channel attacks. He is currently working as a
security consultant.

Matthias Wilhelm finished his B.Sc in IT-Security
from Ruhr-Universität Bochum in 2015. He is
currently working towards a M.Sc degree from the
same university. His primary research interest in-
clude reverse engineering of embedded devices
including FPGAs.

Tobias Weidlich received his B.Sc. degree in IT
security from Ruhr-Universität Bochum, Germany
in 2014 and his M.Sc. degree in IT security from
Ruhr-Universität Bochum, Germany in 2016. He
is currently working as an IT security specialist
for the IHK-CERT.

Russell Tessier (M’00-SM’07) received the B.S.
degree in computer and systems engineering
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1989, and the S.M. and Ph.D. degrees
in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, MA, USA,
in 1992 and 1999, respectively. He is currently
Professor of Electrical and Computer Engineering
with the University of Massachusetts, Amherst,
MA. His current research interests include com-
puter architecture and FPGAs.

Christof Paar (Fellow, IEEE) received the M.Sc.
degree from the University of Siegen and the
Ph.D. degree from the Institute for Experimental
Mathematics at the University of Essen, Germany.
He holds the Chair for Embedded Security at
Ruhr-Universität Bochum, Bochum, Germany,
and is an Affiliated Professor at the University
of Massachusetts Amherst, Amherst, MA, USA.
His research interests include highly efficient soft-
ware and hardware realizations of cryptography,
physical security, security evaluation of real-world

systems, and cryptanalytical hardware.

http://buddy.sourceforge.net
https://github.com/pybind/pybind11

	Introduction
	Background and Related Work
	Threat Model
	Gate-Level Netlist Reverse Engineering
	Hardware Trojans
	FPGA Security

	HAL - Design and Implementation
	HAL System Architecture
	HAL- Building Blocks
	HAL Implementation

	Gate-level Trojan Detection - ANGEL
	ANGEL- Technique
	Evaluation
	Discussion

	Gate-level Reverse Engineering and Manipulation - Two Case Studies
	Case Study: Disarm Cryptographic Self-Tests
	Algorithmic Reverse Engineering of Self-Test Circuits
	Manipulation of a Self-Test
	Evaluation
	Discussion

	Case Study: Wiretapping Keys in IP Cores
	Algorithmic Key Detection
	Key Recovery
	Discussion

	Discussion
	Conclusion
	References
	Biographies
	Marc Fyrbiak
	Sebastian Wallat
	Pawel Swierczynski
	Max Hoffmann
	Sebastian Hoppach
	Matthias Wilhelm
	Tobias Weidlich
	Russell Tessier
	Christof Paar (Fellow, IEEE)

