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ABSTRACT 
Embedded memory blocks are important resources in 
contemporary FPGA devices. When targeting FPGAs, application 
designers often specify high-level memory functions which 
exhibit a range of sizes and control structures. These logical 
memories must be mapped to FPGA embedded memory 
resources such that physical design objectives are met. In this 
work a set of power-aware logical-to-physical RAM mapping 
algorithms are described which convert user-defined memory 
specifications to on-chip FPGA memory block resources. These 
algorithms minimize RAM dynamic power by evaluating a range 
of possible embedded memory block mappings and selecting the 
most power-efficient choice. Our automated approach has been 
integrated into a commercial FPGA compiler and tested with 40 
large FPGA benchmarks. Through experimentation, we show 
that, on average, embedded memory dynamic power can be 
reduced by 21% and overall core dynamic power can be reduced 
by 7% with a minimal loss (1%) in design performance. 
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1. INTRODUCTION 
On-chip memory is an essential component of programmable 
logic devices. Most on-chip data storage is implemented in large 
RAM blocks integrated into the FPGA architecture. These 
storage blocks allow for the implementation of a variety of 
memory structures, including FIFOs, scratch pad memories, and 
shift registers, within close physical proximity of logic resources. 
Due to their extensive use, embedded memory blocks have been 
found to consume between 10-20% of core dynamic power in 

typical FPGA designs [1]. As the amount of FPGA logic and on-
chip memory grows rapidly over the next few years, the power-
efficient use of memory blocks will become increasingly 
important. 

   Embedded memory blocks in contemporary FPGAs are 
typically implemented with synchronous SRAM [2][17] to 
improve design performance. Like other synchronous SRAM 
architectures, FPGA embedded memory accesses are performed 
in concert with a design clock and a series of interface signals 
including read/write (R/W) enables, clock enables, address, and 
data signals. During application development, designers may 
directly specify the source of control signals that are used to 
manipulate design RAMs. More typically, a higher-level RAM 
representation is specified and automatically converted to 
physical RAMs and associated control circuitry. Control signals, 
such as R/W enable and clock enables are generated by this 
control circuitry. 

   Synchronous FPGA embedded memories primarily consume 
dynamic power as a result of internal RAM clocking. To save 
power, RAM control signals can be configured to suppress 
internal clocking when RAM access is unnecessary on a specific 
clock cycle. Although user-defined or generated control signals 
provide for valid functional embedded memory behaviour, their 
configuration may not efficiently suppress unnecessary clocked 
memory accesses, leading to wasted RAM dynamic power. These 
limitations motivate a need for RAM mapping algorithms that 
take power objectives into account while maintaining valid 
functional behavior. 

   In this paper we describe a series of algorithms to 
automatically map user-specified logical memories to available 
physical embedded memory block resources with the goal of 
reducing overall FPGA dynamic power consumption. In 
considering feasible RAM mappings, our approach estimates the 
relative dynamic power consumption of each potential 
implementation and selects the most power-efficient 
implementation subject to on-chip RAM availability constraints. 
When necessary, user-specified RAM control signals (R/W 
enable, clock enables) are remapped to achieve a logically-
equivalent RAM implementation with reduced dynamic power 
consumption. If an FPGA contains embedded memory blocks of 
different sizes, a mapping using each block type is considered. 

Our mapping techniques have been integrated into the Altera 
Quartus II synthesis system [1] and targeted to a variety of Altera 
FPGA families which contain embedded memories. Through 
experimentation with 40 RAM-based Stratix II designs, we show 
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an average embedded memory dynamic power reduction of 21% 
and overall core dynamic power reduction of 7%. 

   In the next section we discuss related power-aware memory 
mapping techniques. In Section 3 the basic operation of FPGA 
embedded memories are described along with details of the basic 
mapping flow used to translate user-specified logical memory to 
physical embedded memory blocks. Section 4 provides the 
details of our power-aware RAM mapping techniques and 
supporting algorithms. Experimental results are presented in 
Section 5. Section 6 concludes the paper and offers directions for 
future work. 

2. Related Work 
We are unaware of any prior CAD tools that produce a power-
efficient mapping of design RAM to FPGA or structured ASIC 
embedded memory. Previous research efforts that map design 
logic to embedded memory blocks in ASICs [4][14] and FPGAs 
[9] do not consider power optimization as a mapping goal. 
Although FPGA logic and routing dynamic power reduction has 
been studied [10], these techniques were not applied to 
embedded memory blocks. 

RAM dynamic power-reduction techniques for ASICs and 
microprocessor systems have been considered at the application-
mapping, compiler, and circuit levels. Although these approaches 
provide insight into reducing FPGA embedded memory power, 
none are directly applicable. Several synthesis techniques for 
application-specific embedded systems create power-optimized 
memory structures based on application address traces. In Benini 
et al. [5], the memory trace of an embedded application is 
analyzed by an algorithm to determine the portion of program 
and data memory that is most frequently accessed. These 
addresses are then grouped into memory banks which are 
implemented with scratch pad memories. Infrequently accessed 
addresses are grouped into larger physical memory blocks. Later 
work by Cao et al. [6] extends this optimization to consider data 
width scaling. Wuytack et al. [16] have developed techniques to 
optimize the entire memory hierarchy of an application for power 
consumption based on application information. These previous 
approaches rely on application trace information to perform 
memory partitioning. 

A number of compiler techniques have been developed for 
processor-based systems which optimize power while mapping 
data to fixed system memory resources. For example, in Unsal et 
al. [15], a series of memory locations for multimedia applications 
are remapped to a small, local scratch pad memory to save 
dynamic power. In Petrov and Orailoglu [13], the organization 
and power consumption of a translation look-aside buffer are 
adjusted on a per-application basis. In Gebotys [8], memory 
energy is managed through memory and register allocation using 
a network flow algorithm.  In Ferrahi et al. [7], a compiler 
technique to optimize sleep mode operation for memories is 
described. Memory reactivations are minimized via scheduling to 
save dynamic power.  

Numerous circuit-level techniques for power reduction have been 
explored [11] including reduced swing pre-decode lines, multi-
stage address decoding, and divided word and bit lines, among 

others. These techniques may be used in the future by FPGA 
designers to reduce FPGA embedded memory block power and 
are additive to the approaches described in this paper. 

3. Background 
  The development of a power-efficient embedded RAM mapping 
strategy requires insight into the internal behaviour of 
synchronous SRAM. Typically, each port of an embedded 
memory block is controlled by one or more read/write (R/W) 
enable signals, clock (Clk) enable signals, and clock signals. As 
shown in Figure 1, these signals directly or indirectly control 
data movement in different parts of the embedded memory port. 

   During a typical memory read operation the following events 
occur in sequence, in response to a rising clock edge: 

•  The memory port clock (MClk) is strobed causing the 
BIT lines to be precharged to Vcc.  

•  The read address is decoded and one word line is 
activated. 

•  The BIT line difference is identified by sense amps 
causing the read data to be strobed into a column 
multiplexer. 

•  Read data passes through the column multiplexer and a 
latch conditioned by Read Enable to the RAM external 
Read Data lines. 

   Memory write operations require a similar sequence of 
operations which occur in the following order: 

•  The memory port clock (MClk) is strobed causing the 
BIT lines to be precharged to Vcc. 

•  The Write Enable signal, conditioned by MClk, creates 
a write pulse which transfers write data to the write 
buffers and a word line is activated following write 
address decode. 

•  Write buffer data is stored in the RAM cells 
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For both synchronous read and write RAM operations, most 
dynamic power is consumed via BIT line precharging [12]. To 
control clocking, embedded memory ports often have a clock 
enable signal which can eliminate internal precharging, word-
line decoding, and RAM cell access. The disabling of the clock 
enable signal when memory port access is not required provides 
the best technique to eliminate embedded memory dynamic 
power consumption for a memory port. If a RAM port is inactive 
on a given clock cycle and its clock can be suppressed via an 
inactive clock enable, the RAM port will not consume significant 
dynamic power.  

A number of contemporary FPGAs support embedded memory 
blocks with R/W enable and clock enable signals. Altera Stratix 
[3] and Stratix II [2] devices support both R/W enables and clock 
enables on each port of TriMatrix embedded memory block dual-
port memory. Each Xilinx Virtex-II [18] and Virtex-4 [17] 
embedded SelectRAM block contains write enable and clock 
enable control signals on each port, but no separate read enable.  

The goal of power-aware RAM mapping is to implement the 
functionality of a user-defined RAM module (logical memory) in 
one or more FPGA embedded memory blocks so that memory 
precharges are limited. This optimization goal attempts to 
minimize RAM dynamic activity through the use of RAM port 
clock enables whenever possible. The effective use of clock 
enable signals ensures that the bulk of embedded memory block 
dynamic power is consumed when a required access to data 
within a RAM is performed. In some cases this goal may require 
the synthesis of one of more clock enable signals during the 
mapping process. This mapping must achieve the same 
functional behaviour for the RAM as specified by the designer 
while allowing for possible tradeoffs regarding design power 
consumption and design area and performance. 

3.1 Typical FPGA RAM Mapping Flow 
FPGA embedded memory blocks are used to implement a variety 
of RAM components including FIFOs, shift registers, and single 
and dual-port memories. Logical RAMs are specified by the 
designer in RTL or schematic form, created by the FPGA 
compiler and mapped [1], as shown in Figure 2: 

1. Logical memory creation – User-defined RAM descriptions 
are processed by the FPGA compilation software to create 
logical memories with desired characteristics.    

2. Logical-to-physical RAM processing - Logical RAMs are 
converted into one or more RAM blocks which match the 
external interface and size constraints of available embedded 
memory blocks.  

3. Embedded memory block placement – RAM blocks and 
associated control logic are assigned to available on-chip 
embedded memory block and logic resources. 

The power-aware algorithms developed in this work are applied 
in the logical-to-physical RAM processing step. Traditionally, 
RAM mapping has targeted logical RAM performance and FPGA 
area minimization [9] rather than power consumption. To 
conserve dynamic power it is desirable to map memory functions 
specified by designers to available physical memories so that 
power consumption is optimized within area and delay 
constraints. As shown in Section 4.2, an area-optimal embedded 
memory implementation does not always consume the least 
amount of dynamic power.  

The size of both logical and physical (embedded) memory blocks 
can be defined in terms of the number of addressable locations 
(depth) and output bits per memory (width). The number of 
address bits required for both logical and physical memories is 
directly related to memory block depth. The number of data in 
and data out bits is related to memory block width. To promote 
flexibility, an FPGA embedded memory block may typically be 
programmed to support a range of depth versus width 
configurations [2][17]. 

Until the relatively recent adoption of synchronous SRAMs, most 
user-defined RAM designs targeted asynchronous memories 
(both external and internal to FPGAs) which use read and write 
enable for data access control. Although embedded memory 
blocks now allow for the use of either operation-specific enable 
or clock enable signals to provide access control, many designers 
continue to use the operation-specific enable approach, ignoring 
the clock enable. Contemporary RAM mapping flows (e.g. Figure 
2) automatically map these user-defined enable signals to the 
R/W enable signals located on the embedded memory block 
ports. Unspecified clock enables are set to be continuously 
active. The use of read and write enable signals for data access 
control instead of associated clock enable signals leads to sub-
optimal power consumption in many cases. 

A second impediment to reduced RAM power dissipation is 
related to logical RAM size. In most cases the size of a user-
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specified logical memory will not exactly match the width and 
depth dimensions of an embedded memory block. Since existing 
RAM mapping flows focus on optimizing delay and resource 
usage, rather than power, logical memories are typically mapped 
using a minimum of external logic. As an example, Figure 3 
illustrates the mapping of a 4Kx4 logical memory to four 4Kx1 
embedded memory blocks. In this case, each memory block is 
configured as 4Kx1 so that a single bit of each addressable 
location is located in each block. This configuration requires no 
external logic.  However, all four memory blocks must be active 
during each logical memory access, so this is a high-power 
implementation. 

4. Power-Aware RAM Mapping 
Our RAM mapping approach consists of two algorithms that 
obtain a power-efficient mapping of logical memories to FPGA 
embedded memory blocks. Two specific cases are targeted: 

1. Since most embedded memory block dynamic power is a 
result of clock-induced precharging, we identify cases where 
user-specified logical RAM read and write enable signals can 
be automatically converted to or combined with 
corresponding read and write clock enable signals while 
maintaining correct functional behaviour. 

 
2. For cases where more than one embedded memory block is 

required to implement a logical RAM, we implement a 
multi-banked RAM mapping. As a result of this banked 
mapping, only one embedded memory block is clocked per 
access. In some cases the banked structure may require the 
inclusion of supporting logic. 

 

4.1 Conversion of read and write enable to 
read and write clock enable 
In general, synchronous embedded memory blocks exhibit the 
same functional RAM behaviour if either an enable or a clock 
enable is used to control a read (or write) access and the 
alternate signal is set to an active state. To illustrate this 
observation, all four configurations of active-high enable and 
clock enable signals are considered for read and write accesses. 
For a successful read (or write) access both enable and clock 
enable signals must be set to active-high. 

The functional equivalence of embedded memory read enable 
and read clock enable can be observed in Figure 4 based on the 
discussion of RAM read steps in Section 3. Using the figure, the 
behaviour of the following four read cases can be considered: 

1. Read Clk Enable = 0, Read Enable = 0 – New data will not 
be transferred to the column multiplexer since the BIT lines 
are not precharged. 

2. Read Clk Enable = 1, Read Enable = 0 – New data is 
obtained from the RAM cell following BIT line precharge but 
will not be transferred to the Read Data lines since the latch 
conditioned by Read Enable is closed. 

3. Read Clk Enable = 0, Read Enable = 1 – New data will not 
be transferred to the column multiplexer since the BIT lines 
are not precharged. Indeterminate data passes through the 
latch and is driven onto the Read Data lines. 

4. Read Clk Enable = 1, Read Enable = 1 – New data is 
obtained from the RAM cell following bit line precharge and 
passed through the latch to the Read Data lines. 

 
Consider a scenario where Read Enable is attached to a control 
signal and Read Clk Enable is always tied to active logic 1. From 
the enumeration it can be seen that since the AND of Read 
Enable and Read Clk Enable is needed for a successful read, the 
signals are functionally equivalent for reads, the Read Clk 
Enable signal can be driven by the signal previously tied to Read 
Enable, and Read Enable can be tied to logic 1. 

Similarly, the functional equivalence of embedded memory write 
enable and write clock enable can be observed in Figure 5 based 
on the discussion of RAM write steps in Section 3. 

Using the figure, the behaviour of the following four write cases 
can be considered: 

1. Write Clk Enable = 0, Write Enable = 0 – A write 
enable pulse will not be generated by the pulse 
generator preventing write data from being loaded onto 
the BIT lines. The BIT lines are not precharged. 

2. Write Clk Enable = 1, Write Enable = 0 – A write 
enable pulse will not be generated by the pulse 
generator preventing write data from being loaded onto 
the BIT lines. The BIT lines are precharged. 
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3. Write Clk Enable = 0, Write Enable = 1 – A write 
enable pulse will not be generated by the pulse 
generator preventing write data from being loaded onto 
the BIT lines. The BIT lines are not precharged. 

4. Write Clk Enable = 1, Write Enable = 1 – A write 
enable pulse is generated, the BIT lines are precharged, 
write data is loaded onto the BIT lines and into RAM 
cells 

 

Consider a scenario where Write Enable is attached to a control 
signal and Write Clk Enable is always tied to active logic 1. 
From the enumeration it can be seen that since the AND of Write 
Enable and Write Clk Enable is needed for a successful write 
operation, the signals are functionally equivalent for writes, the 
Write Clk Enable signal can be driven by the signal previously 
labelled Write Enable, and Write Enable can be tied to logic 1. 
The conversion of user-defined read and write enable signals to 
respective clock enables primarily reduces power by eliminating 
BIT line precharging when embedded memory block data access 
is not required. The same functional RAM behaviour is 
maintained. 

For some logical memories, a designer may specify both an 
enable and a clock enable signal for an embedded memory port. 
In these cases, additional logic (an AND gate) must be added to 
the user design to allow the user-defined enable signal to 
condition the associated memory port clock. The combining of 
the enable and clock enable signal forms a new combined clock 
enable signal which can be attached to the memory port clock 
enable input. Depending on designer timing constraints, the 
addition of logic delay to the clock enable path may negatively 
impact mapped design performance. As a result, this approach 
may only be appropriate if design power reduction is considered 
more important than design performance or preliminary timing 
information is available to determine if performance is not likely 
to be affected. 

The mapping steps in Figure 6 are performed on each logical 
RAM. These steps perform enable-to-clock enable conversion 
and combining for embedded memory block inputs Clken and 
Enable and designer signals User Clken and User Enable.   

 
 

4.2 Power-aware RAM Partitioning 
As shown in Figure 3, a logical memory which exceeds the size 
of an embedded memory block must be mapped to multiple 
blocks. Although the mapping shown in Figure 3 does not require 
any supporting logic, each memory block is active during each 
memory access, requiring substantial power consumption. In this 
case, the depth of each physical memory block matches the depth 
of the logical memory and the width of each physical memory 
block is smaller than its logical memory counterpart. This 
mapping is an example of vertical memory slicing. 

In general, an FPGA embedded memory block can be structured 
to have a variety of depth and width configurations, each with the 
same bit storage capacity. For example, an Altera M4K 4608 bit 
embedded memory block can be organized into configurations 
ranging from 4096x1 to 256x18 [2]. This allows a range of 
choices in mapping a logical RAM to physical memory blocks. 
For example, Figures 3 and 7 provide two example mapping 
alternatives. In the mapping in Figure 7, the width of each 
physical memory block matches the width of the logical memory 
while the depth of each physical memory block is reduced 
compared to its logical memory counterpart. This mapping can be 
considered an example of horizontal memory slicing. This 
second mapping requires the inclusion of address decoding 
circuitry to determine which memory block contains the 
requested data. Additionally, a multiplexer is required on the 
read port to select the requested word during read requests. 
Although dynamic power is consumed by the added address 
decoder and multiplexer, all but one of the embedded memory 
blocks is disabled during RAM accesses, saving considerable 
dynamic power. Unused memory blocks are disabled by 
connecting the outputs of the address decoder to memory block 
clock enable signals. 

The vertical and horizontal RAM slicing implementations shown 
in Figures 3 and 7 represent the end points of a spectrum of 
feasible logical-to-physical RAM mappings (e.g. 2Kx2 RAM 
block configurations are also possible). If, as a result of a 
mapping change, an embedded memory block is converted from a 
given depth to one that is half as deep, the following additional 
mapping changes are required: 
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1. Each write port data line must be tied to twice the number of 
source/destination embedded memory blocks. 

2. The size of the address decoder increases by a factor of 2.  

3. The bit input size of each multiplexer on the embedded 
memory read port increases by a factor of 2.  

4. One address line is removed from each of the embedded 
memory blocks. 

The relative power consumed by each logical-to-physical 
mapping can be evaluated by assessing the power consumed by 
the memory blocks during a data access, the address decoder, the 
output multiplexer, and associated routing. As mappings 
approach the vertical slicing implementation (maximum physical 
block depth), memory block power is increased and multiplexer 
and address decoder power is decreased. As mappings approach 
the horizontal slicing implementation, multiplexer and address 
decoder power is increased and memory block power is 
decreased. Figure 8 shows the dynamic power consumed by 
various mappings of a 4Kx32 logical RAM in a Stratix II device 
for a selection of embedded memory block depths as reported by 
the Quartus II PowerPlay power analyzer. The plot shows that the 
power optimal mapping for this logical RAM falls between the 
horizontal slicing on the left and vertical slicing on the right. All 
mappings achieve the same functional behaviour. 

4.3 Logical RAM Partitioning Algorithm 
A power-aware RAM partitioning algorithm has been developed 
to evaluate the relative power consumption of a series of logical-
to-physical RAM mappings. Each mapping is evaluated based on 
the number of active embedded memory blocks per port, the 
amount of associated address decoder and multiplexer circuitry 
required, and associated routing. Since contemporary FPGAs 
contain a set of different embedded memory block sizes, mapping 
evaluation is performed for each block type to determine the 
most power-efficient choice.  The relative cost for each mapping 
is determined based on the estimated dynamic power 
consumption of the mapping. This cost can be expressed for each 
port of each logical RAM as: 

 

Cost = W * Pmux + N * Pram + Paddr_decode                  (1) 

 

Where Cost is the relative power cost for the mapping, W is the 
width of the logical RAM, Pmux is the per-bit dynamic power of a 
read port multiplexer, N is the number of required embedded 
memory blocks, Pram is the per-block dynamic power, and 
Paddr_decode is the dynamic power consumption of the address 
decoder. Specific algorithm steps for a logical memory are shown 
in Figure 9. 

Our approach is effective for both single- and dual-port logical 
RAMs. The key power savings aspect of the approach is the 
connection of address decoder outputs to embedded memory 
block clock enables. Only the addressed memory block is 
precharged on a given clock cycle saving considerable RAM 
dynamic power.   

The inclusion of a memory block read port multiplexer can 
negatively impact design performance for designs which include 
the RAM block output on the design critical path. Design 
performance is not explicitly considered by the partitioning 
algorithm. However, to minimize performance impact, only 
configurations which require a 4-to-1 or smaller multiplexer on 
each read port output bit are considered. 

In addition to possibly affecting performance, the inclusion of 
multiplexers consumes device logic. This added logic may result 
in an overflow of required design logic elements for a target 
device.  
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4.4 Parameter Evaluation 
The algorithms described in Sections 4.1 and 4.3 have been 
integrated into Quartus II version 5.1 and applied to Stratix II 
FPGAs [2]. Experimental results were determined in two phases. 
First, the technology parameters noted in Equation (1) were 
determined via parameter evaluation experiments with a 
representative set of logical RAMs. After parameter evaluation, 
the algorithms were tested with 40 commercial benchmark 
designs containing logical RAMs.  

The logical RAMs used for parameter evaluation included ROMs 
and single and dual port RAMs of sizes ranging from 512x2 to 
8Kx132. Parameter evaluation was performed for the Altera 
Stratix II architecture, which contains three types of embedded 
memory blocks, each of a different size: 576-bit (M512), 4,608 
bit (M4K), 589,824 bit (M-RAM) [2]. Each memory block 
allows for implementation of both single and dual-port 
synchronous RAMs.  

Each logical RAM used for parameter evaluation was mapped to 
each of the three Stratix II memory block types using multi-block 
partitioning ranging from horizontal slicing to vertical slicing. 
Following synthesis with Quartus II, the memory designs were 
placed and routed using Quartus II. All synthesis, place, and 
route steps used an unattainable 1 GHz timing constraint to 
ensure maximum fitting effort by the CAD software. Designs 
were simulated at 100 MHz with random input vectors and 
dynamic power analysis was performed using the Quartus II 
PowerPlay power analyzer. All compiled designs were able to 
satisfy a minimum clock frequency of 100 MHz. 

Statistical averaging was then used to determine the following 
values based on measured values for all RAM implementations: 

•  Power consumed by single bit of an n-to-1 multiplexer, 
Pmux, Values for only 2-to-1 and 4-to-1 multiplexers were 
determined since shallower embedded memory blocks depth 
slicings are not performed by our system due to performance 
concerns. 

•  Per-port design power consumed by an active physical 
memory block, Pram, for an M512, M4K, and M-RAM 
embedded memory block. 

•  Power consumed by a k-to-n address decoder, Paddr_decode, 
for a 2-to-4 and 1-to-2 decoder.  

Because the power analyzer takes detailed placement and routing 
into account when producing a power estimate, the averaged 
values for Pmux and Paddr_decode take the effects of control signal, 
address, and data fanout into account. 

Although the calculated parameters measure dynamic power 
values averaged across the RAM parameter evaluation design 
set, the access patterns of user logical RAMs may differ. Since 
our algorithm considers relative rather than absolute dynamic 
power values in making tradeoffs, we consider the subsequent 
use of these parameters across a range of user benchmarks to be 
acceptable and representative of most RAM access patterns. 

 

 

Table 1: Benchmark Design Statistics 

Design LUTs Memory 
bits 

Flip 
flops 

Target Device 

1 8005 254680 6247 EP2S15F672 
2 9106 47264 6971 EP2S15F672 
3 15988 548 12948 EP2S60F1020 
4 9802 292608 5363 EP2S15F672 
5 8853 63744 7349 EP2S60F1020 
6 5751 168 1750 EP2S60F1020 
7 5743 168 1030 EP2S60F1020 
8 13121 426512 10394 EP2S60F1020 
9 23464 327680 3215 EP2S60F1020 

10 215 331776 27 EP2S15F484 
11 243 331776 47 EP2S15F484 
12 26154 327680 3215 EP2S90F1508 
13 5295 1134 3587 EP2S15F484 
14 5488 512 4915 EP2S60F1020 
15 7409 6432 5944 EP2S60F1020 
16 23550 128452 22063 EP2S60F1020 
17 8071 43008 3863 EP2S30F672 
18 17857 66336 12199 EP2S90F1508 
19 17857 66336 12199 EP2S90F1508 
20 35849 89600 19745 EP2S90F1508 
21 12039 1206785 8542 EP2S60F1020 
22 11785 65536 8131 EP2S30F672 
23 11149 36096 5297 EP2S30F672 
24 13714 51456 6415 EP2S60F1020 
25 5881 111872 4673 EP2S15F672 
26 4816 98684 3875 EP2S15F672 
27 10066 227010 7384 EP2S15F672 
28 18987 184320 14940 EP2S60F1020 
29 3082 124290 2702 EP2S15F672 
30 30352 88048 25489 EP2S60F1020 
31 8458 168416 6966 EP2S15F672 
32 23283 337501 18868 EP2S30F672 
33 13112 293856 9149 EP2S30F672 
34 36741 1402661 16492 EP2S90F1508 
35 16731 524288 15547 EP2S30F484 
36 12560 1057428 9181 EP2S60F672 
37 2136 171098 1618 EP2S15F484 
38 4183 286956 3913 EP2S15F484 
39 5384 153864 2809 EP2S60F1020 
40 28199 1009920 12148 EP2S60F1020 

 

5. Results 
Following the determination of the tuning parameters and the 
integration of our algorithms with Quartus II, experimentation 
was performed on 40 commercial designs provided by Altera. 
This benchmark set includes designs which contain RAM from 
encryption, signal processing, and communications processing 
domains. LUT, memory bit and flip flop counts for each design 
are shown in Table 1.  As seen in Figure 2, optimization occurs 
after complex memory functions (e.g. FIFOs, shift registers) are 
converted to logical RAMs, but before structures are assigned to 
specific embedded memories. The 40 designs were targeted to 
the smallest Stratix II device which would hold them. The 
specific device used for each design is listed in Table 1. 



Dynamic power consumption for all designs was evaluated using 
the same power analysis flow noted in Section 4.4 for parameter 
evaluation except for the inclusion of our new RAM mapping 
algorithms. A series of test vectors were used to simulate each 
design at 100 MHz following compilation with an unattainable 1 
GHz clock constraint. Dynamic power analysis was performed 
with the Quartus II PowerPlay power analyzer using switching 
activity values determined via simulation. All Quartus II power 
optimizations, except for our new algorithms, were shut off 
during experimentation.  

To validate our approach, a series of experiments were 
performed using combinations of the algorithms with the 40 
benchmark circuits. Dynamic power statistics related to the 
benchmarks appear in Table 2 for initial compilation with default 
parameters and no RAM power optimizations. Dynamic power 
percentages were determined versus overall design core dynamic 
power. In addition to compilation without RAM power 
optimizations, each design was compiled using the following 
automatic RAM power optimization cases described in Section 4. 

1. Read/write enable conversion to read/write clock enable. 

2. Read/write enable combining with an existing clock enable 
in addition to read/write enable conversion. 

3. Memory partitioning in addition to read/write enable 
conversion and combining. 

 

 

Table 2: Benchmark power statistics 

Average % dynamic power – 
embedded block memory 

25.3% 

Average % dynamic power – 
combinational logic 

22.7% 

Average % dynamic power - 
registers 

33.5% 

 

As shown in Table 2, RAM dynamic power forms a significant 
part of average design core dynamic power. A bar graph 
illustrating the per-design percent reduction in memory dynamic 
power due to these optimizations for Cases 1 (enable conversion) 
and 3 versus base case compilation with no RAM power 
optimization appears in Figure 10. A bar graph illustrating the 
reduction in overall core dynamic power appears in Figure 11. 
The designs appear in the same order numerically in each plot 
and in Table 1. Case 3 data for each graph includes any increase 
in combinational logic and register dynamic power due to logic 
added for multiplexing, address decoding, and clock enable 
combining. These plots show that although some designs achieve 
no benefit from the new approaches, others benefit significantly 
(up to 78% of RAM power and 34% of overall core dynamic 
power). Table 3 shows the average percentage improvement for 
core and RAM dynamic power for all three cases. The use of 
memory partitioning more than doubles the average core dynamic 
power savings (6.8% vs. 2.6%) and RAM dynamic power 
savings (21.0% vs. 9.7%). 
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Figure 10: Data RAM power savings for benchmark designs due to RAM power optimizations 



 

 

 

Table 3 also shows that the RAM dynamic power optimizations 
have little effect on area or performance. The percentage 
reduction in the achievable average design clock is shown in the 
table for all three cases. As expected, Case 3, which includes 
memory partitioning, exhibits the largest performance loss due to 
the inclusion of multiplexers at the logical RAM output (1.0%). 
As discussed in Section 4.3, this performance loss was mitigated 
by our restriction of a maximum 4-to-1 read port output bit 
multiplexer size. Case 3 also shows the largest increase in 
required LUTs (0.7%), primarily used to implement multiplexing 
logic. Case 1 (enable conversion) requires no additional logic and 
shows minimal performance decrease. 

As stated in Section 4.3, the memory partitioning algorithm 
considers mapping each logical memory to each type of 

embedded memory block on a target device and selects the most 
power-efficient implementation relative to available resources. 
To illustrate the dynamic power benefits of the availability of 
multiple embedded memory block sizes on a target FPGA we re-
mapped each of the 40 benchmark designs to a Stratix II 
EP2S180 using the constraints described in Section 4.4, except 
for the smallest device constraint. Four separate compiles were 
performed for each design, each using one of the following 
constraints: 

a. Memory partitioner selects the target physical embedded 
memory for each logical memory 

b. All logical memories mapped to M512s 

c. All logical memories mapped to M4Ks 

d. All logical memories mapped to M-RAMs 

For each compile, all RAM power optimizations were used, 
including memory partitioning. 

Due to RAM resource limitations it was not possible to 
successfully map all designs for Cases b, c, and d. Table 4 shows 
the number of designs that were successfully mapped for each 
case and the percentage increases for Cases b, c, and d mapping 
versus Case a for several parameters. Although it was possible to 
map all but 2 designs using solely M4Ks for embedded memory, 
a 6.6% core dynamic power and 33.3% RAM power penalty was 
observed. More drastic results versus the base case were 
observed by restricting memory mapping to solely M512s and M-
RAMs. 

 

 Enable 
convert 

Enable 
convert/ 
combine 

Enable 
convert/ 

combine + 
Mem partition 

Core dynamic 
power  

-1.8% -2.6% -6.8% 

Memory 
dynamic power  

-6.3% -9.7% -21.0% 

Max clk freq -0.1% -0.2% -1.0% 

LUT count 0.0% 0.1% 0.7% 

Figure 11: Overall core dynamic power savings for benchmark designs due to RAM power savings 
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Table 3: Summary of RAM optimization results for 
40 benchmark designs (all averages geometric) 



Table 4: Summary of RAM optimization results for logical 
RAMs targeted to specific embedded memory blocks versus 
unconstrained RAM placement using 40 benchmark designs 

 M512 M4K M-RAM 

Designs completed 23 38 4 

Core dynamic power 40.4% 6.6% 47.3% 

Memory power  279.5% 33.3% 754.0% 

Max clk freq. -2.2% 0.6% -1.0% 

LUT count 0.4% -0.5% 0.0% 

 

6. Conclusion and Future Work 
In this paper we have presented a set of RAM mapping 
algorithms that are targeted to FPGA embedded memory blocks. 
These techniques take advantage of the internal structure of 
FPGA embedded memory to reduce memory dynamic power 
dissipation. When possible, embedded memory block clock 
enables are used to deactivate RAM block precharging. Our 
mapping algorithms maintain the functional behaviour of each 
designer-specified RAM. These techniques achieve a 21% RAM 
dynamic power reduction and a 7% core dynamic power 
reduction for 40 large benchmark designs with a performance 
and logic cost of about 1%. Possible extensions to this work 
include packing multiple logical memories into a single physical 
memory to save power and using application signal activity 
profiling to guide power-aware RAM mapping decisions.  
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