
Power-aware RAM Mapping for FPGA Embedded
Memory Blocks

Russell Tessier
Department of Electrical and

Computer Engineering
University of Massachusetts

Amherst, MA, USA
tessier@ecs.umass.edu

Vaughn Betz, David Neto
Altera Toronto Technology Centre

151 Bloor St, Suite 200
Toronto, ON, CANADA

Thiagaraja Gopalsamy
Altera Corporation

101 Innovation Drive
San Jose, CA, USA

ABSTRACT
Embedded memory blocks are important resources in
contemporary FPGA devices. When targeting FPGAs, application
designers often specify high-level memory functions which
exhibit a range of sizes and control structures. These logical
memories must be mapped to FPGA embedded memory
resources such that physical design objectives are met. In this
work a set of power-aware logical-to-physical RAM mapping
algorithms are described which convert user-defined memory
specifications to on-chip FPGA memory block resources. These
algorithms minimize RAM dynamic power by evaluating a range
of possible embedded memory block mappings and selecting the
most power-efficient choice. Our automated approach has been
integrated into a commercial FPGA compiler and tested with 40
large FPGA benchmarks. Through experimentation, we show
that, on average, embedded memory dynamic power can be
reduced by 21% and overall core dynamic power can be reduced
by 7% with a minimal loss (1%) in design performance.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms

Keywords
FPGA, Embedded memory block, Dynamic power

1. INTRODUCTION
On-chip memory is an essential component of programmable
logic devices. Most on-chip data storage is implemented in large
RAM blocks integrated into the FPGA architecture. These
storage blocks allow for the implementation of a variety of
memory structures, including FIFOs, scratch pad memories, and
shift registers, within close physical proximity of logic resources.
Due to their extensive use, embedded memory blocks have been
found to consume between 10-20% of core dynamic power in

typical FPGA designs [1]. As the amount of FPGA logic and on-
chip memory grows rapidly over the next few years, the power-
efficient use of memory blocks will become increasingly
important.

 Embedded memory blocks in contemporary FPGAs are
typically implemented with synchronous SRAM [2][17] to
improve design performance. Like other synchronous SRAM
architectures, FPGA embedded memory accesses are performed
in concert with a design clock and a series of interface signals
including read/write (R/W) enables, clock enables, address, and
data signals. During application development, designers may
directly specify the source of control signals that are used to
manipulate design RAMs. More typically, a higher-level RAM
representation is specified and automatically converted to
physical RAMs and associated control circuitry. Control signals,
such as R/W enable and clock enables are generated by this
control circuitry.

 Synchronous FPGA embedded memories primarily consume
dynamic power as a result of internal RAM clocking. To save
power, RAM control signals can be configured to suppress
internal clocking when RAM access is unnecessary on a specific
clock cycle. Although user-defined or generated control signals
provide for valid functional embedded memory behaviour, their
configuration may not efficiently suppress unnecessary clocked
memory accesses, leading to wasted RAM dynamic power. These
limitations motivate a need for RAM mapping algorithms that
take power objectives into account while maintaining valid
functional behavior.

 In this paper we describe a series of algorithms to
automatically map user-specified logical memories to available
physical embedded memory block resources with the goal of
reducing overall FPGA dynamic power consumption. In
considering feasible RAM mappings, our approach estimates the
relative dynamic power consumption of each potential
implementation and selects the most power-efficient
implementation subject to on-chip RAM availability constraints.
When necessary, user-specified RAM control signals (R/W
enable, clock enables) are remapped to achieve a logically-
equivalent RAM implementation with reduced dynamic power
consumption. If an FPGA contains embedded memory blocks of
different sizes, a mapping using each block type is considered.

Our mapping techniques have been integrated into the Altera
Quartus II synthesis system [1] and targeted to a variety of Altera
FPGA families which contain embedded memories. Through
experimentation with 40 RAM-based Stratix II designs, we show

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’06, February 22-24, 2006, Monterey, California, USA.
Copyright 2006 ACM 1-59593-292-5/06/0002…$5.00.

an average embedded memory dynamic power reduction of 21%
and overall core dynamic power reduction of 7%.

 In the next section we discuss related power-aware memory
mapping techniques. In Section 3 the basic operation of FPGA
embedded memories are described along with details of the basic
mapping flow used to translate user-specified logical memory to
physical embedded memory blocks. Section 4 provides the
details of our power-aware RAM mapping techniques and
supporting algorithms. Experimental results are presented in
Section 5. Section 6 concludes the paper and offers directions for
future work.

2. Related Work
We are unaware of any prior CAD tools that produce a power-
efficient mapping of design RAM to FPGA or structured ASIC
embedded memory. Previous research efforts that map design
logic to embedded memory blocks in ASICs [4][14] and FPGAs
[9] do not consider power optimization as a mapping goal.
Although FPGA logic and routing dynamic power reduction has
been studied [10], these techniques were not applied to
embedded memory blocks.

RAM dynamic power-reduction techniques for ASICs and
microprocessor systems have been considered at the application-
mapping, compiler, and circuit levels. Although these approaches
provide insight into reducing FPGA embedded memory power,
none are directly applicable. Several synthesis techniques for
application-specific embedded systems create power-optimized
memory structures based on application address traces. In Benini
et al. [5], the memory trace of an embedded application is
analyzed by an algorithm to determine the portion of program
and data memory that is most frequently accessed. These
addresses are then grouped into memory banks which are
implemented with scratch pad memories. Infrequently accessed
addresses are grouped into larger physical memory blocks. Later
work by Cao et al. [6] extends this optimization to consider data
width scaling. Wuytack et al. [16] have developed techniques to
optimize the entire memory hierarchy of an application for power
consumption based on application information. These previous
approaches rely on application trace information to perform
memory partitioning.

A number of compiler techniques have been developed for
processor-based systems which optimize power while mapping
data to fixed system memory resources. For example, in Unsal et
al. [15], a series of memory locations for multimedia applications
are remapped to a small, local scratch pad memory to save
dynamic power. In Petrov and Orailoglu [13], the organization
and power consumption of a translation look-aside buffer are
adjusted on a per-application basis. In Gebotys [8], memory
energy is managed through memory and register allocation using
a network flow algorithm. In Ferrahi et al. [7], a compiler
technique to optimize sleep mode operation for memories is
described. Memory reactivations are minimized via scheduling to
save dynamic power.

Numerous circuit-level techniques for power reduction have been
explored [11] including reduced swing pre-decode lines, multi-
stage address decoding, and divided word and bit lines, among

others. These techniques may be used in the future by FPGA
designers to reduce FPGA embedded memory block power and
are additive to the approaches described in this paper.

3. Background
 The development of a power-efficient embedded RAM mapping
strategy requires insight into the internal behaviour of
synchronous SRAM. Typically, each port of an embedded
memory block is controlled by one or more read/write (R/W)
enable signals, clock (Clk) enable signals, and clock signals. As
shown in Figure 1, these signals directly or indirectly control
data movement in different parts of the embedded memory port.

 During a typical memory read operation the following events
occur in sequence, in response to a rising clock edge:

• The memory port clock (MClk) is strobed causing the
BIT lines to be precharged to Vcc.

• The read address is decoded and one word line is
activated.

• The BIT line difference is identified by sense amps
causing the read data to be strobed into a column
multiplexer.

• Read data passes through the column multiplexer and a
latch conditioned by Read Enable to the RAM external
Read Data lines.

 Memory write operations require a similar sequence of
operations which occur in the following order:

• The memory port clock (MClk) is strobed causing the
BIT lines to be precharged to Vcc.

• The Write Enable signal, conditioned by MClk, creates
a write pulse which transfers write data to the write
buffers and a word line is activated following write
address decode.

• Write buffer data is stored in the RAM cells

Write

MClk

Write
Enable

Pulse
Gen.

Column Mux
Write Buffers
Sense Amps

RAM cell

BIT BIT

Bit Line
Precharge

Read Data

Read
Enable Latch MClk

Word

MClk Clk
Enable
Clk

MClk

Figure 1: Internal view of embedded memory read/write
port

For both synchronous read and write RAM operations, most
dynamic power is consumed via BIT line precharging [12]. To
control clocking, embedded memory ports often have a clock
enable signal which can eliminate internal precharging, word-
line decoding, and RAM cell access. The disabling of the clock
enable signal when memory port access is not required provides
the best technique to eliminate embedded memory dynamic
power consumption for a memory port. If a RAM port is inactive
on a given clock cycle and its clock can be suppressed via an
inactive clock enable, the RAM port will not consume significant
dynamic power.

A number of contemporary FPGAs support embedded memory
blocks with R/W enable and clock enable signals. Altera Stratix
[3] and Stratix II [2] devices support both R/W enables and clock
enables on each port of TriMatrix embedded memory block dual-
port memory. Each Xilinx Virtex-II [18] and Virtex-4 [17]
embedded SelectRAM block contains write enable and clock
enable control signals on each port, but no separate read enable.

The goal of power-aware RAM mapping is to implement the
functionality of a user-defined RAM module (logical memory) in
one or more FPGA embedded memory blocks so that memory
precharges are limited. This optimization goal attempts to
minimize RAM dynamic activity through the use of RAM port
clock enables whenever possible. The effective use of clock
enable signals ensures that the bulk of embedded memory block
dynamic power is consumed when a required access to data
within a RAM is performed. In some cases this goal may require
the synthesis of one of more clock enable signals during the
mapping process. This mapping must achieve the same
functional behaviour for the RAM as specified by the designer
while allowing for possible tradeoffs regarding design power
consumption and design area and performance.

3.1 Typical FPGA RAM Mapping Flow
FPGA embedded memory blocks are used to implement a variety
of RAM components including FIFOs, shift registers, and single
and dual-port memories. Logical RAMs are specified by the
designer in RTL or schematic form, created by the FPGA
compiler and mapped [1], as shown in Figure 2:

1. Logical memory creation – User-defined RAM descriptions
are processed by the FPGA compilation software to create
logical memories with desired characteristics.

2. Logical-to-physical RAM processing - Logical RAMs are
converted into one or more RAM blocks which match the
external interface and size constraints of available embedded
memory blocks.

3. Embedded memory block placement – RAM blocks and
associated control logic are assigned to available on-chip
embedded memory block and logic resources.

The power-aware algorithms developed in this work are applied
in the logical-to-physical RAM processing step. Traditionally,
RAM mapping has targeted logical RAM performance and FPGA
area minimization [9] rather than power consumption. To
conserve dynamic power it is desirable to map memory functions
specified by designers to available physical memories so that
power consumption is optimized within area and delay
constraints. As shown in Section 4.2, an area-optimal embedded
memory implementation does not always consume the least
amount of dynamic power.

The size of both logical and physical (embedded) memory blocks
can be defined in terms of the number of addressable locations
(depth) and output bits per memory (width). The number of
address bits required for both logical and physical memories is
directly related to memory block depth. The number of data in
and data out bits is related to memory block width. To promote
flexibility, an FPGA embedded memory block may typically be
programmed to support a range of depth versus width
configurations [2][17].

Until the relatively recent adoption of synchronous SRAMs, most
user-defined RAM designs targeted asynchronous memories
(both external and internal to FPGAs) which use read and write
enable for data access control. Although embedded memory
blocks now allow for the use of either operation-specific enable
or clock enable signals to provide access control, many designers
continue to use the operation-specific enable approach, ignoring
the clock enable. Contemporary RAM mapping flows (e.g. Figure
2) automatically map these user-defined enable signals to the
R/W enable signals located on the embedded memory block
ports. Unspecified clock enables are set to be continuously
active. The use of read and write enable signals for data access
control instead of associated clock enable signals leads to sub-
optimal power consumption in many cases.

A second impediment to reduced RAM power dissipation is
related to logical RAM size. In most cases the size of a user-

FIFO, Shift Register, RAM
specification

Create
Logical
Memory

Logical RAMs

Logical-to-

physical RAM
processing

RAM blocks/
logic

Memory/
logic

placement

Placed
Memory

Figure 2: Typical Logical RAM to Embedded Memory
Block Mapping Flow

4k words
deep and 4
bits wide

Logical memory

4k words deep
and 1 bit wide
memory block

(4 times)

Addr[0:11]

Data[0:3]

Physical memories

Figure 3: Area-efficient mapping of a 4Kx4 logical RAM
to 4 Kbit memory blocks

specified logical memory will not exactly match the width and
depth dimensions of an embedded memory block. Since existing
RAM mapping flows focus on optimizing delay and resource
usage, rather than power, logical memories are typically mapped
using a minimum of external logic. As an example, Figure 3
illustrates the mapping of a 4Kx4 logical memory to four 4Kx1
embedded memory blocks. In this case, each memory block is
configured as 4Kx1 so that a single bit of each addressable
location is located in each block. This configuration requires no
external logic. However, all four memory blocks must be active
during each logical memory access, so this is a high-power
implementation.

4. Power-Aware RAM Mapping
Our RAM mapping approach consists of two algorithms that
obtain a power-efficient mapping of logical memories to FPGA
embedded memory blocks. Two specific cases are targeted:

1. Since most embedded memory block dynamic power is a
result of clock-induced precharging, we identify cases where
user-specified logical RAM read and write enable signals can
be automatically converted to or combined with
corresponding read and write clock enable signals while
maintaining correct functional behaviour.

2. For cases where more than one embedded memory block is

required to implement a logical RAM, we implement a
multi-banked RAM mapping. As a result of this banked
mapping, only one embedded memory block is clocked per
access. In some cases the banked structure may require the
inclusion of supporting logic.

4.1 Conversion of read and write enable to
read and write clock enable
In general, synchronous embedded memory blocks exhibit the
same functional RAM behaviour if either an enable or a clock
enable is used to control a read (or write) access and the
alternate signal is set to an active state. To illustrate this
observation, all four configurations of active-high enable and
clock enable signals are considered for read and write accesses.
For a successful read (or write) access both enable and clock
enable signals must be set to active-high.

The functional equivalence of embedded memory read enable
and read clock enable can be observed in Figure 4 based on the
discussion of RAM read steps in Section 3. Using the figure, the
behaviour of the following four read cases can be considered:

1. Read Clk Enable = 0, Read Enable = 0 – New data will not
be transferred to the column multiplexer since the BIT lines
are not precharged.

2. Read Clk Enable = 1, Read Enable = 0 – New data is
obtained from the RAM cell following BIT line precharge but
will not be transferred to the Read Data lines since the latch
conditioned by Read Enable is closed.

3. Read Clk Enable = 0, Read Enable = 1 – New data will not
be transferred to the column multiplexer since the BIT lines
are not precharged. Indeterminate data passes through the
latch and is driven onto the Read Data lines.

4. Read Clk Enable = 1, Read Enable = 1 – New data is
obtained from the RAM cell following bit line precharge and
passed through the latch to the Read Data lines.

Consider a scenario where Read Enable is attached to a control
signal and Read Clk Enable is always tied to active logic 1. From
the enumeration it can be seen that since the AND of Read
Enable and Read Clk Enable is needed for a successful read, the
signals are functionally equivalent for reads, the Read Clk
Enable signal can be driven by the signal previously tied to Read
Enable, and Read Enable can be tied to logic 1.

Similarly, the functional equivalence of embedded memory write
enable and write clock enable can be observed in Figure 5 based
on the discussion of RAM write steps in Section 3.

Using the figure, the behaviour of the following four write cases
can be considered:

1. Write Clk Enable = 0, Write Enable = 0 – A write
enable pulse will not be generated by the pulse
generator preventing write data from being loaded onto
the BIT lines. The BIT lines are not precharged.

2. Write Clk Enable = 1, Write Enable = 0 – A write
enable pulse will not be generated by the pulse
generator preventing write data from being loaded onto
the BIT lines. The BIT lines are precharged.

Write Data

MClk

MClk
Write

Enable

Pulse
Gen.

Column Mux
Write Buffers

Row Decode

Column Decode

RAM
Cell

BIT BIT

Bit Line
Pre-charge

MClk
Write Clk
Enable

Clk

MClk
If write clock enable = 0, all operations
suppressed

If write enable = 0, operations in
unshaded boxes are suppressed

MClk

Addr

Figure 5: Functional equivalence of embedded memory
write enable and write clock enable

Read Data

MClk

Column Mux
Sense Amps

Row Decode

Column Decode

RAM cell

BIT BIT

Bit Line
Pre-charge

Read
Enable Latch

MClk
Read Clk
Enable

Clk

Address

If read clk enable = 0, operations in
shaded boxes are suppressed

If read enable = 0, operation in
unshaded box is suppressed

MClk

Figure 4: Functional equivalence of embedded memory
read enable and read clock enable

3. Write Clk Enable = 0, Write Enable = 1 – A write
enable pulse will not be generated by the pulse
generator preventing write data from being loaded onto
the BIT lines. The BIT lines are not precharged.

4. Write Clk Enable = 1, Write Enable = 1 – A write
enable pulse is generated, the BIT lines are precharged,
write data is loaded onto the BIT lines and into RAM
cells

Consider a scenario where Write Enable is attached to a control
signal and Write Clk Enable is always tied to active logic 1.
From the enumeration it can be seen that since the AND of Write
Enable and Write Clk Enable is needed for a successful write
operation, the signals are functionally equivalent for writes, the
Write Clk Enable signal can be driven by the signal previously
labelled Write Enable, and Write Enable can be tied to logic 1.
The conversion of user-defined read and write enable signals to
respective clock enables primarily reduces power by eliminating
BIT line precharging when embedded memory block data access
is not required. The same functional RAM behaviour is
maintained.

For some logical memories, a designer may specify both an
enable and a clock enable signal for an embedded memory port.
In these cases, additional logic (an AND gate) must be added to
the user design to allow the user-defined enable signal to
condition the associated memory port clock. The combining of
the enable and clock enable signal forms a new combined clock
enable signal which can be attached to the memory port clock
enable input. Depending on designer timing constraints, the
addition of logic delay to the clock enable path may negatively
impact mapped design performance. As a result, this approach
may only be appropriate if design power reduction is considered
more important than design performance or preliminary timing
information is available to determine if performance is not likely
to be affected.

The mapping steps in Figure 6 are performed on each logical
RAM. These steps perform enable-to-clock enable conversion
and combining for embedded memory block inputs Clken and
Enable and designer signals User Clken and User Enable.

4.2 Power-aware RAM Partitioning
As shown in Figure 3, a logical memory which exceeds the size
of an embedded memory block must be mapped to multiple
blocks. Although the mapping shown in Figure 3 does not require
any supporting logic, each memory block is active during each
memory access, requiring substantial power consumption. In this
case, the depth of each physical memory block matches the depth
of the logical memory and the width of each physical memory
block is smaller than its logical memory counterpart. This
mapping is an example of vertical memory slicing.

In general, an FPGA embedded memory block can be structured
to have a variety of depth and width configurations, each with the
same bit storage capacity. For example, an Altera M4K 4608 bit
embedded memory block can be organized into configurations
ranging from 4096x1 to 256x18 [2]. This allows a range of
choices in mapping a logical RAM to physical memory blocks.
For example, Figures 3 and 7 provide two example mapping
alternatives. In the mapping in Figure 7, the width of each
physical memory block matches the width of the logical memory
while the depth of each physical memory block is reduced
compared to its logical memory counterpart. This mapping can be
considered an example of horizontal memory slicing. This
second mapping requires the inclusion of address decoding
circuitry to determine which memory block contains the
requested data. Additionally, a multiplexer is required on the
read port to select the requested word during read requests.
Although dynamic power is consumed by the added address
decoder and multiplexer, all but one of the embedded memory
blocks is disabled during RAM accesses, saving considerable
dynamic power. Unused memory blocks are disabled by
connecting the outputs of the address decoder to memory block
clock enable signals.

The vertical and horizontal RAM slicing implementations shown
in Figures 3 and 7 represent the end points of a spectrum of
feasible logical-to-physical RAM mappings (e.g. 2Kx2 RAM
block configurations are also possible). If, as a result of a
mapping change, an embedded memory block is converted from a
given depth to one that is half as deep, the following additional
mapping changes are required:

1K deep x 4
wide memory

block

Addr
Decoder

4

Addr[0:9]

Addr[10:11]

Data[0:3]

4k words
deep and 4
bits wide

Logical
memory

Addr[10:11]

Figure 7: Alternate mapping of a 4Kx4 logical RAM to
4 Kbit memory blocks

If Clken = 1 and Enable = User Enable

 Set Clken = User Enable and Enable = 1

If Clken = User Clken and Enable = User Enable

 Set Clken = User Enable & User Clken and Enable = 1

If Clken = User Clken and Enable = 1

 Perform no change

Figure 6: Steps required for enable signal conversion
and combining. This analysis is performed on each
design logical RAM

1. Each write port data line must be tied to twice the number of
source/destination embedded memory blocks.

2. The size of the address decoder increases by a factor of 2.

3. The bit input size of each multiplexer on the embedded
memory read port increases by a factor of 2.

4. One address line is removed from each of the embedded
memory blocks.

The relative power consumed by each logical-to-physical
mapping can be evaluated by assessing the power consumed by
the memory blocks during a data access, the address decoder, the
output multiplexer, and associated routing. As mappings
approach the vertical slicing implementation (maximum physical
block depth), memory block power is increased and multiplexer
and address decoder power is decreased. As mappings approach
the horizontal slicing implementation, multiplexer and address
decoder power is increased and memory block power is
decreased. Figure 8 shows the dynamic power consumed by
various mappings of a 4Kx32 logical RAM in a Stratix II device
for a selection of embedded memory block depths as reported by
the Quartus II PowerPlay power analyzer. The plot shows that the
power optimal mapping for this logical RAM falls between the
horizontal slicing on the left and vertical slicing on the right. All
mappings achieve the same functional behaviour.

4.3 Logical RAM Partitioning Algorithm
A power-aware RAM partitioning algorithm has been developed
to evaluate the relative power consumption of a series of logical-
to-physical RAM mappings. Each mapping is evaluated based on
the number of active embedded memory blocks per port, the
amount of associated address decoder and multiplexer circuitry
required, and associated routing. Since contemporary FPGAs
contain a set of different embedded memory block sizes, mapping
evaluation is performed for each block type to determine the
most power-efficient choice. The relative cost for each mapping
is determined based on the estimated dynamic power
consumption of the mapping. This cost can be expressed for each
port of each logical RAM as:

Cost = W * Pmux + N * Pram + Paddr_decode (1)

Where Cost is the relative power cost for the mapping, W is the
width of the logical RAM, Pmux is the per-bit dynamic power of a
read port multiplexer, N is the number of required embedded
memory blocks, Pram is the per-block dynamic power, and
Paddr_decode is the dynamic power consumption of the address
decoder. Specific algorithm steps for a logical memory are shown
in Figure 9.

Our approach is effective for both single- and dual-port logical
RAMs. The key power savings aspect of the approach is the
connection of address decoder outputs to embedded memory
block clock enables. Only the addressed memory block is
precharged on a given clock cycle saving considerable RAM
dynamic power.

The inclusion of a memory block read port multiplexer can
negatively impact design performance for designs which include
the RAM block output on the design critical path. Design
performance is not explicitly considered by the partitioning
algorithm. However, to minimize performance impact, only
configurations which require a 4-to-1 or smaller multiplexer on
each read port output bit are considered.

In addition to possibly affecting performance, the inclusion of
multiplexers consumes device logic. This added logic may result
in an overflow of required design logic elements for a target
device.

Dynamic Power
(mW)

0
20
40
60
80

100
120
140

Maximum Depth per Block

Multiplexer Power Increasing

128 256 512 1k 2k 4k
Embedded Memory Block Power Increasing

Figure 8: Dynamic power consumption of a 4Kx32 logical
RAM at 100 MHz in different slicing configurations

1. For each embedded memory block type

a. For each possible embedded memory block depth
and width configuration

i. Determine N and the size of the address
decoder.

ii. For each logical memory port

1. Look-up memory block power, Pram

2. Scale Pram by number of memories, N

3. Look up per-bit dynamic power of bit of
output read port multiplexer, Pmux

4. Scale Pmux by read port width, W

5. Look up dynamic power of address
decoder, Paddr_decode

6. Sum power components to determine Cost
via Eq. (1)

iii. Sum Cost values across logical memory ports

b. Save lowest power configuration

2. Rank possible implementations by power consumption

3. Select lowest-power feasible implementation

a. Check if memory block usage overflowed by
selection

b. If yes, select next best feasible implementation

Figure 9: Power-aware memory partitioning algorithm
applied to each logical RAM

4.4 Parameter Evaluation
The algorithms described in Sections 4.1 and 4.3 have been
integrated into Quartus II version 5.1 and applied to Stratix II
FPGAs [2]. Experimental results were determined in two phases.
First, the technology parameters noted in Equation (1) were
determined via parameter evaluation experiments with a
representative set of logical RAMs. After parameter evaluation,
the algorithms were tested with 40 commercial benchmark
designs containing logical RAMs.

The logical RAMs used for parameter evaluation included ROMs
and single and dual port RAMs of sizes ranging from 512x2 to
8Kx132. Parameter evaluation was performed for the Altera
Stratix II architecture, which contains three types of embedded
memory blocks, each of a different size: 576-bit (M512), 4,608
bit (M4K), 589,824 bit (M-RAM) [2]. Each memory block
allows for implementation of both single and dual-port
synchronous RAMs.

Each logical RAM used for parameter evaluation was mapped to
each of the three Stratix II memory block types using multi-block
partitioning ranging from horizontal slicing to vertical slicing.
Following synthesis with Quartus II, the memory designs were
placed and routed using Quartus II. All synthesis, place, and
route steps used an unattainable 1 GHz timing constraint to
ensure maximum fitting effort by the CAD software. Designs
were simulated at 100 MHz with random input vectors and
dynamic power analysis was performed using the Quartus II
PowerPlay power analyzer. All compiled designs were able to
satisfy a minimum clock frequency of 100 MHz.

Statistical averaging was then used to determine the following
values based on measured values for all RAM implementations:

• Power consumed by single bit of an n-to-1 multiplexer,
Pmux, Values for only 2-to-1 and 4-to-1 multiplexers were
determined since shallower embedded memory blocks depth
slicings are not performed by our system due to performance
concerns.

• Per-port design power consumed by an active physical
memory block, Pram, for an M512, M4K, and M-RAM
embedded memory block.

• Power consumed by a k-to-n address decoder, Paddr_decode,
for a 2-to-4 and 1-to-2 decoder.

Because the power analyzer takes detailed placement and routing
into account when producing a power estimate, the averaged
values for Pmux and Paddr_decode take the effects of control signal,
address, and data fanout into account.

Although the calculated parameters measure dynamic power
values averaged across the RAM parameter evaluation design
set, the access patterns of user logical RAMs may differ. Since
our algorithm considers relative rather than absolute dynamic
power values in making tradeoffs, we consider the subsequent
use of these parameters across a range of user benchmarks to be
acceptable and representative of most RAM access patterns.

Table 1: Benchmark Design Statistics

Design LUTs Memory
bits

Flip
flops

Target Device

1 8005 254680 6247 EP2S15F672
2 9106 47264 6971 EP2S15F672
3 15988 548 12948 EP2S60F1020
4 9802 292608 5363 EP2S15F672
5 8853 63744 7349 EP2S60F1020
6 5751 168 1750 EP2S60F1020
7 5743 168 1030 EP2S60F1020
8 13121 426512 10394 EP2S60F1020
9 23464 327680 3215 EP2S60F1020

10 215 331776 27 EP2S15F484
11 243 331776 47 EP2S15F484
12 26154 327680 3215 EP2S90F1508
13 5295 1134 3587 EP2S15F484
14 5488 512 4915 EP2S60F1020
15 7409 6432 5944 EP2S60F1020
16 23550 128452 22063 EP2S60F1020
17 8071 43008 3863 EP2S30F672
18 17857 66336 12199 EP2S90F1508
19 17857 66336 12199 EP2S90F1508
20 35849 89600 19745 EP2S90F1508
21 12039 1206785 8542 EP2S60F1020
22 11785 65536 8131 EP2S30F672
23 11149 36096 5297 EP2S30F672
24 13714 51456 6415 EP2S60F1020
25 5881 111872 4673 EP2S15F672
26 4816 98684 3875 EP2S15F672
27 10066 227010 7384 EP2S15F672
28 18987 184320 14940 EP2S60F1020
29 3082 124290 2702 EP2S15F672
30 30352 88048 25489 EP2S60F1020
31 8458 168416 6966 EP2S15F672
32 23283 337501 18868 EP2S30F672
33 13112 293856 9149 EP2S30F672
34 36741 1402661 16492 EP2S90F1508
35 16731 524288 15547 EP2S30F484
36 12560 1057428 9181 EP2S60F672
37 2136 171098 1618 EP2S15F484
38 4183 286956 3913 EP2S15F484
39 5384 153864 2809 EP2S60F1020
40 28199 1009920 12148 EP2S60F1020

5. Results
Following the determination of the tuning parameters and the
integration of our algorithms with Quartus II, experimentation
was performed on 40 commercial designs provided by Altera.
This benchmark set includes designs which contain RAM from
encryption, signal processing, and communications processing
domains. LUT, memory bit and flip flop counts for each design
are shown in Table 1. As seen in Figure 2, optimization occurs
after complex memory functions (e.g. FIFOs, shift registers) are
converted to logical RAMs, but before structures are assigned to
specific embedded memories. The 40 designs were targeted to
the smallest Stratix II device which would hold them. The
specific device used for each design is listed in Table 1.

Dynamic power consumption for all designs was evaluated using
the same power analysis flow noted in Section 4.4 for parameter
evaluation except for the inclusion of our new RAM mapping
algorithms. A series of test vectors were used to simulate each
design at 100 MHz following compilation with an unattainable 1
GHz clock constraint. Dynamic power analysis was performed
with the Quartus II PowerPlay power analyzer using switching
activity values determined via simulation. All Quartus II power
optimizations, except for our new algorithms, were shut off
during experimentation.

To validate our approach, a series of experiments were
performed using combinations of the algorithms with the 40
benchmark circuits. Dynamic power statistics related to the
benchmarks appear in Table 2 for initial compilation with default
parameters and no RAM power optimizations. Dynamic power
percentages were determined versus overall design core dynamic
power. In addition to compilation without RAM power
optimizations, each design was compiled using the following
automatic RAM power optimization cases described in Section 4.

1. Read/write enable conversion to read/write clock enable.

2. Read/write enable combining with an existing clock enable
in addition to read/write enable conversion.

3. Memory partitioning in addition to read/write enable
conversion and combining.

Table 2: Benchmark power statistics

Average % dynamic power –
embedded block memory

25.3%

Average % dynamic power –
combinational logic

22.7%

Average % dynamic power -
registers

33.5%

As shown in Table 2, RAM dynamic power forms a significant
part of average design core dynamic power. A bar graph
illustrating the per-design percent reduction in memory dynamic
power due to these optimizations for Cases 1 (enable conversion)
and 3 versus base case compilation with no RAM power
optimization appears in Figure 10. A bar graph illustrating the
reduction in overall core dynamic power appears in Figure 11.
The designs appear in the same order numerically in each plot
and in Table 1. Case 3 data for each graph includes any increase
in combinational logic and register dynamic power due to logic
added for multiplexing, address decoding, and clock enable
combining. These plots show that although some designs achieve
no benefit from the new approaches, others benefit significantly
(up to 78% of RAM power and 34% of overall core dynamic
power). Table 3 shows the average percentage improvement for
core and RAM dynamic power for all three cases. The use of
memory partitioning more than doubles the average core dynamic
power savings (6.8% vs. 2.6%) and RAM dynamic power
savings (21.0% vs. 9.7%).

-10

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Designs

%
 D

yn
 P

o
w

er
 R

ed
u
ct

io
n

Enable convert

Enable convert/
combine + Mem
partition

Figure 10: Data RAM power savings for benchmark designs due to RAM power optimizations

Table 3 also shows that the RAM dynamic power optimizations
have little effect on area or performance. The percentage
reduction in the achievable average design clock is shown in the
table for all three cases. As expected, Case 3, which includes
memory partitioning, exhibits the largest performance loss due to
the inclusion of multiplexers at the logical RAM output (1.0%).
As discussed in Section 4.3, this performance loss was mitigated
by our restriction of a maximum 4-to-1 read port output bit
multiplexer size. Case 3 also shows the largest increase in
required LUTs (0.7%), primarily used to implement multiplexing
logic. Case 1 (enable conversion) requires no additional logic and
shows minimal performance decrease.

As stated in Section 4.3, the memory partitioning algorithm
considers mapping each logical memory to each type of

embedded memory block on a target device and selects the most
power-efficient implementation relative to available resources.
To illustrate the dynamic power benefits of the availability of
multiple embedded memory block sizes on a target FPGA we re-
mapped each of the 40 benchmark designs to a Stratix II
EP2S180 using the constraints described in Section 4.4, except
for the smallest device constraint. Four separate compiles were
performed for each design, each using one of the following
constraints:

a. Memory partitioner selects the target physical embedded
memory for each logical memory

b. All logical memories mapped to M512s

c. All logical memories mapped to M4Ks

d. All logical memories mapped to M-RAMs

For each compile, all RAM power optimizations were used,
including memory partitioning.

Due to RAM resource limitations it was not possible to
successfully map all designs for Cases b, c, and d. Table 4 shows
the number of designs that were successfully mapped for each
case and the percentage increases for Cases b, c, and d mapping
versus Case a for several parameters. Although it was possible to
map all but 2 designs using solely M4Ks for embedded memory,
a 6.6% core dynamic power and 33.3% RAM power penalty was
observed. More drastic results versus the base case were
observed by restricting memory mapping to solely M512s and M-
RAMs.

 Enable
convert

Enable
convert/
combine

Enable
convert/

combine +
Mem partition

Core dynamic
power

-1.8% -2.6% -6.8%

Memory
dynamic power

-6.3% -9.7% -21.0%

Max clk freq -0.1% -0.2% -1.0%

LUT count 0.0% 0.1% 0.7%

Figure 11: Overall core dynamic power savings for benchmark designs due to RAM power savings

-5

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Designs

%
 D

yn
. P

o
w

er
 R

ed
u
ct

io
n

Enable convert

Enable convert/
combine + mem
partition

Table 3: Summary of RAM optimization results for
40 benchmark designs (all averages geometric)

Table 4: Summary of RAM optimization results for logical
RAMs targeted to specific embedded memory blocks versus
unconstrained RAM placement using 40 benchmark designs

 M512 M4K M-RAM

Designs completed 23 38 4

Core dynamic power 40.4% 6.6% 47.3%

Memory power 279.5% 33.3% 754.0%

Max clk freq. -2.2% 0.6% -1.0%

LUT count 0.4% -0.5% 0.0%

6. Conclusion and Future Work
In this paper we have presented a set of RAM mapping
algorithms that are targeted to FPGA embedded memory blocks.
These techniques take advantage of the internal structure of
FPGA embedded memory to reduce memory dynamic power
dissipation. When possible, embedded memory block clock
enables are used to deactivate RAM block precharging. Our
mapping algorithms maintain the functional behaviour of each
designer-specified RAM. These techniques achieve a 21% RAM
dynamic power reduction and a 7% core dynamic power
reduction for 40 large benchmark designs with a performance
and logic cost of about 1%. Possible extensions to this work
include packing multiple logical memories into a single physical
memory to save power and using application signal activity
profiling to guide power-aware RAM mapping decisions.

7. Acknowledgments
The authors wish to thank Elden Chau, Aaron Egier, Marcel
LeBlanc, David Lewis, and David Lin for their insights regarding
this work.

8. REFERENCES

[1] Altera Corp. Quartus II Handbook, Chapter 7, vol. 1, July
2005.

[2] Altera Corp. Stratix II Device Handbook, vol. 2, July 2005.

[3] Altera Corp. Stratix Device Handbook, vol. 1, July 2005.

[4] S. Bakshi and D. Gajski. A memory selection algorithm for
high-performance pipelines, In Proceedings of the European
Design Automation Conference, Brighton, England, Sept.
1995, pp. 124-129.

[5] L. Benini, A. Macii, and M. Poncino. A recursive algorithm
for low-power memory partitioning, In Proceedings of the
International Symposium on Low Power Electronics and
Design, Rapallo, Italy, July, 2000, pp. 78-83.

[6] Y. Cao, H. Tomiyama, T. Okuma and H. Yasuura. Data
memory design considering effective bitwidth for low-
energy embedded systems, In Proceedings of the IEEE

International Symposium of System Synthesis, Kyoto, Japan,
Oct. 2002, pp. 201-206.

[7] A. Ferrahi, G. Tellez, and M. Sarrafzadeh. Memory
segmentation to exploit sleep mode operation, In
Proceedings of the ACM/IEEE Design Automation
Conference, San Francisco CA, Jun. 1995, pp. 36-41.

[8] C. Gebotys. Low energy memory and register allocation
using network flow, In Proceedings of the ACM/IEEE
Design Automation Conference, Anaheim, CA, Jun. 1997,
pp. 435-440.

[9] W. Ho and S. Wilton. Logical-to-physical memory mapping
for FPGAs with dual-port embedded memories, In
Proceedings of the International Workshop of Field
Programmable Logic and Applications, Glasgow, UK, Aug.
1999, pp. 111-123.

[10] J. Lamoureux and S. Wilton. On the interaction between
FPGA CAD algorithms, In Proceedings of the IEEE
International Conference on Computer-Aided Design, San
Jose, CA, Nov. 2003, pp. 701-708.

[11] M. Margala. Low-power SRAM circuit design, In
Proceedings of the IEEE International Workshop on
Memory Technology, Design, and Testing, San Jose, CA,
Aug. 1999, pp. 115-122.

[12] M. Mamidipaka and N. Dutt. An Enhanced Power
Estimation Model for On-Chip Caches. CECS Technical
Report #04-28, University of California, Irvine, 2004.

[13] P. Petrov and A. Orailoglu. Virtual page tag reduction for
low-power TLBs, In Proceedings of the IEEE International
Conference on Computer Design, San Jose, CA, Oct. 2003,
pp. 371-374.

[14] H. Schmit and D. Thomas. Address generation for memories
containing multiple arrays, IEEE Transactions on VLSI
Systems, vol. 17, pp. 377-385, May 1998.

[15] O. Unsal, R. Ashok, I. Koren, C. Krishna, and C. Moritz.
Cool-cache for hot multimedia, In Proceedings of the
ACM/IEEE International Symposium on Microarchitecture,
Austin, TX, Dec. 2001, pp. 274-283.

[16] S. Wuytack, F. Catthoor, L. Nachtergaele and H. De Man.
Power exploration for data dominated video applications, In
Proceedings of the IEEE International Symposium on Low
Power Design, Monterey, CA, Aug. 1996, pp. 359-364.

[17] Xilinx Corp. Virtex-4 User’s Guide, July 2005.

[18] Xilinx Corp. Virtex II Platform FPGAs: Complete Data
Sheet, March 2005.

