
A Dynamically Reconfigurable Adaptive Viterbi Decoder

Sriram Swaminathan, Russell Tessier, Dennis Goeckel, and Wayne Burleson
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA. 01003.

{sswamina, tessier}@ecs.umass.edu

ABSTRACT
The use of error-correcting codes has proven to be an effec-
tive way to overcome data corruption in digital communi-
cation channels. Although widely-used, the most popular
communications decoding algorithm, the Viterbi algorithm,
requires an exponential increase in hardware complexity to
achieve greater decode accuracy. In this paper, we describe
the analysis and implementation of a reduced-complexity de-
code approach, the adaptive Viterbi algorithm (AVA). Our
AVA design is implemented in reconfigurable hardware to
take full advantage of algorithm parallelism and specializa-
tion. Run-time dynamic reconfiguration is used in response
to changing channel noise conditions to achieve improved
decoder performance. Implementation parameters for the
decoder have been determined through simulation and the
decoder has been implemented on a Xilinx XC4036-based
PCI board. An overall decode performance improvement
of 7.5X for AVA has been achieved versus algorithm imple-
mentation on a Celeron-processor based system. The use
of dynamic reconfiguration leads to a 20% performance im-
provement over a static implementation with no loss of de-
code accuracy.

Keywords
Viterbi coding, FPGA, dynamic reconfiguration.

1. INTRODUCTION
Convolutional codes, which allow for efficient soft-decision

decoding [9], are widely employed in wireless communica-
tion systems. As convolutional codes become more power-
ful, the complexity of corresponding decoders generally in-
creases. The Viterbi algorithm [9], which is the most exten-
sively employed decoding algorithm for convolutional codes,
works well for less-complex codes, indicated by constraint
length K. However, the algorithm’s memory requirement
and computation count pose a performance obstacle when
decoding more powerful codes with large constraint lengths.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002 ...$5.00.

In order to overcome this problem, the adaptive Viterbi al-
gorithm (AVA) [4] [11] has been developed. This algorithm
reduced the average number of computations required per
bit of decoded information while achieving comparable bit-
error rates (BER) versus Viterbi algorithm implementations.

Reconfigurable computing has been proposed for signal
processing with various objectives, including high perfor-
mance, flexibility, specialization, and most recently, adapt-
ability. Reconfiguration is characterized by how fast the re-
configuration can occur and how many possible reconfigura-
tions can be used. For many signal processing systems [13],
it is possible to exploit variations in signals to vary compu-
tation and memory requirements. The recent proliferation
of wireless communication systems has indicated the need
to dynamically adapt communications architectures at the
hardware level. These architectures can be characterized via
a set of architectural parameters which can be determined
experimentally.

In this paper, the analysis and implementation of an adap-
tive Viterbi decoder is described. The decoder implemen-
tation is the first operational implementation of the AVA
algorithm and is targeted to a Xilinx XC4036XL FPGA to
take advantage of computational specialization and paral-
lelism. Our implementation is unique since it has the capa-
bility to adapt the amount of computation performed and
the amount of storage used at both a fine-timescale (ms)
and coarse-timescale (s) level. Reconfigurable logic is a de-
sirable candidate for the adaptive Viterbi algorithm imple-
mentation due to the adaptive nature of the algorithm and
the wide range of application parameters. Architectural pa-
rameters for the algorithm were obtained through C simu-
lations on a workstation. In the adaptive Viterbi algorithm,
the number of candidate data sequences (survivor paths)
retained per received symbol (transmitted data bit) varies
over time. Although reconfiguration based on each received
symbol would improve performance, current FPGA technol-
ogy makes this approach infeasible. A second, more effec-
tive, approach is to reconfigure AVA architecture based on
channel noise characteristics. If channel noise is known to
be reduced, decoder computation and memory is reduced to
support faster performance.

Following implementation on a PCI-based WildOne board
from Annapolis Micro Systems [2] containing a XC4036XL
FPGA, a series of experiments involving the adaptive Viterbi
decoder were performed. Experimental results show that
the overall run-time of the decoder implementation on a
XC4036XL-08 FPGA, including bus overhead, is up to 7.5
times faster than a software AVA implementation on a 366

MHz Celeron microprocessor. This performance improve-
ment can be attributed to the parallelism available within
the FPGAs. Further, it is shown that, depending on channel
noise statistics, dynamic decoder reconfiguration can achieve
a performance improvement of about 20% over a static AVA
decoder implementation on an FPGA with no reduction of
decoder accuracy. Under reduced-noise channel conditions,
a less complex hardware design can be swapped into the
FPGA to achieve the same decode accuracy. Due to the
reduced complexity of the algorithm, logic resource require-
ments are reduced by more than a factor of two compared
to standard Viterbi decoder implementations, even for larger
constraint lengths [5] [16] and decoder performance in terms
of processed bandwidth is improved. An empirical study
shows that hardware requirements for our decoder grow pre-
dictably with constraint length at a rate substantially less
than the exponential growth exhibited by standard Viterbi
algorithms. The model is verified through experimental re-
sults.

2. BACKGROUND
Error correction coding [9] can be used to detect and cor-

rect data transmission errors in communication channels.
Encoding is accomplished through the addition of redundant
bits to transmitted information symbols. These redundant
bits provide decoders with the capability to correct trans-
mission errors. Convolutional codes [7] form a set of popular
error-correction codes. In convolutional coding, the encoded
output of a transmitter (encoder) depends not only on the
set of encoder inputs received during a particular time step,
but also on the set of inputs received within a previous span
of K-1 time units, where K is greater than 1. The parameter
K is the constraint length of the code.

A typical convolutional encoder of constraint length K =
3 is shown in Figure 1. As shown in the figure, the encod-
ing of convolutional codes can be accomplished with shift
registers and generator polynomials (XOR functions). A
convolutional encoder is represented by the number of out-
put bits per input bit (v), the the number of input bits
accepted at a time (b), and the constraint length (K), lead-
ing to representation (v, b, K). Figure 1 depicts a (2, 1,
3) convolutional encoder since the encoder accepts one in-
put bit per time step and generates two output bits. The
two output bits are dependent on the present input and the
previous two input bits. The constraint length K indicates
the number of times each input bit has an effect on pro-
ducing output bits. Larger constraint lengths, i.e. K = 9
or higher, are preferable since they allow for more accurate
error correction. Encoding rate R is equal to b/v. In many
communication systems, a rate of 1/2 is used [9]. Initially,
the contents of the encoder shift register are set to zero.
The contents are shifted right each time a one-bit value is
converted into a two-bit symbol and transmitted.

The operation of the encoder can be represented by a
state diagram, as shown in Figure 2. Nodes represent the
present state of the shift register while edges represent the
output sequence and point to the next state of transition.
Successive evaluation of state over time leads to the trellis
diagram shown in Figure 3. The diagram is a time-ordered
mapping of encoder state with each possible state repre-
sented by a point on the vertical axis. Nodes represent the
present state of the shift register at specific points in time
while edges represent the output sequence and point to the

O1

I

D Q D Q

Clock

Input
Sequence

1 I 2

I 0

O0

Figure 1: A (2, 1, 3) convolutional encoder

1/101/11

0/00
1/10

0/01

0/01 1/11

 0/00

10

00 11

01

Current State

Output

Input bit

Figure 2: State diagram for the convolutional encoder

in Figure 1

next state of transition. The horizontal axis represents time
steps. Branch lines indicate the transition of the present
state of the shift register to the next state upon receiving
a particular input bit, b. The upper branch leaving a node
implies an input of 0 while the lower branch implies an input
of 1.

The function of the decoder is to attempt to reconstruct
the input sequence transmitted by the encoder by evalu-
ating the received channel output. Values received at the
decoder may differ from values sent by the encoder due to
channel noise. The interaction between states represented
by the trellis diagram is used by a decoder to determine the
likely transmitted data sequence [16] as v-bit symbols are
received. An example received sequence of two-bit v values
appears at the top of Figure 3. The cost of a particular
transition edge (branch) is determined from the Hamming
distance of the received symbol and the expected symbol,
labelled in bold on the transition edge. At each node the
cumulative cost or path metric of the path is determined.
These values are labeled in bold at each node in the figure.
If multiple paths converge on the same state, the lowest cost
path is preserved and other paths are eliminated. After a se-
ries of time steps, referred to as the truncation length (TL),
the lowest-cost path, also known as minimum distance path,
is determined, identifying the most-likely transmitted sym-
bol sequence. The typical value of the truncation length
depends on the noise in the channel and has been empiri-
cally found to be 3-5 times the constraint length [9]. Each
path in the trellis diagram represents a unique set of inputs,

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

00

01

10

11

t=0 t=1 t=2 t=3 t=4

00 00 00 00

Received Sequence

0 2

11

01

111 11 11

11

10

00

10

11

00

10 10

01

01 01

10

00 11 11 00

0

2

3

0

1

4

2

2

1

2

3

States

3

Stages

Figure 3: Trellis diagram for the convolutional encoder

in Figure 1

such as the path highlighted in bold, corresponding to the
lowest-cost input sequence b = (0110).

The performance of a decoder is characterized by the num-
ber of decoded output bits which are in error, the Bit Error
Rate or BER. The BER is the ratio of the number of bits
in error to the total number of bits transmitted. For com-
munication fidelity it is desirable to achieve a low BER. For
this paper, a typical, maximum BER of 10−5 [9] is targeted.
The Viterbi algorithm [9], the most popular decoding ap-
proach for convolutional codes, determines a minimum dis-
tance path with regards to Hamming distances applied to
each received symbol. A limiting factor in Viterbi decoder
implementations is the need to preserve candidate paths at
all 2K−1 trellis states for each received symbol. This re-
quirement leads to an exponential growth in the amount of
computation performed and in the amount of path storage
retained as constraint length K grows. Most hardware im-
plementations of the Viterbi algorithm [9] are split into three
parts: the branch metric generators (BMG), add-compare-
select (ACS) units, and the survivor memory unit. A BMG
unit determines Hamming distances between received and
expected symbols. An ACS unit determines path costs and
identifies lowest-cost paths. The survivor memory stores
lowest cost bit-sequence paths based on decisions made by
the ACS units.

3. RELATED WORK
Several reconfigurable implementations of Viterbi decoders

have been reported. Although these systems are FPGA
based, none of them use run-time reconfiguration to achieve
performance improvement. In [8], a K=9 Viterbi decoder is
implemented on a XC4000 FPGA. Only four add-compare-
select units out of a possible 28 are used to compute the path
metrics of all states. Unlike our approach, this implementa-
tion does not evaluate all trellis states in parallel, resulting
in slower decoding operation.

In [16], Racer, a constraint length 14 Viterbi decoder, is
described. The system uses 36 XC4010 FPGAs and seven
processor cards and employs a novel approach to implement-
ing survivor memory. Due to the use of a sizable number
of FPGAs and significant inter-chip communication, system

area is large. Although the Viterbi decoder is implemented
in FPGAs, the decoder implementation remains static across
varying channel data. Racer exhibits significant parallelism,
although some add-compare-select hardware is multiplexed
across multiple trellis states per received symbol. Candi-
date paths are stored in memory external to the FPGAs.
Our AVA approach achieves fully parallel implementation
on a single, large FPGA that contains significantly less to-
tal logic than the board used in [16] for the same constraint
length (K=14).

In [5], a Viterbi decoder of constraint length 7 using four
XC4028EX FPGAs is described. The decoder is partitioned
so that 64 ACS units fit into two of the FPGAs and the
remaining two FPGAs house the survivor memory and its
corresponding controller. The main issue with this approach
involves data transfer between FPGAs. Although [5] al-
lowed for parallel trellis evaluation, the limited data rate
of 12 Kbps was achieved for a relatively small constraint
length of 7. This reduced rate was primarily due to inter-
chip data transfer overhead. No dynamic reconfiguration
was performed.

4. ADAPTIVE VITERBI ALGORITHM
The adaptive Viterbi algorithm [4] was introduced with

the goal of reducing the average computation and path stor-
age required by the Viterbi algorithm. Instead of comput-
ing and retaining all 2K−1 possible paths, only those paths
which satisfy certain cost conditions are retained for each
received symbol at each state node. Path retention is based
on the following criteria.

1. A threshold T indicates that a path is retained if its
path metric is less than dm + T , where dm is the min-
imum cost among all surviving paths in the previous
trellis stage.

2. The total number of survivor paths per trellis stage is
limited to a fixed number, Nmax, which is pre-set prior
to the start of communication.

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

00

01

10

11

t=0 t=1 t=2 t=3 t=4

00 00

Received Sequence

0 2

11 111

10

11

00

10

01

01

00 11 11 00

0

2 0

1

2

1

2

3

X

X

Path is rejected.

d =0m d =0m d =0m d =1m d =0m

Stages

States

X

md + T = 1 d + T = 1m md + T = 2 d + T = 1m

Figure 4: Trellis diagram for a hard-decision adaptive

Viterbi decoder with T = 1 and Nmax = 3

The first criterion allows high-cost paths that likely do
not represent the transmitted data to be eliminated from
consideration early in the decoding process. In the case of
many paths with similar cost, the second criterion restricts
the number of paths to Nmax. A trellis diagram for an
adaptive Viterbi algorithm of constraint length 3 is shown
in Figure 4 for the same set of received symbols as shown in
Figure 3. Threshold value T = 1 is preset for this example.

At each stage, the minimum cost (path metric) of the pre-
vious stage dm, threshold T , and maximum survivors Nmax

are used to prune the number of surviving paths. Initially,
at t=0, the decoder state is set to 00. Like the Viterbi trel-
lis, two branches emanate from state 00 to states 00 and
10 at t=1 representing encoded transmission 0 and 1 values
respectively by the encoder. If the received value at t=0 is
00, as shown in the trellis, it is more likely that a b = 0,
v = 00 was transmitted rather than a b = 1, v = 11 value
since both bits of the latter v would have been corrupted
by noise. As a result, the path metric of the top branch is
0 and the bottom branch is 2. These are the Hamming dis-
tances between the received and expected values shown on
the trellis. Since state 00 is the only state at t=0, dm is the
path metric of state 00, which is 0. As a result, dm + T
is 1. At t=1, the path leading to state 10 does not survive
since 2, the current path metric of state 10, is greater than
1, the value of dm + T . As a result, only one branch, the
branch leading to state 00 survives at t=1. The new dm

used at t=2 is the minimum among metrics of all surviving
paths at t=1. Since only one path survives at t=1, dm is
0, the path metric of state 00. At each stage the process is
repeated until the truncation length is reached and the least
error path can be identified.

Careful calculation of T and Nmax is the key to effective
use of the AVA algorithm. If threshold T is set to a small
value, the average number of paths retained at each trellis
stage will be reduced. This can result in an increased BER
since the decision on the most likely path has to be taken
from a reduced number of possible paths. Alternately, if
a large value of T is selected, the average number of sur-
vivor paths increases and results in a reduced BER. As a
result, increased decode accuracy comes at the expense of
a additional computation and a larger path storage mem-
ory. Generally, the value of T should be selected so that the
BER is within allowable limits while matching the resource
capabilities of the hardware.

Nmax denotes the maximum number of survivor paths to
be retained at any trellis stage. The maximum per-trellis
stage number of survivor paths, Nmax, has a similar effect
on BER as T . If a small value of Nmax is chosen, paths
which satisfy the threshold condition may be discarded, po-
tentially leading to a large BER. Alternately, if Nmax is
set to a large value, extra computation and memory are re-
quired, potentially with little benefit to BER reduction. As
a result, an optimal value for Nmax should be chosen to
balance hardware size and BER.

Several reduced-complexity algorithms similar to the adap-
tive Viterbi algorithm have been developed, although each
has significant limitations. The M-algorithm [6] is a popu-
lar reduced-complexity alternative to the Viterbi algorithm.
Like the AVA, complexity reduction is achieved by retaining
only the best M (Nmax) paths at each trellis stage. Unlike
AVA, this approach does not use a threshold condition to de-
termine which paths are saved but rather sorts all paths and

retains the M lowest-cost paths. This requirement of sort-
ing circuitry adds complexity and delay to the M-algorithm.
Since the AVA only requires comparison to a value deter-
mined by the metric of the best extended path, sorting is
not required. A beam-search algorithm, which is similar to
the AVA, was implemented in software in [10]. This ap-
proach was used in conjunction with hidden Markov model-
ing (HMM) of speech.

Unlike previous AVA approaches [4], the standard oper-
ation of eliminating the largest-metric path when two sur-
vivor paths enter the same trellis state was not implemented
in our approach due to hardware complexity. The imple-
mented algorithm more closely resembles a variant of the
AVA known as the Simmons T-algorithm [11].

5. AVA ARCHITECTURE
To demonstrate the benefit of the adaptive Viterbi al-

gorithm we have developed the first hardware implementa-
tion of the algorithm. This architecture takes advantage
of parallelization and specialization of hardware for specific
constraint lengths and dynamic reconfiguration to adapt de-
coder hardware to changing channel noise characteristics.

5.1 Description of the architecture
The architecture of the implemented adaptive Viterbi de-

coder is shown in Figure 5 for the encoder with parameters
shown in Figure 1, (2, 1, 3). The adaptive Viterbi decoder
accepts two inputs from the channel which represent the out-
puts of the encoder that have been transmitted. The branch
metric generator determines the difference between the re-
ceived v-bit (in this case 2) value and 2v possible expected
values. This difference is the Hamming distance between the
values. A total of 2v branch metrics are determined by the
branch metric generator. For v=2 these metrics are labeled
b00, b01, b10 and b11.

The Add-Compare-Select (ACS) unit, shown in detail in
Figure 6, evaluates the path metric of each path and deter-
mines if paths meet AVA conditions for path survival. At
each trellis stage, the minimum-value surviving path metric
among all path metrics for the preceding trellis stage, dm, is
computed. New path metrics are compared to the sum dm

+ T to identify path metrics with excessive cost. As shown
at the left of Figure 6, the path metrics for all potential
next state paths, di, are computed by the ACS unit. Com-
parators are then used to determine the life of each path
based on the threshold, T . If the threshold condition is not
satisfied by path metric dm + T , the corresponding path is
discarded.

Present and next state values for the trellis are stored in
two column arrays, Present state and NEXTSTATE of di-
mensions Nmax and 2Nmax respectively, as shown in Figure
5. There can be at the most Nmax survivor paths at any
stage. Since each path is associated with a state, the num-
ber of present states is Nmax. Each path can potentially
create two child paths before pruning as there are two pos-
sible branches for each present state based on a received 0
or 1 symbol. Entries in the NEXTSTATE array need not
be in the same row as their respective source present states.
In order to correlate the next state paths and next states
located in the NEXTSTATE array, an array of size 2Nmax,
called PathIdentify, is used. For each next state element,
this array also indicates the corresponding row in path stor-
age (survivor) memory for the path.

0

ACS

pointers to memory

0

0

PathIdentify pointers to memory

decoded
output

Path Metric

b00
b
b
b

01

10

11

4

4

4

4

Truncation Length = 5 * (K -1)

1

1

1

 1

1

 bits
decision

Nmax

1

PathIdentify

Compute Next
States for all
surviving present

States

2Nmax

6

6

6

Verify Threshold

Determine path metrics, d i

Count number of paths, count

count < Nmax No

Yes

Reduce T

Send survived path metrics d

mRow for d

i

Survived
d and next states i

Nmax

Present
state

NEXTSTATESurvivor Memory

Metric
Branch

Generatorchannel
from

Figure 5: Adaptive Viterbi decoder architecture

bij

bij

Adder

Adder

d 1

d

d1 < d + T

d2Nmax

T = T - 2

Count < N

YES

YES

YES

NO

Count

the

number

of

paths

NO

NO

Discard path

Discard path

= count

4

4

Path metric 1from PM

from PM

6

6

Determine

NEXTSTATE
bits using

decision

Input from NEXTSTATE

1

1

1

Decision bits to survivor memory

Determine

m

Threshold T

d m

Adder

d + Tm

d and row for d m

Minimum path metric, d , row
to survivor memory

 m

Send survived path metrics di

2Nmax
units

 m

2Nmax

Path metric 2Nmax

d + Tm <

 i

max

Register

Figure 6: ACS unit of adaptive Viterbi decoder

Once the paths that meet the threshold condition are
determined, the lowest-cost Nmax paths are selected. To
avoid the need for the sorting circuit described in [6] for the
M-algorithm, we have developed a novel path pruning ap-
proach. Sorting circuitry is eliminated by making feedback
adjustments to the parameter T . If the number of paths
that survive the threshold is less than Nmax, no sorting is
required. For stages when the number of paths surviving
the threshold condition is greater than Nmax, T is itera-
tively reduced by 2 for the current trellis stage until the
number of paths surviving the threshold condition is equal
to or less than Nmax. In Section 7 it is shown that T and
Nmax can be determined through simulation so that T re-
duction is needed infrequently. Following path reduction, at
most Nmax remaining trellis states are stored in the Present
state array in preparation for the receipt of the next symbol.

The register-exchange based survivor memory [12] stores
path sequence information and has a two dimensional size of
Nmax*TL, where TL is the truncation length. Each memory
location stores an input bit, the decision bit from the ACS.
Single-bit storage is performed for each surviving path at

each trellis stage. Each row of the survivor memory is asso-
ciated with a present state and has a valid bit to indicate the
existence of a survivor path. Once survivor memory storage
reaches the truncation length, the lowest-cost path sequence
can be retrieved.

5.2 Architectural Model
The logic area in terms of logic blocks of our adaptive

Viterbi decoder can be characterized by an empirical model
in terms of parameters Nmax and K. This expression is of
the form :

Area = ANmax + BKNmax + C

where A, B, C are constant coefficients. These coeffi-
cients were determined by evaluating a set of decoders with
constraint lengths between 4 and 14. Through line-fitting,
coefficients for A, B, and C were determined to be 90, 5.6,
and 215, respectively.

The first term in the equation accounts for logic blocks
which implement path metric comparators and the regis-
ters used to store path metrics. The second term accounts

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

N
um

be
r

of
 S

ur
vi

vo
rs

800 900 1000
Trellis Stage

K = 9

Figure 7: Number of surviving paths versus decoded

symbol for the adaptive Viterbi algorithm for K = 9,

r = 1/2 convolutional code with Nmax set to 2K−1 (its

maximum) on an un-faded channel

for path storage in memory implemented inside the FPGA.
Since the truncation length (TL) is 5 * K [9], the term de-
pends on both the maximum number of bits stored per trel-
lis state, Nmax, and K. Additionally, the width of present
state and next state registers increases linearly with K and
the number of registers increases linearly with Nmax. The
constant term in the expression accounts for logic which is
fixed in size in relation to Nmax and K. This includes the
branch metric generator, which is dependent on the parame-
ter v defined in Section 2 and the logic needed to iteratively
decrement T to avoid sorting.

5.3 Suitability of Dynamic Reconfiguration
Dynamic reconfiguration of the entire adaptive Viterbi de-

coder hardware is considered as a means to enhance perfor-
mance without compromising decode accuracy. The hard-
ware resource requirements of an adaptive Viterbi decoder
change in response to channel noise conditions for a fixed
BER. Based on noise levels at a specific time instant,
minimally sufficient hardware resources can be dynamically
allocated to meet the BER requirements of the applica-
tion while achieving maximal performance [3]. A significant
amount of channel noise demands a large constraint length,
such as K = 14, to achieve a BER similar to that achieved
by a constraint length K = 4 for a less noisy channel. It is
shown in Section 7 that decoding speed is inversely related
to resource requirement. This relationship is exploited to en-
hance performance through the dynamic allocation of AVA
logic resources. In implementing the AVA, two reconfigura-
tion options, fine-timescale and coarse-timescale reconfigu-
ration are considered.

Coarse-timescale reconfiguration of the adaptive Viterbi
decoder, based on parameters such as K, T and Nmax, is
performed in accordance to variations in channel noise con-
ditions over seconds. Reconfiguration at this time scale min-
imizes the performance impact of millisecond FPGA recon-
figuration times. Coarse-timescale reconfiguration is moti-
vated by changing channel noise characteristics from param-
eters such as weather, distance, or battery-power. These pa-
rameters result in a signal-to-noise ratio (SNR) that changes

relatively slowly (seconds or longer). When more accurate
decoding is required, a lower clock-speed decoder (larger K)
can be used at the cost of reduced decode rate. When less
accurate decoding is required, a higher-performance decoder
is swapped in. If dynamic reconfiguration was not allowed,
the lower-performance decoder would always need to be res-
ident. Coarse-timescale reconfiguration provides an opti-
mized but variable bit rate and is targeted at data rather
than voice applications.

In fine-timescale reconfiguration, configuration contents
are changed once every one or two decoded bits (ms) in re-
sponse to the number of survivor paths retained at specific
instants of time. If additional survivor paths are required,
the amount of required path storage increases, potentially
limiting decoder performance. If fewer survivor paths are
required, a faster-performance decoder can be used instead.
After experimentation it was determined that fine-timescale
reconfiguration is infeasible due to rapid variations (multi-
ple changes per ms) in retained survivor paths over time.
Current FPGA architectures [1] [15] require reconfiguration
times measuring milliseconds. Figure 7 shows survivor path
variation for a constraint length 9 decoder.

6. EXPERIMENTAL APPROACH
To allow for parameter testing for the adaptive Viterbi al-

gorithm, a sample data transmission system was first mod-
eled in software. The overall communication system model
that has been used for experimentation is shown in Figure 8.
This system contains blocks for data generation, encoding,
transmission, and decoding.

Random
Bit Generator Convolutional

Encoder

AWGN
Channel
Model

Input
Sequence Output

Sequence

Compare

 Bits Bits

Bits

Soft-decision
symbols

3-bit quantizer

Viterbi

Adaptive

Decoder
On FPGA

On Processor

Figure 8: System model

The Random Bit Generator is a C module that gener-
ates a randomized bit sequence to model transmitted data.
The convolutional encoder, also shown in Figure 1, can be
parameterized to assorted constraint lengths. The encoded
data from the encoder is fed to the AWGN channel simula-
tor. This block simulates a noisy channel where errors are
inserted into the bit sequence. The amount of noise depends
on the Signal-to-Noise-Ratio (SNR) preset by the user. The
channel is noisy if SNR is low. The symbols obtained from
the AWGN channel model are quantized [12] before being
sent to the decoder as its input. On receiving the input, the
decoder attempts to recover the original sequence. All soft-
ware modeling of the communication system was performed
using a 366 MHz Celeron PC.

For hardware experimentation, the AVA design was mapped
to a Xilinx XC4036XL-08 FPGA which is part of a WildOne

K Nmax T TL CLBs 4-LUTs 3-LUTs Flipflops
4 4 14 20 553 978 196 278
5 7 14 25 1194 2046 340 540
6 8 18 30 1206 2081 482 724
7 8 17 35 1215 2087 537 756
8 8 17 40 1284 2119 654 788
9 9 18 45 1296 2213 615 820

10 21 20 50 3371 6243 0 1911
11 25 23 55 3643 6982 0 2137
12 25 23 60 3668 7114 0 2170
14 41 24 70 6741 12876 0 2446

Table 1: FPGA resource utilization for the adaptive Viterbi decoder on XC4036XL-08 (K=4 to 9) and XCV1000-04

(K=10 to 14) for BER of 10−5. Note CLB label for XCV1000 refers to CLB slices.

board from Annapolis Micro Systems [2]. This allowed for
in-field testing of AVA designs for constraint lengths up to
K=9 with the rest of the communication system modeled
in software. To test larger AVA implementations, decoders
with constraint lengths up to K=14 were mapped to a Xilinx
XCV1000 FPGA, although not implemented physically in
hardware. An RTL level description of the adaptive Viterbi
decoder was written in VHDL that could be mapped to
both XC4036 and XCV1000 devices. The VHDL code was
simulated using Cadence Affirma tools. All designs were
synthesized using Synplicity Synplify and mapped to Xilinx
hardware using Xilinx Foundation M2.1 tools with timing
constraints. The maximum frequencies of operation of the
FPGAs were obtained from the Xilinx TRACE timing an-
alyzer tool. For designs targeted to the WildOne board,
decode rates were measured through profiling with gprof.
For designs mapped to the XCV1000, cycle periods from
TRACE were used in conjunction with cycle counts from
HDL simulation to estimate decode speed.

0

2

4

6

8

10

12

14

16

18

8
10

12
14

16
18

20

10
−5

10
0

TNmax

B
E

R

T=18,
Nmax=9

Figure 9: Variation of BER with Nmax and T for K=9,

SNR=3.1dB

K FPGA Decode Max. FPGA SNR
decode rate w/PCI clock range
(Kbps) overhead (MHz) (dB)

(Kbps)
4 333.7 186.0 40.5 6.3-6.5
5 164.2 117.7 20.1 6.1-6.3
6 162.3 116.3 19.9 5.5-6.1
7 160.8 114.2 19.7 3.9-5.5
8 143.6 109.4 17.6 3.7-3.9
9 141.1 107.8 17.3 3.1-3.7

10 101.5 NA 25.5 3.0-3.1
12 94.8 NA 24.7 2.8-3.0
14 82.3 NA 23.0 2.5-2.8

Table 2: Decode rate versus K for XC4036XL-08 (K=4

to 9) and XCV1000-04 (K=10 to 14) for a BER of 10−5

and Nmax values from Table 1.

7. EXPERIMENTAL RESULTS

7.1 Parameter Evaluation
The first set of AVA experiments determined optimal Nmax

and T parameter settings for a range of constraint lengths.
Figure 9 indicates the spectrum of values possible for varying
BER, T , and Nmax for a fixed constraint length K. Simi-
lar results for a variety of constraint lengths can be found in
[12]. Consider a design which requires a BER of 10−5. From
Figure 9, it can be seen that T = 18 and Nmax = 9 would
achieve the desired BER. Table 1 indicates representative
T and Nmax values across a range of constraint lengths for a
fixed BER of 10−5. The truncation length for all constraint
lengths was fixed at 5 * K.

7.2 FPGA Resource Usage
The logic resources used by the adaptive Viterbi decoder

architecture described in Section 5 was measured in terms of
logic block (CLB) usage. Table 1 summarizes the resource
utilization of the adaptive Viterbi decoder for different con-
straint lengths from K = 4 to K = 9 on the XC4036 FPGA
and constraint lengths K = 10 to K = 14 on an XCV1000
FPGA. As shown in Table 1, an adaptive Viterbi decoder
of constraint length 9 utilized 100% of 1296 XC4036 CLB
resources (85% LUT utilization), while a constraint length
14 AVA decoder fits within a single XCV1000 device.

The decoding rates for the XC4036 on the WildOne board
for constraint lengths K = 4 to 9 are given in Table 2 along
with XCV1000 rates for K = 10 to 14. These decode rates
were obtained when the FPGA was run at the maximum
possible frequency. It can be noted that this frequency de-
creases with increasing Nmax and K. This is a result of the
critical path of the design which passes through the com-
parator and survivor path counter shown at the left in Fig-
ure 6. Since the complexity of the counting circuitry de-
pends on the number of surviving paths Nmax, performance
is affected.

The decoding rates for the XC4036 constraint lengths were
determined by measuring the total time taken to execute the
decoder on the FPGA including 33 MHz PCI bus access time
and the time to execute the application program interface of
the WildOne board on the 366 MHz Celeron processor. The
total time was then divided by the length of the sequence
to obtain decode time per bit. In order to estimate the
overhead of PCI bus access and WildOne API execution,
raw FPGA decoding time per bit was obtained from HDL
simulations with Cadence Affirma tools. Table 2 shows that
bus and API overheads slow down decoding by a factor of
1.5 to 2.

7.3 Coarse-timescale dynamic reconfiguration
Although the adaptive Viterbi decoder can provide im-

pressive decode rates with a static architecture implemented
in reconfigurable hardware, improved performance can be
achieved if the decoder is reconfigured to match required
computation. In a second set of experiments, channel noise,
as indicated by SNR, was used to indicate when the entire
AVA architecture on the WildOne board should be recon-
figured. A bit-error rate (BER) of 10−5 was desired at all
times. Depending on the SNR, this could be accomplished
with a lower constraint-length and faster decoder for high
SNR and with a higher constraint-length and slower de-
coder for low SNR. Effective AVA architectures for each
value of K were determined from the parameters shown in
Table 1 for a BER of 10−5.

Experiments were performed by varying the SNR of trans-
mitted data and reconfiguring the AVA hardware based on
(K, Nmax) values that were required to achieve the desired
BER. Based on the assumption that SNR can be sampled
successfully every 250,000 bits [9], FPGA hardware was re-
configured up to three times for a 1,000,000 bit sequence.
SNR values varied between 6.29 and 3.34dB (requiring K
values between 4 and 9) and AVA configurations based on
Table 1 were chosen. The overall decoding rate achieved by
reconfiguring the decoder was 125.5 Kbps, including FPGA
reconfiguration time of 40ms per configuration swap. This
performance can be compared to a static AVA decoder of
constraint length 9, the largest decoder which could fit in
the XC4036. Dynamic reconfiguration leads to a 16.5% im-
provement over the fixed 107.8 Kbps shown in Table 2 for a
BER of 10−5.

In a second test of dynamic reconfiguration, a set of 10,000
SNRs were generated using a log-normal shadowing distri-
bution [9] for a total transmission length of 2.5 billion bits.
From Table 2, the decoding rate for each of the 10,000 SNRs
was determined. From the set of generated SNRs, it was
found that reconfiguration was performed about 7000 out
of 10000 possible times. In some cases reconfiguration was
unnecessary since the required decoder did not change. The

total overhead for reconfiguration was (10,000 * 40ms) = 400
seconds out of a total decode time of about six hours. The
resulting average decoding rate with dynamic reconfigura-
tion was found to be 130.328 Kbps, a 20.9% improvement
over a static constraint length 9 decoder with a decode rate
of 107.8 Kbps. Figure 10 plots the variation in decoding
speed for different K values. The average decode rate ob-
tained with dynamic reconfiguration is shown as a dashed
line.

3 3.5 4 4.5 5 5.5 6 6.5
100

110

120

130

140

150

160

170

180

190

200

210

SNR

D
ec

od
in

g
ra

te
 w

ith
 P

C
I b

us
 o

ve
rh

ea
d

in
 K

bp
s

K=9

K=8

K=7
K=6

K=5

K=4
K=3

130.328

Individual decoding rates with no reconfiguration

Average decoding rate with reconfiguration

Figure 10: Effect of (K, Nmax) based reconfiguration on

decoding rate

These results are in sharp contrast with previous Viterbi
implementations in FPGAs. In [16], 36 XC4010 FPGAs to-
taling 23940 LUTs were required to implement the Viterbi
algorithm. Unlike [16], our approach allows for parallel, si-
multaneous evaluation of all paths. Our single-FPGA ap-
proach with dynamic reconfiguration yields a decode rate
improvement of more than a factor of three versus [16] (41.1
Kbps) without any hand-optimization of FPGA synthesis
or CLB placement. Our approach also can be favorably
compared to [5] which used four XC4028 FPGAs and a to-
tal of 2150 CLBs. Although this Viterbi architecture al-
lowed for parallel evaluation of paths, the decode rate of 12
kbs at a system clock of rate 1 MHz was slow for a K=7
decoder. Performance limitations compared to our single-
FPGA 160.8 Kbs decode-rate approach are the result of de-
coder architecture including the management of the survivor
path memory [12].

7.4 Comparison to a microprocessor-based
implementation

In a hardware-based experiment, we compared our FPGA-
based AVA implementation on the WildOne board to a soft-
ware implementation running on a 366MHz Intel Celeron
processor with 128 MB of memory. The software implemen-
tation was run using a variety of parameters and the decod-
ing speeds were measured using gprof. Results in Table 3
and Figure 11 compare the performance of an FPGA-based
adaptive Viterbi decoder to the Celeron implementation of
AVA and a standard Viterbi decoder for assorted constraint
lengths. Even with bus and API overheads, a speedup of
about 7.5x was achieved by the FPGA implementation for
constraint length 9 versus the software implementation of

Decoding rate (Kbps)
K CLBs FFs CPU CPU FPGA FPGA FPGA Clock Speed up

(Viterbi) (AVA) no overhead PCI overhead (MHz)
4 553 278 33.3 44.4 333.7 186.0 40.5 4.2
5 1194 540 12.5 21.0 164.2 117.7 20.1 5.6
6 1206 724 4.4 19.0 162.3 116.3 19.9 6.1
7 1215 756 2.4 17.8 160.8 114.2 19.7 6.4
8 1284 788 1.2 17.2 143.6 109.4 17.6 6.3
9 1296 820 0.7 14.4 141.1 107.8 17.3 7.5

Table 3: Comparison of AVA (unless noted) decoding rates of XC4036 WildOne implementation and 366MHz Celeron
processor for different Ks; FPGA was run at the maximum frequency of operation of each design based on Table 2

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
10

1

10
2

10
3

Constraint length K

D
ec

od
in

g
ra

te
 in

 K
bp

s
in

cl
ud

in
g

P
C

I b
us

 o
ve

rh
ea

d

Celeron Processor
FPGA Coprocessor

Figure 11: Comparison of decoding rates between

XC4036 FPGA and Celeron processor for different Ks

AVA. A speedup of 154x was achieved by the FPGA AVA
implementation versus a software version of the standard
Viterbi algorithm for constraint length 9.

Figure 11 indicates that as the constraint length K and
corresponding Nmax values increase, the difference in the
decoding rates between the FPGA and the processor also
increases. This is due to the increasing effect of parallelism.
For example, at K=3, only 6 add-compare-select units in
the AVA implementation are operating in parallel, since its
corresponding Nmax is 3. However, when K=14, the cor-
responding Nmax from Table 1 is 41, resulting in increased
parallelism. Due to parallelism, the decoding rate does not
decrease rapidly as K increases. In the case of a processor,
all operations are performed sequentially. As a result, the
decoding rate decreases rapidly as Nmax increases.

7.5 Comparison to a DSP implementation
In order to compare the performance of our XC4036 FPGA-

based adaptive Viterbi decoder with a DSP-based imple-
mentation, a C version of the adaptive Viterbi algorithm
was compiled to a 200 MHz TMS320C6201 DSP using Code-
gen tools from Texas Instruments [14]. Subsequent simula-
tion was performed using the stand-alone TI-DSP simulator,
load6x [14] and cycle counts were obtained.

Table 4 shows the performance comparison between the

FPGA and DSP-based implementations of the adaptive Viterbi
decoder. The comparison indicates that an XC4036XL-08
FPGA implementation achieves a speed-up of up to 29x
versus the DSP implementation (without bus and API over-
heads). The speedup decreases with increasing K and Nmax

since the maximum FPGA frequency decreases.

8. CONCLUSION AND FUTURE WORK
In this paper, a novel dynamically-reconfigurable adaptive

Viterbi decoder has been presented. Important algorithm
parameters have been determined through software simula-
tion and an FPGA-based implementation has been applied
to a PCI-based system. This approach has shown significant
speedup versus both software implementations on a micro-
processor (7.5x) and previous FPGA-based implementations
(over 3x) while using a fraction of previous implementation
LUT counts. Through experimentation it was shown that
dynamic reconfiguration can be used effectively to improve
overall performance by at least 20%. Reconfiguration was
performed on the basis of channel noise to achieve a consis-
tent bit-error rate. If channel noise increases, a more accu-
rate but slower running decoder is swapped into the FPGA
hardware. Reduced channel noise leads to the opposite ef-
fect.

We are currently exploring approaches to perform dy-
namic reconfiguration as a technique to reduce power con-
sumption. As power becomes scarce, a lower-constraint length
decoder with reduced decode accuracy could be used. This
allows for graceful degradation of performance under power
constraints, an obstacle often encountered in mobile commu-
nications. We are also considering techniques to allow for
partial, rather than full, reconfiguration of the AVA decoder.
Since the branch metric generator is constant across config-
urations, its functionality could possibly be preserved along
with minimum-sized ACS circuitry that could be expanded
or contracted as needed.

9. ACKNOWLEDGEMENTS
This work was sponsored by National Science Founda-

tion grants CCR-0081405, CCR-9988238, NCR-9714597 and
CCR-9875482.

10. REFERENCES
[1] Altera Corporation. Apex II data sheet, 2001.

http://www.altera.com.

[2] Annapolis Microsystems, Inc. WILD-ONE Reference
Manual, 1999.

Decoding rate (Kbps)
K CLBs FFs DSP FPGA FPGA FPGA Clock Speed up

no overhead PCI overhead (MHz)

4 553 278 6.301 333.743 185.994 40.455 29.5
5 1194 540 6.263 164.168 117.689 20.089 18.79
6 1206 724 6.240 162.273 116.28 19.857 18.63
7 1215 756 6.234 160.777 114.231 19.674 18.32
8 1284 788 6.222 143.632 109.392 17.576 17.58
9 1296 820 6.201 141.141 107.775 17.316 17.38

Table 4: Comparison of decoding rates of XC4036 WildOne implementation and TMS320C6201 DSP for different Ks;

FPGA was run at the maximum frequency of operation of each design based on Table 2

[3] W. Burleson, R. Tessier, D. Goeckel, S. Swaminathan,
P. Jain, J. Euh, S. Venkatraman, and V. Thyagarajan.
Dynamically Parameterized Algorithms and
Architectures to Exploit Signal Variations for
Improved Performance and Reduced Power. In IEEE
Conference on Acoustics, Speech, and Signal
Processing, May 2001.

[4] F. Chan and D. Haccoun. Adaptive Viterbi Decoding
of Convolutional Codes over Memoryless Channels.
IEEE Transactions on Communications,
45(11):1389–1400, Nov. 1997.

[5] M. Kivioja, J. Isoaho, and L. Vanska. Design and
Implementation of a Viterbi Decoder with FPGAs.
Journal of VLSI Signal Processing, 21(1):5–14, May
1999.

[6] C. F. Lin and J. B. Anderson. M-algorithm Decoding
of Channel Convolutional Codes. In Proceedings,
Princeton Conference of Information Science and
Systems, pages 362–366, Princeton, NJ, Mar. 1986.

[7] A. Michelson and A. Levesque. Error-control
Techniques for Digital Communication. John Wiley
and Sons, New York, NY, 1985.

[8] B. Pandita and S. K. Roy. Design and Implementation
of a Viterbi Decoder Using FPGAs. In Proceedings,
IEEE International Conference on VLSI Design,
pages 611–614, Jan. 1999.

[9] J. Proakis. Digital Communications. McGraw-Hill,
New York, NY, 1995.

[10] H. Schmit and D. Thomas. Hidden Markov Modelling
and Fuzzy Controllers in FPGAs. In Proceedings,
IEEE Workshop on FPGA-based Custom Computing
Machines, pages 214–221, Napa, Ca, Apr. 1995.

[11] S. J. Simmons. Breath-first Trellis Decoding with
Adaptive Effort. IEEE Transactions on
Communications, 38:3–12, Jan. 1990.

[12] S. Swaminathan. An FPGA-based Adaptive Viterbi
Decoder. Master’s thesis, University of Massachusetts,
Amherst, Department of Electrical and Computer
Engineering, 2001.

[13] R. Tessier and W. Burleson. Reconfigurable
Computing and Digital Signal Processing: A Survey.
Journal of VLSI Signal Processing, 28(1):7–27, May
2001.

[14] Texas Instruments, Inc. TMS320C6201 DSP Data
Sheet, 2001.

[15] Xilinx Corporation. Virtex II data sheet, 2001.
http://www.xilinx.com.

[16] D. Yeh, G. Feygin, and P. Chow. RACER: A
Reconfigurable Constraint-Length 14 Viterbi Decoder.
In Proceedings, IEEE Workshop on FPGA-based
Custom Computing Machines, Napa, Ca, Apr. 1996.

