
Negotiated A* Routing for FPGAs∗

Russell Tessier
MIT Laboratory for Computer Science

Cambridge, MA 02139

Abstract

In the next few years, logic capacities for field-
programmable gate arrays are expected to exceed one
million gates per device. While this expansion of FPGA
device resources offers the promise of exceptional fine-
grained performance for developing technologies such
as ASIC prototyping and FPGA computing, supporting
computer-aided design tools have yet to be developed
to target these devices rapidly and efficiently. This
paper addresses the compilation time issue for rout-
ing array FPGAs with segmented routing architectures.
By treating the routing problem as an A∗ search, it
is possible to trade additional device routing resources
for decreased router run-time by converting an exhaus-
tive breadth-first maze route into a shorter depth-first
route. It is shown that for the depth-first case, the
sparse nature of FPGA routing switches in commerical
architectures, such as the Xilinx XC4000 family, neces-
sitates an additional localized search near net inputs,
called domain negotiation, to aid in directing the route
of each design net onto a set of routing resources most
likely to lead to a successful route. For a set of large
FPGA benchmarks, a route time speedup of over an
order of magnitude for an iterative maze router config-
ured for depth-first routing is shown when compared to
the same router configured for a breadth-first search.

1 Introduction

A major limitation in the use of contemporary multi-
FPGA systems is the amount of time required to
place and route circuit components inside the individ-
ual FPGA devices. For many systems, this compile
time is on the order of hundreds of CPU hours as op-
posed to tens of minutes for typical microprocessor-
based computing platforms. Such long turn-around
time from conceptual development to physical imple-
mentation significantly limits the on-the-fly modifica-

∗Appears in Proceedings of The Fifth Canadian Workshop on
Field-Programmable Devices, 1998 (FPD98).

tion capability of existing FPGA computing applica-
tions. In many cases maximum device performance and
utilization is of less importance than getting a feasible
solution implemented as soon as possible with given
resources.

Most commercial routers in use today are variants
of the Lee maze routing algorthm for path determina-
tion between two vertices on a planar rectangular grid
[9]. This algorithm attempts to locate the shortest path
between two points while avoiding grid obstacles in the
form of used routing resources. By varying the number
of neighboring grid points examined for each evaluated
grid location in the route, the search process can be var-
ied between a full breadth-first search in which nearly
every candidate grid point between source and destina-
tion is examined and one that is depth-first in which
the first, best route is taken.

Previously [8] [13], it was observed that the pro-
cess of selectively expanding candidate grid points from
source to destination in the maze route is actually a
special case of a more general A∗ search algorithm [12].
In this paper the relationship between routing run time
and required routing resources is examined by varying
both routing track widths for given designs and the grid
point expansion rate along a given route. While the
basic routing algorithm used in this new router is sim-
ilar to the one described recently in [15], an important
extension has been made to support routing structures
commonly found in commercial devices such as those in
the Xilinx XC4000 series. In this paper, it is shown that
a localized search near net inputs prior to net routing
is necessary to identify routing resources most likely to
allow route completion. Without this step, A∗ routing
targetted to these existing devices is frequently ineffi-
cient and can be infeasible in some cases.

The organization of this paper is as follows. Sec-
tion 2 reviews the FPGA architecture used for this
study, outlines existing approaches to FPGA routing,
and draws comparisons to A∗ routing. In Section 3,
an optimization called domain negotiation which sig-
nificantly reduces the number of nodes evaluated in

L

L

C

L

C

C

C

C

S

S

L

L

L

C

C

C

C

C

L

L

L

C

CS

S

0

0

0

0

1 2

1

22

1

1 2

a) S block

0

0

I

O

b) C block

1

1

2

2

Figure 1: Array-based FPGA Model

depth-first routing is presented. Section 4 discusses
the details of the iterative maze routing implementa-
tion. In Section 5, experimental results obtained by
applying both breadth-first and depth-first routers to
a collection of large FPGA circuits are presented. Fi-
nally, Section 6 summarizes this research and outlines
directions for future work including suggestions on how
the placement-time problem may be addressed.

2 Background

2.1 FPGA Architecture

The model for FPGA architecture used in this paper is
the same as that used for previous studies [6] [7] and
closely models the architecture of several commercial
FPGAs [1] [2]. The contents of logic blocks (L) are
a single look-up table/flip-flop pair. As illustrated in
Figure 1, routing channels of width W (in this case
3) are connected to logic blocks through a set of pro-
grammable switches, referred to as connection or C
blocks, at the intersection of logic block IO terminals
and channel tracks. For this paper, it is assumed that
the connection block is flexible enough to connect logic
block IOs to any routing track in the channel (Fc = W).
A distinctive architectural feature of the FPGA is how
each C block is constructed [10]. If each logic block

input connection is implemented as a pass transistor,
then two or more connections to the pin may be ac-
tivated to permit a routing dogleg, where the pin and
connected wires are shorted together to form a single
electrical path. However, as seen in Figure 1b, if the in-
put connections are implemented as a multiplexor, only
one connection to the tracks can be made and doglegs
are not possible. To maintain consistency with previ-
ous studies, the latter, no-dogleg case for logic block
inputs is assumed.

Wire segments in the routing channels span one
or more logic blocks in the horizontal or vertical di-
mension. Switchboxes, or S blocks, allow a predefined
set of programmable connections between wires at the
intersection of horizontal and vertical track channels.
Figure 1a shows that each switchbox is sparsely con-
nected so that each horizontal or vertical wire enter-
ing the switchbox can connect to only three possible
destinations (Fs = 3). For wire segments that span
multiple logic blocks, such as those labelled 0 in Figure
1a, wiring passes directly through the S-block and is
represented as a solid line. Programmable S-block con-
nections between segments are represented with dashed
lines. The limited connectivity of the switchbox topol-
ogy divides routing tracks into disjoint routing do-
mains. In Figure 1, a total of three domains are in-
dicated. With the given S block and no-dogleg restric-
tions, a net beginning in a given track domain at the
net output pin is restricted to wire segments in that do-
main, no matter which S block switches it goes through
or net input pins it touches. The sparseness of the
switchbox coupled with the inability to switch tracks
at logic block inputs leads to the constraint that rout-
ing domain changes can only occur at net outputs even
for nets with high fanout.

2.2 A* Routing

In general, FPGA routing may be defined as a graph
problem [11]. Routing resources in an FPGA and their
connections may be represented by a graph G = (V,E)
where V represents the routing nodes or tracks and
E represents the connections between the wires or
switches. Additionally, each node has an associated
cost, ci, which indicates its current usage, or occupancy,
among nets targetted to the device. For successfully
route completion, each node should have have an occu-
pancy of at most one net.

Algorithm A* [12] may be applied to this routing
problem [8] by considering an evaluation function f at
each node ni in the partial route from a two-point net
source to destination as:

fi = gi + di (1)

L

L

L

L

L

L

4

1 2 3

5 6

7

Figure 2: Breadth-first Route

where gi is the cost of the path from the source
through ni and di is the estimated cost of the path
from ni to the destination.

Value gi is represented in most maze routing algo-
rithms [9] [11] as the total cost of the previous path
fi−1 plus the cost of the next candidate node or:

gi = fi−1 + ci (2)

Typically, the estimate of the path cost from node to
destination di is ignored, giving fi = gi. Since maze
routing algorithms proceed by expanding around the
lowest cost path (fi) under consideration, the net ef-
fect of considering only gi is a breadth-first search, lead-
ing to a minimum-cost, shortest-path route. If instead,
the preceding path cost (fi−1 in Equation 2) is ignored
and the path cost estimate (di in Equation 1) is set
to the Manhattan distance from node to destination,
maze route expansion of the lowest cost path will lead
to expansion of the lowest-cost node closest to the desti-
nation. By following this rule, a sub-optimal, but much
faster, depth-first search is performed.

Searches between depth-first and breadth-first can
be created by weighting the effect of gi and di via a
scaling factor α between 0 and 1:

fi = (1− α)× (fi−1 + ci) + α × di (3)

The node cost, ci, is used to avoid the use of nodes
occupied by previous routes.

3 Domain Negotiation

The transition from a breadth-first route to a depth-
first one requires the disjoint nature of the routing ar-

L

L

L

L

L

L
1

2

3

Figure 3: Depth-first Route

chitecture be taken into account. Consider a breadth-
first route from a two-point source to destination as-
suming that all routing nodes have the same cost ci and
span a single logic block. Figure 2 illustrates that node
expansion takes place across all track domains at the
same Manhattan distance from the destination prior to
expansion of adjacent nodes due to the restriction of
always expanding shortest paths. Thus, the final route
is completed using tracks in a domain found to have a
feasible connection along the source-destination path.

Alternately, in the depth-first case, the node closest
to the destination is expanded first before additional
points at the same Manhattan distance are expanded.
As seen in Figure 3, the net effect of this expansion ap-
proach and the disjoint nature of the routing switches
is a directed route confined to the same track domain
from net output to input. If routing along an initial
domain fails, subsequent depth-first routes can be at-
tempted on different domains until route completion is
achieved.

A key issue in this depth-first route is deciding the
domain order in which routes are attempted. Since
domains can not be switched in the course of the route,
it is desirable to first attempt routing in domains that
have a high likelihood of successful completion so that
expansion in additional domains will not be necessary.
To perform this domain selection the concept of domain
negotiation is introduced. Prior to routing each net,
domains are ranked based on the occupancy of domain
tracks adjacent to net input pins. This localized search
ranks domains as more likely to succeed in a depth-
first route if the current track occupancy around the
inputs in a domain is small and less likely to succeed if
occupancy is high.

Details of the domain negotiation algorithm are
shown in Figure 4. Since logic blocks have multiple

Loop over all nets N
Loop over track domains

Initialize domain cost Cd to 0
Loop over each destination input block

Loop over tracks adjacent to input pins
Add track occupancy to cost Cd

End
If all tracks adjacent to inputs have

occupancy > 1
Add penalty P to Cd

End
End
Order domains by costs Cd

Assign each domain a rank rd based on
cost Cd

End

Figure 4: Algorithm: Domain Negotiation

input pins that are logically equivalent, occupancy of
a single domain track adjacent to a logic block input
pin does not prevent route completion in a given do-
main, but does make it more difficult. Competition
for routing resources is reflected in a cost value Cd as-
signed to each domain. As each net input logic block
is visited, domain Cd values are incremented with the
occupancy of domain tracks adjacent to logic block in-
put pins. If tracks for all logic block input pins in a
given domain are occupied, the route can not be com-
pleted in the domain without creating at least one track
with occupancy greater than one, a non-feasible phys-
ical implementation. To reflect this undesirable situa-
tion, domain Cd values are incremented by a penalty
factor P for each input logic block that has all adjacent
input pin domain nodes occupied by at least one net.
Through experimentation it was found that a penalty
value of P = 2000 worked best in minimizing the num-
ber of node expansions required for routing completion
and resulted in minimum track width routes.

As a first step in depth-first routing following do-
main negotiation, all domains are ranked based on their
cost value Cd. The routing domain that has the mini-
mum Cd value is given the smallest rank rd, while the
domain with the largest Cd value is given the largest
rd value. Other intermediate domains are labelled with
rank values indicating their relative Cd value.

Order the sinks using Prim’s Algorithm.
Perform Domain Negotiation.
Target = sink closest to source.
Put track segments attached to source onto expansion list

with cost given by (4).
Remove lowest cost track segment from expansion list.
While the net input has not been reached.

Put neighbors of this track onto expansion list
with cost given by (3).

Remove lowest cost track segment from expansion list.
Endwhile
Empty the expansion list.
While still more sinks to route for this net.

Target = next sink determined from Prim’s Algorithm.
Put whole net created to this point onto expansion list

with cost = α × di.
Put track segments attached to source onto expansion list

with cost given by (4).
Remove lowest cost track segment from expansion list.
While the net input has not been reached.

Put neighbors of this track onto expansion list
with cost given by (3).

Remove lowest cost track segment from expansion list.
Endwhile
Empty the expansion list.

Endwhile

Figure 5: Pathfinder Iteration for a Multi-terminal Net

4 Router Implementation

To support experimentation, the iterative maze router
in the Versatile Place and Route (VPR) tool suite [4]
was modified to support depth-first routing and do-
main negotiation in addition to its original support
of breadth-first routing. This router is based on the
PathFinder negotiated congestion algorithm [11] which
consists of routing each net with a maze router and
then ripping up and rerouting each net in sequence a
number of times. The cost of each routing node in the
routing grid is updated not only after the route of each
net but also after an entire iteration in which every
net is routed. This additional cost update allows for
migration of routes away from congested areas of the
device to those more sparsely populated through use of
a non-decreasing historical cost factor.

The modified maze router differs significantly from
the breadth-first original in its evaluation of multi-
terminal nets. In the depth-first case, a specific target
input must be specified to calculate the distance di in
Equation 3. As a result, each input must be connected
in a separate routing step. In an attempt to minimize
overall wire length, the depth-first router orders target

inputs using Prim’s shortest-path algorithm [14]. The
first target input is chosen to be the one closest to the
net output. Subsequent targets are selected by choos-
ing the input with the shortest path to the net output
or to the inputs already chosen. As suggested in [15],
nets are routed in order of decreasing fanout. In gen-
eral, high fanout nets are easier to route when there is
less existing routing congestion.

The details of the PathFinder algorithm modified
for depth-first routing are shown in Figure 5. An expan-
sion list is used to maintain a list of possible tracks for
expansion and their related costs. For each net input,
the expansion list is initialized to the existing route of
the multi-fanout net including the output pin. If rout-
ing fails to complete in the domain used by previous
net inputs, a new path back to the output pin of the
the multi-pin net must be created to allow for a domain
change.

The order in which domains are searched is con-
trolled by the rank, rd, of a given domain. As deter-
mined during the domain negotiation stage, domains
with lower congestion will have a lower rank, rd, thus
promoting routing in less-congested domains first. This
rank may be added to tracks attached to the net source
by modifying the cost function in Equation 3 to:

fi = (1− α)× (fi−1 + ci) + α × di + rd (4)

All other tracks are added to the expansion list us-
ing the cost function in Equation 3. It was found ex-
perimentally that an α value of 0.6 significantly accel-
erated routing time without creating a significant loss
in routing quality.

Excluding the italicized domain negotiation steps,
the routing iteration shown in Figure 5 is similar to
the one discussed in [15]. This previous router was
targetted to an enhanced FPGA routing architecture
that did not contain the disjoint switchbox commonly
found in commercial architectures such as the Xilinx
XC4000 family. In the next section it is shown that
domain negotation plays an important role in achieving
efficient results for the disjoint switchbox case.

5 Results

Both the breadth-first and depth-first versions of the it-
erative router were applied to a number of large FPGA
benchmarks. Each design was placed and routed in the
smallest square FPGA which could contain it. Target
FPGAs had the following track length distribution for
each routing channel: 44% of channel tracks span one
logic block, 22% span two logic blocks, and 33% span
the entire array. This length distribution is the same as

Circuit Source Logic DFS-neg BFS
Blocks Min. Min.

Tracks Tracks
fft16 RAW 11860 12 12
ssp96 RAW 12041 13 12
spm16 RAW 6632 11 11
bubble RAW 8453 8 8
frisc MCNC 3556 15 15
s38417 MCNC 6406 11 11
s38584.1 MCNC 6447 11 12
clma MCNC 8383 16 16
elliptic MCNC 3849 13 13
pdc MCNC 4631 21 21
total – 131 131

Table 1: Benchmark Circuits Data

that found in devices from the Xilinx XC4000 family.

� BFS
� DFS-noneg
� DFS-neg

|
11

|
13

|
15

|
17

|
19

|0

|100

|200

|300

|400

|500

|600

|700

|800

 Tracks

 T
im

e
(in

 s
ec

on
ds

)

�

�

�

�
�

� �
�

�

�
�

� � � � �

�

� �
� � � � �

Figure 6: Route Time vs. Track Width - fft16

The first four benchmarks in Table 1 are from the
RAW Benchmark Suite [3]. These benchmarks were
placed using the VPR placer based on simulated an-
nealing. The remaining six benchmarks and associated
placements are from the FPGA Challenge [5]. In only
one case, ssp96, was the minimum track width that
achieved a successful route, Wmin, less for breadth-first
routing than for depth-first routing with domain nego-
tiation. The fact that the sum of the minimum track
widths for breadth-first and depth-first routing was the
same indicates the efficiency of the depth-first routing
approach.

All run time results were obtained using a 140 MHz
UltraSparc 1 with 288Mb of memory. Figure 6 illus-
trates the importance of domain negotiation in the
depth-first routing of array-based architectures. In
the non-negotiated case, the lack of domain selection

caused many separate paths from the net output pin
to input pins on different domains thus leading to the
overuse of routing resources. For track widths near the
minimum track width, depth-first routes with domain
negotiation showed a speedup (as much as 2X) over
routes performed without negotiation. In general, the
effect of domain negotiation was less as the track widths
were increased due to a large increase in possible rout-
ing paths for both cases.

Average Route Time (s)
Tracks: Tracks:
Wmin Wmin+40%

BFS 709 269
DFS-noneg 647 20
DFS-neg 333 18

Table 2: Average Route Times

Table 2 shows average route times achieved across
all designs both at minimum track widths and at track
widths with 40% additional tracks. It can be seen that
route time decreases to under a minute for increased
routing channels for the depth-first case but continues
to be several minutes on average for the breadth-first
case. This would indicate that if FPGA device man-
ufacturers created devices with the same logic capac-
ity but additional routing resources, depth-first routing
could allow for device routing in less than a minute.

6 Conclusion

As FPGAs continue to grow, the need for fast com-
pile solutions to the place and route problem becomes
important. In this paper we have investigated one ap-
proach, converting a traditionally breadth-first router
into a depth-first one by treating the route as an A*
search. We have shown that this tradeoff reduces rout-
ing run time by over and order of magnitude on aver-
age for devices with sufficient routing resources, while
maintaining minimum track counts in most cases. The
disjoint nature of the array-based FPGA creates the
need to order domains for depth-first routing so that
routes in domains with a high probability of comple-
tion are attempted first. It is shown that this domain
negotiation selection process has an important effect on
routing by allowing routes to complete in less than one
minute even for designs containing thousands of logic
blocks.

As an added step, the depth-first router could be
integrated iteratively into a macro-based floorplanner
to allow for tightly-coupled placer-router interaction.

7 Acknowledgements

The author would like to thank Jordan Swartz and
Vaughn Betz from the University of Toronto for discus-
sions regarding this work and for providing the VPR
software.

References

[1] Field-Programmable Gate Arrays Data Book. Lucent
Technologies, 1996.

[2] The Programmable Logic Data Book. Xilinx Corpora-
tion, 1996.

[3] J. Babb, M. Frank, V. Lee, E. Waingold, and R. Barua.
The RAW Benchmark Suite: Computations Struc-
tures for General Purpose Computing. In Proceedings,
IEEE Workshop on FPGA-based Custom Computing
Machines, Napa, Ca, Apr. 1997.

[4] V. Betz and J. Rose. Directional Bias and Non-
Uniformity in FPGA Global Routing Architectures. In
ICCAD, San Jose, Ca, 1996.

[5] V. Betz and J. Rose. VPR: A New Packing, Placement,
and Routing Tool for FPGA Research. In Proceed-
ings, Field Programmable Logic, Seventh International
Workshop, Oxford, UK, Sept. 1997.

[6] S. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic.
Field-Programmable Gate Arrays. Kluwer Academic
Publishers, Boston, Ma, 1992.

[7] S. Brown, M. Khellah, and Z. Vranesic. Minimizing
FPGA Interconnect Delay. IEEE Design and Test of
Computers, pages 16–23, 1996.

[8] G. W. Clow. A Global Routing Algorithm for Gen-
eral Cells. In Proceedings, ACM/IEEE 21st Design
Automation Conference, 1984.

[9] C. Lee. An Algorithm for Path Connections and its Ap-
plications. IRE Transactions on Electronic Computers,
Sept. 1961.

[10] G. Lemieux, S. Brown, and D. Vranesic. On Two-
Step Routing for FPGAs. In Proceedings: International
Symposium on Physical Design, Napa, Ca., Apr. 1997.

[11] L. McMurchie and C. Ebeling. PathFinder: A
Negotiation-Based Performance-Driven Router for FP-
GAs. In International Symposium on Field Pro-
grammable Gate Arrays, Monterey, Ca., Feb. 1995.

[12] N. J. Nilsson. Principles of Artificial Intelligence.
Tioga Publishing, Palo Alto, Ca., 1980.

[13] M. Palczewski. Plane Parallel A Maze Router and its
Application to FPGAs. In Proceedings, ACM/IEEE
29th Design Automation Conference, 1992.

[14] R. Prim. Shortest Connecting Networks and Some
Generalizations. Bell Syst. Tech. J., 1957.

[15] J. Swartz, V. Betz, and J. Rose. A Fast Routability-
Driven Router for FPGAs. In 6th International Work-
shop on Field-Programmable Gate Arrays, Monterey,
Ca, Feb. 1998.

