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The rapid growth of Internet of Things (IoTs) applications in various sectors has led to a significant increase in the number

of IoT devices. This has led to the deployment of numerous IoT protocols to provide greater connectivity. However, this

extensive adoption has also left them vulnerable to attack. In particular, attacks targeting wireless communication capabilities

represent a significant threat. Such attacks exploit various vulnerabilities in the wireless connectivity unit, compromising

its security. To counter this threat, this paper proposes a Host Intrusion Detection System (HIDS) for detecting wireless

attacks. Its components are customized to support IoT end-devices using low-GHz and sub-GHz data rate protocols. The

HIDS deploys a hardware tracer to monitor microarchitecture and network metrics using hardware performance counters

(HPCs). It performs monitoring of network and microarchitecture metrics for a 32-bit RISC-V based wireless connectivity

unit. The HIDS uses analysis and classification of monitored data for detecting memory corruption and jamming attacks. We

evaluate the effectiveness of the HIDS in detecting packet injection and jamming attacks. Our FPGA implementation of HIDS

has a logic overhead of about 14.30% and 22.89% of flip flops (FFs) and lookup tables (LUTs), respectively, compared to the

CV32E40P baseline on an Arty A7 100T board. The design frequency and code size penalties are less than 1% for a RISC-V

processor with a LoRaWAN protocol stack.
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1 INTRODUCTION
The Internet of Things (IoTs) has experienced exceptional growth in recent decades and has become an integral

part of the world. This has brought significant transformations to various aspects of our lives, enabling continuous

data monitoring and real-time remote system control. IoT applications span across all sectors, such as healthcare,

smart homes, smart cities, agriculture, and industrial automation. Associated consumer products are being
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increasingly integrated into daily routines. Indeed, the spread of IoT devices has been remarkable, with billions

now in use globally. For instance, the global IoT market reached 16.7 billion devices and is projected to grow to

29.7 billion by 2027 [1]. However, along with this growth, there are increasing challenges related to security and

data privacy. Cyberattacks targeting IoT devices have surged significantly, with millions of incidents reported

annually. In 2016, the cybersecurity landscape was significantly affected by the Mirai botnet attack [2]. This attack

searches for open telnet ports in numerous IoT devices often insecure, like digital cameras. Attackers successfully

attempted to gain access using default passwords. Then, they constructed a botnet and unleashed Distributed

Denial of Service (DDoS) attacks. In 2022 alone, there were over 112 million IoT-targeted attacks worldwide, a

stark increase compared to the approximately 32 million detected cases in 2018 [36]. Addressing the security

challenges is crucial for ensuring the stability of the current and the future growth. The IoT environment’s

topology is meaningful, as highlighted in Figure 1a, spanning from the top where cloud servers manage vast

amounts of data, to the bottom housing IoT devices transmitting their data to gateways in the middle. Centering

on IoT devices and their wireless connections to gateways, these physical components interact with the physical

world. They employ IoT protocols to establish wireless connections with gateways, as illustrated in the lower

part of Figure 1a. A subset of commonly employed IoT devices, referred to as IoT end-devices, possess limited

resources in terms of performance, computing capabilities, memory capacity, and power consumption.

Embedded systems in IoT devices now have built-in communication capabilities. Generally, a dedicated unit

is employed to implement the IoT protocol stack, frequently based on open-source stacks on the market. This

unit provides the primary pathway for data to enter the IoT network, representing a crucial entry point that is

susceptible to threats. It hosts various vulnerabilities that malicious parties can exploit to launch cyberattacks

within the IoT network. As an illustrative example, Forescout Research Labs uncovered 33 vulnerabilities,

collectively referred to as AMNESIA:33 [22]. The discovered vulnerabilities are primarily related to memory

corruption. They pose a significant risk to millions of IoT devices and affect four open-source TCP/IP IoT stacks.

These vulnerabilities allow the attackers to compromise devices, gain remote control, execute malicious code,

initiate denial-of-service (DoS) attacks, and steal data. The attackers can also access the IoT network where these

devices are deployed. The emergence of high-performance, low-cost platforms and associated software [24] has

also expanded the opportunities for attackers and simplified their access to the lower layers of communication

networks.

The potential economic repercussions of these vulnerabilities are considerable, given that open-source IoT

stacks are widely utilized in their products by numerous vendors. Addressing these vulnerabilities requires the

deployment of patches across millions of IoT devices. However, a challenging aspect of this situation is that some

IoT devices cannot be patched due to technical limitations.

To counter these security issues, embedded systems within IoT end-devices have been enhanced with various

security mechanisms and countermeasures such as protecting physical access to devices, securing data privacy

with cryptographic encryption, and enhancing communication security. Systems-on-Chip (SoCs) in IoT end-

devices include security mechanisms against cyberattacks, such as cryptographic accelerators for data encryption,

secure boot procedures, and over-the-air (OTA) update mechanisms [19, 37, 39]. These are crucial for addressing

IoT device security challenges. However, the same devices lack monitoring and detection mechanisms that can

track system metrics and analyze behavior to identify malicious activities. We argue that combining monitoring

and detection with existing protection and update measures can enhance the resilience of IoT devices to security

challenges.

In this paper, we provide a lightweight monitoring and detection method for detecting ongoing wireless attacks.

The implemented security mechanism extends the work presented in [7], with important modifications targeting

multi-level monitoring, and a new class of attack. To the best of our knowledge, prior research has predominantly

focused on network-based IDS for IoT devices. These systems are typically based on a single-layer metric, which

limits detection to specific wireless network attacks [15, 44]. Host-based IDS are frequently implemented at
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the gateway level, taking advantage of the substantial resources available for handling complex detection tasks,

often employing deep learning techniques. Other IDS solutions are designed around application-specific features,

which limits their scalability to support different or multi-protocol environments [14, 33, 43, 45]. Therefore, there

is a pressing need for lightweight, onboard strategies to monitor IoT devices and detect ongoing potential threats.

The main contributions of this work are as follows:

• The methodology and the associated experimental framework for simulating, emulating, and implementing

wireless attacks, such as jamming and packet injection. This approach also includes dataset generation

for microarchitectural and network metrics, which are essential for constructing a HIDS tailored for IoT

end-devices.

• A lightweight HIDS called Diwall. It was designed to detect packet injection and jamming attacks by

monitoring microarchitectural events and Received Signal Strength Indicator (RSSI) metadata within the

LoRaWAN stack.

In our first contribution, we introduce our methodology and the associated framework to study packet injection

and jamming attacks that target IoT protocol stacks. This framework generates extensive datasets for both

simulated and real-world scenarios. We delve into the behavior of microarchitectural events during memory stack

and heap buffer overflows, focusing on packet injection attacks. Additionally, we examine network metadata

metrics such as RSSI and Signal-to-Noise Ratio (SNR) to identify jamming attacks. Our research encompasses

machine learning and statistical techniques applied to the generated datasets. Importantly, this comprehensive

framework is adaptable to various IoT protocol stacks, and instruction set architecture (ISA). This adaptability is

possible because monitored microarchitectural and RSSI metadata are present in modern CPUs and IoT protocol

stacks. Within this methodology, we employ a simplified MAC layer that can be substituted with more complex

MAC layers that we demonstrated using the LoRaWAN stack. Similarly, the LoRa physical (PHY) layer can be

replaced with technologies such as Bluetooth or Zigbee to investigate the same wireless attacks that pose threats

to the aforementioned IoT stacks.

In our second contribution, we introduce Diwall, a hardware-based lightweight HIDS that requires minimal

software instructions for configuration and control. It uses microarchitectural event analysis to identify packet

injection attacks that exploit buffer overflow. It also utilizes RSSI-based metrics to detect jamming attacks. We

implemented Diwall as a compact component within a RISC-V processor on an FPGA board. In real-world

scenarios, we evaluated the detection rates and achieved high levels of approximately 99.94% accuracy. Moreover,

Diwall requires a minimal FPGA area overhead of approximately 14.30% of LUTs and 22.89% of FFs compared to

the CV32E40P baseline on an Arty-A7 100T board, and does not negatively impact system performance.

This paper is organized as follows: Section 2 provides background information regarding the security of

SoCs with built-in wireless connectivity. Section 3 describes the proposed security mechanism approach and

architecture. The methodology employed to assess the effectiveness of the proposed security mechanism is

outlined in Section 4. In Section 5, the obtained results are presented along with a discussion of the limitations.

Finally, the paper concludes with Section 6, summarizing key findings and providing suggestions for future work.

2 BACKGROUND

2.1 SoC with Built-in Wireless Connectivity
Many chip manufacturers have designed SoCs for IoT devices with built-in wireless capabilities [19, 37, 39].

These IoT SoCs integrate a range of network connectivity technologies, including commonly used IoT protocols

such as LoRaWAN, Bluetooth, and ZigBee. The built-in radio ensures dedicated wireless network access, solving

compatibility issues. They also reduce implementation costs, energy requirements, and complexity compared to

traditional SoCs, which require expensive hardware for wireless connectivity.
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The ESP32-H2 [39] is a SoC developed by Espressif Systems and is part of the ESP32 series. It embeds a

single-core, 32-bit RISC-V processor. The wireless connectivity unit supports the coexistence of radio protocols

in the 2.4 GHz band, each protocol using a dedicated baseband Application-Specific Integrated Circuit (ASIC).

Increasing flexibility and adaptability for wireless connectivity would involve integrating a dedicated network

CPU. The STM32WL55CC [37] is a STMicroelectronics SoC, which is part of the STM32WL series. It combines a

single-core Arm Cortex-M4 processor as the main CPU and a single-core Arm Cortex-M0+ dedicated to sub-GHz

wireless connectivity. Various sub-GHz IoT stacks and proprietary protocols are supported, such as LoRaWAN and

Sigfox. The CC1352R [19], produced by Texas Instruments, features a multiband device specifically tailored for

IoT devices and proprietary protocols in the sub-GHz and 2.4 GHz bands. It incorporates a dual-core Arm Cortex-

M4F/M0, supporting various protocol operations such as Thread, Zigbee, and IEEE 802.15. Wireless connectivity

is managed by the single-core Arm Cortex-M0 and has the ability to manage several protocols simultaneously. In

SoC architecture, wireless connectivity systems typically include a network processor dedicated to the PHY and

MAC layer management. Without loss of generality, in this paper we focus on the SoC block diagram highlighted

in Figure 1b, where the physical layer is implemented on a separate radio module, while the remaining stack,

including the MAC layer and upper layers (network and application layers), is executed by the SoC’s main CPU.

2.2 Security Threats
SoCs in IoT devices can have multiple weak points targetable by attacks. One entry point could stem from

the application processor executing a malicious process that attempts to carry out illegitimate actions, such

as launching a DDoS attack [2]. In such attacks, numerous IoT devices are exploited to overwhelm servers

collectively. The second potential entry point relates to the vulnerabilities present in the lower layers of the

protocol stacks. This paper primarily focuses on this entry point, specifically, the wireless connectivity of SoCs.

Several vulnerabilities in IoT devices have recently been identified. These vulnerabilities have been found in

the communication elements of the IoT devices, and affect several protocols. These include TCP/IP, LoRaWAN,

ZigBee, and BLE. Numerous vulnerabilities are created during the implementation of the protocol standards.

However, others result from the standard itself.

Forescout Research Labs conducted a security study on seven open-source TCP/IP stacks [22]. They found

33 new critical vulnerabilities in four stacks: uIP, FNET, picoTCP, and Nut/Net. These stacks are heavily used
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in millions of IoT devices and by more than 150 vendors. Many of these vulnerabilities are traced back to poor

software development practices. The exploitation of these vulnerabilities (with e.g., buffer overflow), referred

to as AMNESIA:33, can result in exploits such as remote control execution and privilege escalation reached by

attackers. These risks include compromised IoT devices, execution of malicious code, DoS attacks, and sensitive

information theft. The authors of AMNESIA:33 acknowledge that identifying and rectifying these vulnerabilities

pose a significant challenge to the security community. In response, they proposed mitigation measures, like

implementing solutions that provide granular visibility of IoT devices through network communicationmonitoring.

They also recommend isolating IoT devices or network segments that are vulnerable to these threats to manage

potential risks.

A group of critical vulnerabilities, known as BLEEDINGBIT [5], affect BLE chips. They impact Wi-Fi access

points from Cisco, Meraki, and Aruba solutions, which utilize Texas Instruments (TI) BLE chips. BLEEDINGBIT

allows an unauthenticated attacker to execute code remotely on targeted chips. The first vulnerability, CVE-2018-

16986, stems from a masking error within the Bluetooth specification, persisting from version 4.2 to version 5.0.

The updated version enables the use of larger advertising packets, increasing the packet length from 37 bytes to

255 bytes. To accommodate this change, the packet header in the new specification has been reorganized, shifting

the packet length field from 6 bits to 8 bits. This expansion is achieved by allocating 2 bits previously reserved for

future use (RFU). The slight difference in the two specifications may have triggered memory corruption bugs

when parsing BLE advertising packets. Developers might neglect to mask out RFU bits in the packet header

length field, assuming they are always transmitted as zeros as per the specification. The second vulnerability,

CVE-2018-7080, was discovered in the Over-the-Air (OTA) firmware download (OAD) feature of TI’s BLE stack

SDK. The Aruba access point utilizes this functionality on TI CC2540 chips for remote firmware updates. Although

this feature is disabled by default on commercialized devices, it appears to be enabled in the 300 Series. An

attacker with the appropriate credentials could exploit this vulnerability to gain access to an affected IoT device,

replace the BLE chip’s firmware with malicious code, and subsequently gain control of the device. This introduces

a new attack vector on Aruba access points, potentially enabling an unauthenticated, over-the-air attack that

compromises a secure Wi-Fi network.

The Tencent Blade team discovered two vulnerabilities in LoRaWAN, CVE-2020-11068 and CVE-2020-4060 [41].

These vulnerabilities can allow a remote DoS on LoRaWAN end-devices and potentially enable a remote code

execution (RCE) exploit on the LoRaWAN gateway under certain conditions. CVE-2020-11068 was found in

the LoRaWAN end-device stack implementation, specifically in versions below V4.4.4 of LoRaMac-node. This

issue arises during the OTA Activation (OTAA) process and involves a reception buffer overflow due to the lack

of packet size check. In contrast, CVE-2020-4060 is a use-after-free (UAF) vulnerability. This leads to memory

corruption on 32-bit machines and was found in the LoRaWAN Gateway implementation, specifically the LoRa

Basics Station. This station uses a Configuration and Update Server (CUPS) protocol to check for updates. The

UAF issue occurs when the signature length of a message from a CUPS server exceeds 2 GB.

Multiple vulnerabilities have been reported in the implementation of numerous IoT protocol stacks, as well

as in their specifications. In [4, 47], various attacks that exploit these vulnerabilities are discussed. They can

affect service availability, data integrity, and confidentiality. Attackers can exploit the protocol stack’s lower layer

vulnerabilities, at the MAC layer or at the PHY layer for instance. They can thus introduce malicious network

packets to target victims or jam their communication channels, resulting in e.g., packet injection, jamming, DoS

or man-in-the-middle (MITM) attacks. Table 1 summarizes a comparison of common representative attacks on

LoRaWAN, a sub-GHz protocol, and on Bluetooth, BLE, and ZigBee, three 2.4 GHz protocols. The comparison

is based on the targeted protocols, exploited and targeted layers in the IoT protocol stack, as well as the used

vulnerabilities and their results. From this table, we observe that several IoT protocol stacks are susceptible

to attacks and vulnerabilities that exploit and target multiple layers of the protocol stack. This includes the

exploitation of vulnerabilities hosted on the MAC layer and PHY layer, with attacks also targeting upper layers
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Table 1. Security State-of-the-Art of IoT Low Data-Rates Protocols LoRaWAN, ZigBee, and BLE Reported with the Targeted
Layer as T and the Exploited Layer (if any) as E.

Attack Protocol PHY MAC Upper Layers Vulnerability Results

Wazabee [12] ZigBee E E/T T BLE API DoS, injection

Selective Jamming [4] LoRaWAN E E/T T Header plain-text DoS, Wormhole

Spoofing [16] LoRaWAN E E/T - Authentication DoS

Rescuing [6] LoRaWAN - T T Protocol weakness Replay, DoS

InjectBLE [11] BLE E E/T T Pairing MITM, Sniffing

Downgrade [47] BLE - - T Design flaws DoS, MITM

Injection-free [34] BLE - - E/T Limited Bounding DoS, MITM

Downgrade [3] BT/BLE - E/T E/T Insecure BLE clock MITM

related to protocol application. This underscores the importance of implementing security measures across all

layers of IoT protocol stacks.

2.3 Security Countermeasures
Many academic and industrial studies have been conducted on IoT security mechanisms to counter vulnerabilities

and their exploitation, as discussed in the previous section. Security mechanisms typically address one or more

elements of the Confidentiality, Integrity, and Availability (CIA) triad. The proposed mechanisms can be software-

or hardware-based, or can involve hardware-accelerated software. Security functions are provided by most

chip manufacturers for their SoCs, typically using modules that provide similar security functions. ESP32-H2,

STM32WL55CC, and CC1352R [19, 37, 39] incorporate hardware security features, such as cryptographic acceler-

ation (AES, SHA, RSA, and TRNG). Furthermore, integrated hardware enables code authentication for a wide

range of security services. These include secure boots, secure firmware update mechanisms, memory encryp-

tion/decryption, and protocol stack key generation. These ensure integrity and provide important protection

mechanisms against unauthorized access. IoT SoC manufacturers commonly provide protection and update

mechanisms. However, monitoring and detection mechanisms such as intrusion detection systems are usually

not included.

Intrusion and anomaly detection approaches for IoT environments have been proposed in the literature [14, 40, 46].

They detect attacks using a signature list or by learning the legitimate behavior of a system. This solution com-

prises three main modules: acquisition, analysis, and alertness. Probes, in hardware or software, collect the

system metrics during the acquisition part. This information is then analyzed to identify ongoing attacks. If a

malicious action is detected, an alert warns the user. These mechanisms are highly accurate in detecting attacks.

However, the detection rate performance and overhead, such as silicon area, code size, or power consumption,

is still challenging. Utilizing lightweight detection algorithms can assist resource-constrained IoT devices to

overcome these limitations. Moreover, relocating data analysis and detection algorithms to a server or a gateway

can be beneficial, allowing the end-device to focus solely on collecting metrics.

2.4 Related Work
An HIDS [14][46][9] incorporates a combination of software and hardware probes embedded within the system.

The HIDS monitors not only the network activity but also additional hardware and runtime metrics on IoT

devices.
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The Physical layer Intrusion Detection System (PHY-IDS) was proposed in [45]. It is an RSSI-based IDS framework

which identifies body movement spoofing attacks on wearable devices. First, the system builds a legitimate

behavior model using RSSI time-series data features. This model is then used to spot frames that deviate from the

regular wireless signal patterns of legitimate wearable devices. The PHY-IDS can be located in a hub, such as a

smartwatch or a smartphone. Experimental results demonstrate that PHY-IDS has an average detection accuracy

of approximately 99.8% for naive attacks. However, comprehensive knowledge and advanced learning capabilities

are still required to counter the most sophisticated spoofing attacks. Other research uses MAC layer metrics,

such as packet headers, to detect DoS and jamming attacks. In their work, the authors of [21] proposed Demo, an
IDS framework tailored for a 6LoWPAN-supported IoT environment. However, Demo can only be integrated

into the gateway and requires additional probes to sniff packets from the IoT devices. Raza et al. [30] focused on

analyzing packet headers to detect spoofing attacks in 6LoWPAN networks. This was achieved using SVELTE,
an HIDS integrated inside a mini-firewall for IoT devices. SVELTE employs a hybrid detection method based on

both signatures and anomalies, as well as a hybrid placement strategy. With eight nodes per 6LoWPAN network,

it achieved a detection rate of approximately 90%. However, as the number of nodes increases, the detection

accuracy decreases. For example, with 32 nodes, the detection rate dropped to 70%.

Hessel et al. [14] used metrics from both the MAC and the PHY layers. For example, Passban IDS uses anomaly-

based detection with RSSI and packet headers to identify malicious packet injections in Linux-based IoT gateway

devices. It is capable of detecting various types of malicious traffic, such as port scanning, HTTP and SSH

brute-force attacks, as well as SYN flooding. However, the assessment of Passban IDS has a considerable impact

on the IoT gateway: it incurs a 6% memory overhead, increases the CPU usage by 30%, and reduces the network

speed by 7%. This suggests that it is not suitable for embedding in smaller devices. This may be related to the

exclusive use of software metrics, while certain hardware metrics may also allow implementing an HIDS that can

detect attacks, particularly those that compromise integrity.

In [8], Bourdon et al. proposed an HPC-based anomaly detection system to detect packet injection and DoS

attacks. They selected seven HPC registers that reflect the CPU state (memory cache, instructions, exceptions,

prediction branches, bus access) to create an application-independent mechanism for detecting malware. A model

of legitimate device behavior was generated using machine-learning algorithms and data from HPC registers.

Moreover, a hybrid placement strategy was employed for the IDS. A kernel module, acting as a tracer, was also

installed on each device. This tracer records time-series data for each HPC register in a local file. This local

file is then transmitted to the server using FTP communication to be further analyzed using machine-learning

algorithms. The detection rate accuracy was measured using two metrics: true positive rate (TPR) and false

positive rate (FPR). Overall, with a maximum of 1% compromised devices, the TPR was approximately 80% and

the FPR was less than 1%. However, the detection rate declined when 5% of the total number of devices were

compromised, suggesting that identifying intrusions in the case of widespread attacks poses a considerable

challenge.

In [10], Cayre introduced a framework for creating embedded detection software for devices using a BLE

protocol. This detection module is built on the instrumentation of the MAC layer (Link layer) within the BLE stack.

The detection method relies on specific rules applied to network metrics. These rules involve setting threshold

values for the Cyclic Redundancy Check (CRC) validity number and the advertising interval. The CRC thresholds

are particularly useful for identifying jamming attacks, whereas the advertising interval time helps to detect other

types of attacks related to the BLE protocol, including MITM attacks. Several experiments have demonstrated

that this method can be used to identify existing BLE attacks. Using the instrumentation of stack code combined

with a rule-based approach may allow integrating detection methods directly into the existing stacks. However,

this approach presents several challenges. First, rule-based detection methods can sometimes produce higher

values for false positive and false negative rates. Attackers may even exploit the known rules to bypass them

during more complex attacks. Second, adding extra code for stack instrumentation can lead to performance issues,
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including increased execution times and memory costs. These limitations can be particularly problematic for

IoT devices with constrained resources. Finally, implementing this approach requires a thorough understanding

of the wireless communication protocol stack. For instance, specific knowledge is required regarding where to

insert additional functions for the monitoring and analysis modules. Overall, this study introduces an innovative

but complex method to enhance the security within the BLE protocol.

Due to the absence of embedded lightweight HIDS in prior research, we present a detailed comparison in Table 2.

This comparison highlights how Diwall aligns with a selected group of existing HIDS studies [8, 10, 14, 21, 30, 45].

Notably, only [10]offers a rule-based embedded HIDS that utilizes protocol stack instrumentation. However, a

comparison with our work is not directly feasible, as our approach involves a hardware implementation and

employs different IoT protocols.

For each HIDS, we identify its type and placement, the context including protocols and attacks it can detect,

and finally, the metrics (network and hardware) utilized by each solution. The key features of our proposed

approach, Diwall, are listed for comparison. More details are provided in Section 3.

Table 2. Diwall and Related Works for HIDS in IoT. With RSSI (Received Signal Strength Indicator), adI (Advertising Interval),
MITM (Man-in-the-middle), CRC (Cyclic Redundancy Check), HPC (Hardware Performance Counter)

HIDS Context Metrics

Ref. Detection Placement Protocols Attacks Network Hardware

[45] Anomaly Gateway IEEE 802.15.4 Spoofing RSSI -

[21] Signature Gateway 6LoWPAN Flooding, Jamming Packet -

[14] Signature Gateway BLE, WiFI HTTP/SSH brute force, . . . Packet -

[30] Hyprid Hybrid 6LoWPAN Routing, Spoofing,. . . Packet -

[8] Anomaly Hybrid TCP/IP SSH brute force, DDoS, . . . - HPC

[10] Rule Node BLE Jamming, MITM adI, CRC -

This work Anomaly Node LoRaWAN Jamming, Injection RSSI HPC

On one hand, software-based IDS solutions are commonly implemented in wireless network environments.

Their popularity stems from their flexibility and ability to be easily redesigned, making them a preferred choice in

many situations. However, this approach has some drawbacks, since implementing additional software can lead to

performance overheads. It may also introduce new security risks owing to the potential software vulnerabilities.

On the other hand, hardware-based IDS solutions offer advantages such as lower performance overhead with

reduced potential for additional security risks. However, hardware-based IDS solutions require higher design

times, and thus are not as commonly used as their software-based counterparts.

The majority of the discussed HIDS proposed here utilizes only one metric level, as highlighted in the Metrics

column of Table 2. However, attacks and vulnerabilities are present in multiple locations of the IoT protocol

stack, including their specification and implementation. As previously discussed in Subsection 2.2, the attack

tree is found to be extensive, as it could start by exploiting vulnerabilities from the PHY layer or the MAC layer

and conclude by targeting upper layers. In this paper, we present Diwall, a hardware-based IDS that leverages

existing HPCs on a network processor as hardware probes. A comparative examination of our approach with

several notable methodologies found in the literature has been presented in Table 2. Diwall approach sets itself

apart from the existing systems in several essential aspects. Firstly, it is designed expressly for IoT SoCs with

restricted resources, eliminating the need for remote detection through a gateway or a server. Secondly, instead of

relying heavily on software-based solutions, such as traditional strategies, our system is primarily implemented

in hardware, with only a minimal number of control and configuration instructions in software. Thirdly, our
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approach adopts multi-level metrics, both hardware and network metrics to determine the normal operation

of the IoT SoC’s wireless connectivity, diverging from the common practice of utilizing a single metric in most

related studies. Indeed, we utilized built-in CPU HPCs as monitoring probes, thereby avoiding extra area and

performance overhead. We also propose an extension to the network processor architecture by incorporating

dedicated HPCs designed for the specific purpose of monitoring network metrics. Finally, Diwall can detect

remote packet injection and jamming attacks that target the network processor of a SoC.

This paper expands upon our prior research [7], which concentrated on a single-level monitoring and detec-

tion mechanism. The previous security system only integrated microarchitectural metrics to identify memory

corruption attacks. Furthermore, in this work, the HIDS operates at multiple levels, integrating additional metrics

derived from network data to identify jamming attacks. The previously proposed HIDS [7], which aimed to detect

memory corruption attacks, was initially conceptualized and evaluated using the LoRa PHY layer. This extension

involves the physical implementation and assessment of the HIDS for a complete open-source LoRaWAN IoT

protocol stack.

3 DIWALL: A HOST-BASED INTRUSION DETECTION SYSTEM

3.1 Threat Model
The inherent vulnerabilities in lower layers of numerous IoT protocol stacks can be exploited by attackers to

launch a range of attacks such as jamming and packet injection. A packet injection attack occurs when an

unauthorized entity introduces malicious or false packets into a communication channel, aiming to disrupt

network functionality or compromise device roles. This technique has been observed across various IoT protocols,

where attackers exploit vulnerabilities in lower-layer specifications or implementations. Jamming is a severe

threat to IoT devices, where attackers intentionally interfere with wireless signals to disrupt communication.

It can be continuous or triggered by specific conditions, such as preamble detection [25]. Protocols like BLE,

ZigBee, and LoRaWAN are vulnerable to selective jamming, where specific devices are targeted by decoding their

MAC headers [4, 18, 29].

These basic attacks can serve as the starting point for more sophisticated ones, such as DoS or MITM. The

victim IoT SoC is composed as shown in Figure 2. It has a wireless connectivity subsystem that supports one or

several protocol stacks handled by the network processor. In addition, it has a CPU that oversees the execution of

user applications and upper protocol stack layers. The attack surface of the IoT protocol stack mainly includes its

PHY and MAC layers because these layers provide the first entry point for the attacker and are most sensitive to

vulnerabilities. The remote attacker can perform the attack on the victim’s IoT system by using either an SDR

platform or a protocol-specific dongle. An attack vector of the attacker includes packet injection and jamming,

targeting the victim’s wireless connectivity network processor. When conducting such attacks, the attacker

attempts to compromise the system.

Our research work focuses on the wireless IoT attacker model, as illustrated in Figure 2. In this figure, a victim

IoT end-point initiates communication with the IoT gateway. The victim’s wireless connectivity possesses vulner-

abilities on its attack surface, encompassing the MAC and PHY layers. Positioned between the communication,

the attacker can inject a packet or jam the victim’s communication channel. Diwall addresses this threat model

by monitoring metrics at both the network and microarchitecture levels. This monitoring provides insights into

the activity of the network processor and the traffic surrounding the victim.

3.2 Approach
The wireless connectivity of an IoT SoC device can be depicted using the highlighted block diagram in Figure 3a.

This representation is divided into hardware and software components. The hardware wireless connectivity
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Fig. 2. IoT Wireless Connectivity with the considered threat model. The attack surface is represented by red dashes.

encompasses the radio module, which includes the PHY layer, front-end, and antenna, along with a network pro-

cessor responsible for managing the radio module and the IoT software stack. The software wireless connectivity

comprises layers of the IoT software stack that operate on the network processor. It involves a PHY driver for

handling the PHY layer, a MAC layer responsible for processing incoming packets from the PHY layer, and upper

layers specific to individual applications for each IoT protocol stack. In the present study, we focus solely on

software implementations of the MAC layer, while acknowledging that MAC layers can also be implemented

using dedicated hardware.

We propose to secure wireless connectivity with a module named Diwall for attack detection. It directly

monitors the network processor, performs data analysis, and raises alerts. Figure 3a includes a summarized view

of the proposed module.

Diwall relies on three main hardware units, coupled to wireless connectivity components. The upper unit in

Figure 3a is the HPMtracer, a hardware tracer used to monitor the HPC data of the network processor. The unit

below is a preprocessing unit to prepare the data before the detection. The last, the Detector, is a hardware unit

used for data analysis and decision-making, based on a prebuilt legitimate model.

Multi-level metrics are targeted, and both network and microarchitecture levels are tracked. The network

metrics are stored in a new dedicated HPC that we propose to add to the network processor. Microarchitectural

events occur when a network packet is parsed by the MAC layer, and they are monitored by pre-existant HPCs.

The proposed module is connected to the network processor via two signal blocks: Tracing and Alert. The Tracing

signal establishes a link between HPCs in the network processor and the HPMtracer. This signal includes essential

control commands for enabling or disabling the monitoring from software. The Alert signal is used to convey the

decisions made by Diwall. An alert can be generated by the Detector after the analysis of HPC data. This alert

is closely tied to the network processor control and managing interrupts, according to a user-defined security

policy. This policy determines the actions to be taken following attack detection.

The processing flow for Diwall is shown in Figure 3b. The red top part of the figure represents the network

processor software running the MAC layer of the IoT protocol stack and analyzing the incoming packets from

the PHY layer. The first row of the green bottom part is run simultaneously with the MAC processing, i.e. Diwall
hardware monitors the metrics using the HPMtracer. Then, the metrics are processed using a dedicated Detector
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model for identifying specific attacks. The cumulative values of microarchitectural events provide an indicator of

the network processor’s behavior during packet parsing. The value of the network metrics, such as RSSI, provides

an indicator of the network traffic received. The output value is then compared with a threshold, and an alert can

be raised.

Figure 4 illustrates a chronology example of the IoT stack activities during network packet handling and

Diwall operations. A network packet (in light blue) undergoes several stages within an IoT stack. Upon successful

reception in the PHY layer (in yellow), the packet is transferred to the MAC Layer (in orange). Here, the packet

undergoes MAC processing, which can include cryptographic security and preprocessing of the upper layers.

After MAC processing, the application layer (in blue) uses the data extracted from the packet, as indicated in

the chronogram. The Diwall approach monitors the microarchitectural metrics and RSSI network metadata

for a subwindow (in green, entitled “Enable”) of the MAC processing window. Its activation is confined to this

window, as highlighted in the chronogram. For both packets N and N+1, Diwall is exclusively enabled during the

monitored window. It is disabled during the other segments of the IoT stack.
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3.3 Targeted Metrics
In this section, the two types of metrics used for Diwall detection are detailed and discussed. The first metric

encompasses microarchitectural events, related to the general activity of the network processor. The second

metric uses network metadata, specifically related to the PHY layer.

Microarchitectural events: HPCs offer developers access to detailed low-level information about the processor’s

microarchitecture and memory access. These resources can serve various usages, e.g., benchmarking, debugging,

and security enforcing. Several studies have used the capabilities of HPCs to develop robust security mechanisms,

particularly for IDSs [20, 26]. Das et al. [13] identified various challenges, pitfalls, and risks associated with

the use of HPCs in security defenses. These challenges are related to issues such as noise measurements, the

non-deterministic nature of microarchitectural events, and the sampling method used. Identified issues are

particularly present in complex systems that are based on operating systems (OSes). In these systems, multiple

applications and processes run concurrently, which can impact HPC event monitoring and lead to over- or

under-counting of cumulative values. In addition, adversaries can take advantage of a vulnerable process to

intentionally manipulate HPCs. However, in our work, we consider HPCs within the framework of a bare-metal

application as we use a network processor. In this context, while noise may still originate from peripherals

like hardware interrupts or timers, the running application has more control over the hardware, without OS

interference. This level of control serves to mitigate issues arising from noise sources during the execution process.

In our case, we use a network processor dedicated to processing network packets. It has fewer peripherals than

an application processor, and interrupts occur only upon packet reception, which is infrequent, occurring just a

few times per day in our context. This infrequency, coupled with the IDS’s brief execution time of fewer than 10

CPU clock cycles, minimizes any potential noise. Furthermore, instead of sampling, we employ polling. This

alternative method involves instrumenting the code within the software and reading the HPCs at the end of the

monitored window.

Network metadata: Metadata are available in the lower layers of IoT protocol stacks, mainly at the PHY layer

and the MAC Layer. These metadata have been used for performance monitoring and wireless communication

management. Various PHY layer metadata have also been used for security mechanisms [15, 44]. In our approach,

we chose to study the RSSI metric, which is frequently employed in wireless communications. It provides

information regarding the strength and quality of a signal during transmission or reception. Our decision to

incorporate this metric aims to ensure that Diwall remains independent of any specific IoT protocol stack. Given

the fact that the RSSI feature is already embedded in many receivers for the most common IoT protocols, it

improves the scalability and flexibility of our approach, enabling compatibility with various protocols.

3.4 Architecture
This section aims to present the implementation of Diwall. It was implemented on an Arty A7 100T FPGA board,

along with a RISC-V CPU network processor. We extended the RISC-V CV32E40P [27] pipeline as shown in

Figure 5. This figure represents a new variant of CV32E40P, now used as a network processor integrating our

proposed module. In this architecture, Diwall’s signals and data are connected to the CV32E40P’s Control Status

Register (CSR) to monitor microarchitectural events and network metrics. Once it analyzes data metrics and

detects malicious behavior, it raises an alert signal, which is propagated to the CV32E40P’s interrupt controller.

The proposed approach for detecting wireless attacks could be integrated as a small hardware component within

the CPU architecture, similar to an FPU or a TRNG. This choice offers quicker access to the HPCs and reduces

potential performance impact. Figure 5 shows the architectural details of Diwall components. It comprises the

same hardware components presented in Section 3 in Figure 3a: HPMtracer, Preprocessing, and Detector units.
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All highlighted units were designed using a finite state machine (FSM). Each unit in Diwall has independent FSM
states and controls. Only enable, disable, and data signals are propagated between the units.

The HPMtracer tracks the HPCs and sends them to preprocessing, where the exponentially weighted moving

average (EWMA) of the RSSI network metric is calculated. The microarchitectural event data are directly

transferred without any preprocessing. These data are then sent to the Detector unit for comparison with the

thresholds. Once the Detector finishes its analysis, it activates the end signal to reset the values stored in the

HPMtracer and puts our HIDS in an idle state.

More information about each hardware unit and Diwall configuration is provided in the following.

HPMtracer: Hardware Tracer. The primary hardware component of Diwall is the HPMtracer. This hardware

tracer monitors data from the network processor. Its operations are managed by the software running on the

network processor. The CV32E40P network processor is equipped with HPCs tailored to monitor the microarchi-

tecture and network data. Incidentally, it incorporates CSR into its execution stage pipeline. This CSR houses

HPCs such as HPC1 and HPC2, which track selected microarchitectural events, as determined by our Decision

Tree model presented in the following sections. These events can be configured and adjusted by users using the

software. In addition, we configure a dedicated Network HPC named NwHPC, a 64-bit register, divided into two

32-bit parts, serving as registers to monitor IoT stack metadata.

CSR also features signals essential for controlling the HPMtracer, represented as csr_data and csr_addr.
Diwall is activated and deactivated when csr_addr is set to 0x320 and csr_data has values of 0x0 and 0xF.
This action consists of writing into a dedicated register called mcountinhibit, which controls the enabling or

disabling of HPCs. If the enabling condition is met, the HPMtracer forwards the HPCs’ current values to the

subsequent stage for analysis and decision-making. In this architecture, the present values of the HPCs are

denoted as HPC1_v, HPC2_v and NwHPC_v with v corresponding to the value.

Preprocessing. The preprocessing unit prepares the data for further analysis. The goal here is to sanitize the

data before it is analyzed by the Detector. In our research, we specifically analyzed and implemented EWMA

preprocessing for RSSI metadata in the LoRa and LoRaWAN protocol stack. If required, further preprocessing

methods for the metrics would also be incorporated into this block.

In this scenario, preprocessing receives three pieces of data from the HPMtracer: HPC1_v, HPC2_v, and NwHPC_v.
NwHPC_v represents the RSSI value coded on 32 bits. HPC1_v and HPC2_v are the cumulative values of the selected

microarchitectural events. They are used directly in our Detector, and simply go through the unit. In Diwall,

Diwall : Host-based Intrusion Detection System
Preprocessing

CV32E40P RISC-V Network Processor
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Fig. 5. Block diagram illustrating the architecture of Diwall incorporating CV32E40P Processor
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the Detector works on the EWMA of the RSSI value provided in NwHPC_v. This function 1 has been tweaked to

reduce the overhead. EWMA involves multiplications, and the direct implementation of multipliers in hardware

would increase the area overhead for Diwall. Thus, we replaced multiplications by right-shifting the binary

representation. Indeed, multiplying the RSSI by a parameter such as 0.25 is equivalent to dividing by 4, which can

be implemented in hardware by right-shifting the RSSI binary representation by two bits. The EWMA hardware

is implemented with an FSM consisting of three states: an IDLE state, a state for calculating the necessary

right-shifting values for the equation and updating the output (the EWMA of the RSSI), and a state to send data

to the Detector.

Detector: Decision Tree and EWMA Control Limits. The second module, the Detector, is responsible for data

analysis and decision-making based on the data monitored by the HPMtracer and handled by the preprocessing

unit. The Detector comprises two modules: (1) a Decision Tree model for detecting packet injection attacks and

(2) an EWMA control limits for jamming attacks detection.

A Decision Tree model tailored to detect memory corruption based on packet injection attacks is generated

offline. This model is based on the monitored values from HPC1 and HPC2, and two thresholds, named K1 and K2.
These thresholds represent the maximum cumulative microarchitectural events considered legitimate within a

monitored window in the MAC processing of an IoT protocol stack. The monitored window refers to a section

of the program, rather than the entire MAC processing software. In our study on the LoRa and the LoRaWAN

stack, we monitor the section of code responsible for receiving and parsing a frame. If a frame is received, Diwall
starts monitoring these microarchitectural events and compares them with the thresholds. The Detector module

issues an alert when the data exceeds the thresholds set by the Decision Tree model. If the network processor

exerts significant effort during frame parsing, it is reflected in the values of HPC1 and HPC2. In our findings, buffer

overflow in the stack and heap leads to higher HPC1 and HPC2 values, deviating from the model defined by K1
and K2.

Another module within our Detector, designed to detect jamming attacks, exploits the EWMA of the RSSI. The

calculated EWMA of the NwHPC_v value is compared with predefined control limits, denoted as Upper Control

Limit (UCL) and Lower Control Limit (LCL). If the network metadata drifts outside these predefined limits, the

Detector module raises an alert.

The combination of the three units, the HPMtracer, Preprocessing and Detector modules, in the Diwall
architecture allows efficient detection of both jamming and packet injection attacks. This is achieved within a

brief time frame, taking less than 10 clock cycles to operate the entire architecture. This efficiency stems from

our method of reading HPCs only at the end of the monitoring phase. Moreover, Diwall does not utilize local
counters. Instead, it relies on registers to temporarily store data for a few cycles, thus preventing preemption of

the network processing.

Diwall Configuration: To enhance the flexibility of the Diwall approach, we enable parameter configuration

from the software. HPC1, HPC2, and NwHPC are configured using software running on the network processor. The

configuration of HPC1 and HPC2 is achieved using dedicated software functions, which are implemented in the

assembly code of the RISC-V processor. These functions write Diwall parameters directly to the mapped CSR

registers. They are provided in a software library called LibDiwall. In the CV32E40P architecture, HPC1 and HPC2
are represented by mhpmcounterX, where X represents the counter ID, ranging from 3 to 31. These counters are

mapped to the CSR addresses from 0xB03 to 0xB1F. Specifically, we use mhpmcounter3 and mhpmcounter4 to

monitor HPC1 and HPC2, with addresses 0xB03 and 0xB04.
Assigning microarchitectural events to mhpmcounterX is accomplished through software using the event

selector CSR, which is denoted as mhpmeventX. Each event selector corresponds to a counter ID, with X ranging

from 3 to 31. These event selectors are located within the address range of 0x323 to 0x33F. Microarchitectural

events are identified with an ID from 0 to 15, and we associate this ID with the desired mhpmeventX, which, in turn,
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assigns the event to mhpmcounterX. For example, if mhpmevent3 is linked to the ID of LD_STALL (represented by

ID 2), setting the second bit in mhpmevent3 to 1 results in mhpmevent3 being set to 0x4, which will affect LD_STALL
to mhpmcounter3. The relationship between mhpmeventX and mhpmcounterX is important. If mhpmevent3 is set
to 1, it implies that it will be counted by the HPC mhpmcounter3. Both mhpmeventX and mhpmcounterX are

mapped in the CSR of the RISC-V architecture and can be accessed for read and write operations using the CSR

instructions provided: csrr for read and csrw for write. We utilize the csrw instruction to select the desired

counter ID by setting the address of the event selector to the microarchitectural event ID. This instruction also

allows us to reset the counters to 0. During the training phase, we used the csrr instruction to read the HPC

values for dataset generation.

Following the HPCs configuration, a dedicated register for enabling and disabling the HPCs is mcountinhibit,
located at CSR address 0x320. Each HPC can be individually enabled or disabled by modifying the corresponding

bit in the mcountinhibit address. For instance, to enable mhpmcounter3, the bit 3 is set to 0; to disable it, the

bit 3 is set to 1. To monitor the network metadata using NwHPC, we used mhpmcounter5. The configuration is

specified for the RSSI and declared in the software as a 32-bit value at address 0xB05. We reset the counter using

the csrw write instruction to set this register to 0, and then write the received RSSI value to the same address to

track it using Diwall.
K1, K2, LCL, and UCL are the parameters of Diwall’s Detector, representing the generated model of the Decision

Tree and the EWMA control limit thresholds. In this version of Diwall, these parameters are configured directly in

the HDL code, which, on the FPGA, requires new bitstream generation. To increase flexibility, several approaches

are expected to allow software configurations for K1, K2, LCL, and UCL. The first configuration uses SoC-CSR-

dedicated registers. The SoC includes its own external CSR, which follows the same methodology as the RISC-V

network processor for configurable HPCs. Each register in the SoC has its address and data accessible through the

provided software instructions. Memory-mapped registers on the SoC’s CSR can be associated with each Diwall
parameter, enabling user configuration and updates to the Detector’s models. In the LiteX framework, functions

such as csr_write_simple(reg_data, reg_@) and reg_data = csr_read_simple(reg_@) are provided to

manage memory-mapped hardware registers. These functions can be used to configure and update Diwall
parameters.

However, an alternative and more efficient option for configuration is to use dedicated registers implemented

within the network processor’s CSR. The RISC-V CSR includes additional registers, dedicated to Diwall, containing
its parameters. Although not all CSR registers are implemented in CV32E40P, they can be extended to include

the necessary registers for the configuration. The RISC-V ISA already provides instructions for CSR handling in

software. Thus, added dedicated configuration registers do not require ISA extensions ; they use the provided

CSR instructions for configuration, specifically, csrr and csrw.
The proposed approaches of using CSR from the SoC or the network processor in configuration would allow

dynamic adjustments to Diwall thresholds and settings directly from the software, eliminating the need for

bitstream regeneration and significantly improving the system’s adaptability. This extension is left for future

work.

4 EXPERIMENT AND METHODOLOGY
In this section, we describe our experimental setup and the methodology to build datasets to configure the IDS.

To simplify the explanation and description of our method, we have taken only one MAC layer as an example,

which we will refer to as the simplified MAC layer.
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4.1 Experimental Environment and Evaluation Setup
Our testbed comprises three LoRa IoT devices, as illustrated in Figure 6: IoT nodes 1 and 2 for establishing a LoRa

network and an attacker responsible for executing wireless attacks. This configuration ensures a comprehensive

assessment of the proficiency of Diwall in detecting wireless attacks in a representative communication setting.
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Fig. 6. Evaluation of Diwall on FPGA Arty A7 100T Board within LoRa Testbed

IoT node 1 (Victim): This custom-built IoT end-device acts as a potential victim. It integrates the necessary

hardware for both the LoRa PHY layer and the simplified MAC layer, which is further tailored for compatibility

with the proposed Diwall. The simplified MAC layer parses LoRa frames and stores them in a reception buffer.

It is instrumented with Diwall instructions for configuration and control. The configuration includes selecting

the microarchitectural events LD_STALL and BRANCH_TAKEN, assigned to HPC1 and HPC2, and RSSI to NwHPC. A
Diwall-enabled instruction is placed at the beginning of parsing LoRa frames, and a disable instruction is placed

at the end of parsing. For every received packet, Diwall verifies the data value of the microarchitectural events

and the RSSI value in the hardware. These values are compared with the parameter thresholds established by

an embedded Decision Tree model and EWMA control limits, as detailed in Subsection 4.3. An alert is issued

if the frame conflicts with the established security policy. To collect results on detection rates, a debugger

called “LiteScope” gathers details within registers and counters inside Diwall and the RISC-V core. A dedicated

counter is placed inside Diwall’s Detector unit, counting the alerts raised. “LiteScope” facilitates reading this

counter, which logs the total number of alerts triggered. We used a MAC layer packet parser implemented in C. It

represents a simplified MAC layer for the IoT protocol stack. To monitor the network-packet parsing window,

Diwall configuration and control instructions were integrated in software. We instrumented the Reception

Function as represented in Algorithm 1. Diwall is controlled using three signals: HPM_Reset, HPM_Enable, and

HPM_Stop. With this instrumentation, HPMtracer tracks microarchitectural events and RSSI metadata while

storing the payload in the MAC reception buffer. During this evaluation, extra IoT node 2 is used to establish a

LoRa communication link with the victim (IoT node 1).

Attacker. Located between the two IoT nodes (IoT nodes 1 and 2), the attacker has the ability to inject and

jam signals. We use an ARM-based Arduino board and a Dragino LoRa Shield, which utilizes an SX1276 LoRa

radio module. To manage the LoRa radio module, we use RadioLib, a versatile wireless communication library for

Arduino. The programs provided by the RadioLib library have been customized to inject substantial network
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Algorithm 1 Reception Function in simplified MAC Layer

1: procedure ReceptionFunction(𝑝𝑎𝑦𝑙𝑜𝑎𝑑) ⊲ Triggered by radio module interrupt

2: ...

3: Call 𝐻𝑃𝑀_𝑅𝑒𝑠𝑒𝑡 () ⊲ Reset HPCs to 0

4: Call 𝐻𝑃𝑀_𝐸𝑛𝑎𝑏𝑙𝑒 () ⊲ Select/Enable HPCs and enable Diwall
5: 𝑅𝑒𝑐𝑒𝑝𝑒𝑡𝑖𝑜𝑛_𝐵𝑢𝑓 𝑓 𝑒𝑟 ← 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ⊲ Getting MAC payload

6: 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 ←𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎 ⊲ Getting Metadata value such as RSSI

7: Call 𝐻𝑃𝑀_𝑆𝑡𝑜𝑝 () ⊲ Stop HPCs, read and analyze by Diwall
8: ...

9: end procedure

traffic, including a specified range of packet sizes, and to activate both jamming modes: triggered jamming and

continuous jamming.

Evaluation of Packet Injection Attack. In the packet injection scenario, IoT node 1 establishes a typical

communication link by sending legitimate traffic to IoT node 2. Meanwhile, an attacker positioned between the

two nodes competes with IoT node 2 and injects oversized malicious packets into IoT node 1. While IoT node 1

is equipped with a 10-byte reception buffer, it lacks a software-based size check for the incoming frames. The

attacker capitalizes on this by sending packets that, although in line with the MAC layer protocol, exceed this

10-byte buffer, aiming to disrupt IoT node 1’s operation. To detect this, Diwall system continuously monitors

microarchitectural data for incoming frames, raising an alert for any packet that breaches the buffer limit.

For this evaluation, we have sent 4 × 105 packets. The interval between consecutive packets is determined by

the LoRa parameter known as the spreading factor (SF). LoRa devices utilize a range of SF values to balance data

rate and communication range, typically ranging from 7 to 12. Higher SF values extend the range at the expense

of data rate, while lower values provide higher data rates but shorter ranges. The SF in the LoRa PHY layer

affects the Time on Air (ToA): higher SF values result in a longer ToA, while lower SF values lead to a shorter

ToA. The LoRa PHY layer was configured with an SF7 value. An interval of approximately 100 ms between each

consecutive packet and the central frequency was within the 868.1𝑀𝐻𝑧 LoRa channel. Selecting SF7 was aimed

at reducing the time between packets. However, opting for a different SF does not affect the packet injection

study.

Evaluation of Jamming Attack. In this study, an attacker transmits random frames, potentially aligning

them with the buffer size of the victim’s receiver. The primary goal of a jammer is to occupy the victim’s channel.

Our testbed consists of three LoRa devices:

(1) A transmitter (TX victim) and a receiver (RX victim) are positioned within 10𝑚𝑒𝑡𝑒𝑟𝑠 of each other.

(2) A jammer (attacker) located close to the RX device is approximately 1 − 2𝑚𝑒𝑡𝑒𝑟𝑠 distant.
We investigate two jamming methodologies:

(1) Continuous Jamming: Here, the attacker persistently transmits random frames, aiming to disrupt IoT

node 2 during the communication with the victim.

(2) Trigger Jamming: In this approach, the attacker eavesdrops on the channel, springing into action upon

the detection of a preamble from IoT node 2. Upon such detection, the channel is interfered with.

Even with channel interference, the victim remains capable of receiving frames and discerning the RSSI value of

the frame. Diwall verifies the RSSI value of each acquired network packet. It calculates the EWMA and compares

it with the defined EWMA control limits. If a packet’s RSSI diverges outside the EWMA limits, an alert is triggered,

indicating a potential jammer proximity. For both jamming strategies, Diwall detection efficacy was gauged over
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4, 000 frames. Our LoRa trials use a central frequency of about 868.3𝑀𝐻𝑧, and employ an SF12. Choosing SF12

provides an ideal ToA for jammers to succeed in their attack.

4.2 Detection of Packet injection Attacks
For a more in-depth understanding of the relationship between the microarchitectural features and the behavior

of the network processor during network-packet parsing, we use supervised machine learning classification

algorithms. In this study, microarchitectural features are grouped into three network packet classes (legitimate,

heap overflow and stack overflow).

Our primary research objective was to identify ongoing packet injection attacks using microarchitectural

metrics. Certain microarchitectural features are more pertinent for detection using machine learning classifiers.

For this purpose, a supervised learning method that employs training samples to construct decisions within a

tree model was considered.

For this study on detecting packet injection attacks using microarchitectural metrics, a dataset was generated

by simulating the experimental setup detailed in Subsection 4.1. Buffer overflow exploits, as summarized in

Table 3, are applied to the monitored window in the simplified MAC layer presented in Algorithm 1. Through

simulation, a total of 3,000,000 packets were parsed by the simplified MAC layer, while simultaneously monitoring

microarchitectural events from the network processor.

Table 3. Attacks Scenarios: The buffer size is 10 or 23 bytes. Larger Packets result in a Buffer Overflow.

Attack Scenarios Reception Buffer Size

Packet Type Traffic size Packet length Stack Heap
S0: Legitimate 1, 000, 000 5 − 10 𝑏𝑦𝑡𝑒𝑠 10 𝑏𝑦𝑡𝑒𝑠 10 𝑏𝑦𝑡𝑒𝑠

S1: Stack Overflow 1, 000, 000 13 − 23 𝑏𝑦𝑡𝑒𝑠 10 𝑏𝑦𝑡𝑒𝑠 23 𝑏𝑦𝑡𝑒𝑠

S2: Heap Overflow 1, 000, 000 13 − 23 𝑏𝑦𝑡𝑒𝑠 23 𝑏𝑦𝑡𝑒𝑠 10 𝑏𝑦𝑡𝑒𝑠

We employed Scikit-Learn, a widely used open-source machine learning library in Python, to train and evaluate

multiple classifiers on our labeled dataset of 11 microarchitectural features. Each classifier’s performance was

measured using standard metrics such as accuracy, precision, recall, and F1-Score. Initial results indicated that

several algorithms consistently achieved near-optimal classification, with approximately 99% accuracy across

all metrics. Given the resource limitations of IoT end-devices, we selected the Decision Tree classifier for its

simplicity and ease of implementation in hardware.

To reduce the area overhead within the network processor, only two HPCs from the microarchitecture are

used. Figure 7 illustrates the comparative behavior of the two features, BRANCH_TAKEN and LD_STALL selected
by the Decision Tree. These HPCs measure the number of branch instructions and the number of delayed load

instructions.

Buffer overflow results in the alteration of the CPU behavior to include unexpected branches and large delays

in data retrieval from memory. The Decision Tree selects the increased BRANCH_TAKEN and LD_STALL counter
values from the 10 microarchitectural metrics to identify potential attacks against the MAC layer of a protocol

stack. Figure 8 illustrates the Decision Tree model block diagram produced using our dataset. The model splits

the generated dataset from Figure 7 into three classes: legitimate, stack_overflow, and heap_overflow. Indeed,

during the learning phase, the BRANCH_TAKEN and LD_STALL HPC values demonstrated a high capacity to detect

attacks. These values are used for decision-making based on thresholds K1 and K2 determined from the training

data: BRANCH_TAKEN < 65.5 and LD_STALL < 14. The values are directly related to the code used to parse the

received network packets and to store the received data in the buffers. The value of K2=65.5 reflects the separation
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between the heap overflow and stack overflow classes. As shown in Figure 7, there is an overlap in HPCs values

between these two classes. To address this, we adopt a binary classification approach (attack vs. no attack), which

reduces false alarms in scenarios involving multi-class attacks. In our system, alerts are based directly on the

legitimate class, as the selected decision tree is lightweight with a limited depth, designed to minimize overhead.

There are several options for Decision Tree implementation for IoT end-devices. These options include

hardware, software, and a combination of both. A hardware design can be developed for our system using an

FSM and hardware accelerators written in hardware description language. Software implementations can be

crafted using the C programming language. Decision Tree models can be efficiently implemented in FPGA with

limited hardware and can achieve satisfactory classification speed. As a result, we created a hardware-based

implementation.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: February 2024.



20 • M. EL BOUAZZATI et al.

4.3 Detection of Jamming attacks
Several strategies for countering jamming attacks have been proposed in the literature, demonstrating their

effectiveness in detecting such attacks in wireless sensor networks and IoT architectures [32, 42]. Many of

these strategies use metadata from the PHY and MAC layers as features for jamming countermeasures [31,

38]. Ruotsalainen et al. [32] highlighted numerous such mechanisms. These include radio fingerprinting, an

authentication technique that identifies devices by analyzing the characteristics of the received signals, and a

novel technique of key generation based on RSSI values, which extracts secret keys from these values. Machine

learning and deep learning techniques are frequently incorporated into these mechanisms, owing to their superior

performance in recognition and classification tasks. In [42], Testi et al. used a neural-network-based machine

learning approach to propose a novel jamming detection and classification algorithm. This approach employs

features such as Packet Delivery Rate (PDR), SNR mean and variance, SNR Power Spectral Density (PSD), and

cross-correlation. However, although the use of deep learning techniques, such as neural networks, in jamming

detection provides high accuracy and effective feature performance, it also requires significant computational

resources. This approach is more suited to the upper levels of IoT architecture, such as gateways or servers,

where voluminous resources are available, and all features are accessible.

EWMA, a statistical method, is a valuable tool for detecting small deviations in statistical data, and it has

a relatively low computational complexity. Its effectiveness in identifying jamming attacks while requiring

a minimal number of metadata features has been proven. Compared to neural-network-based methods, this

methodology requires significantly fewer computational resources. In their work, Osanaiye et al. [28] proposed

deploying EWMA on the cluster head to identify attacks on member nodes and on the base stations to detect

attacks on the cluster heads. The implemented EWMA is capable of detecting anomalous changes in the intensity

of a jamming attack event by utilizing the packet inter-arrival feature of the packets received from the sensor

nodes. In another study [23], Bolivar proposed the use of EWMA for jamming detection in LoRaWAN networks.

He employed RSSI and packet inter-arrival time (IAT) as datasets for model training and evaluation using both

large-scale simulation datasets and small-scale real-world datasets. He compared his approach with a Recurrent

Neural Network (RNN) machine learning model, demonstrating higher detection rates. He reported a true positive

rate of approximately 90% for the statistical model and 98% for the neural network machine learning model. This

demonstrates that although the EWMA method has a slightly lower accuracy, it offers a competitive alternative

with less computational complexity.

The EWMA formula is given in Equation 1 with 𝜆 the smoothing constant determining the depth of the EWMA.

EWMA0 = RSSI0 EWMA𝑛 = 𝜆RSSI𝑛 + (1 − 𝜆)EWMA𝑛−1 (1)

Our goal was to focus on resource-limited IoT devices. Unlike previous works that have implemented EWMA in

software for gateways, we chose a hardware-based implementation of EWMA. This strategy aims to identify

acceptable RSSI values for the network metric, with any values beyond this indicating a statistical anomaly. An

anomaly is identified as a significant deviation from normal RSSI behavior, detected using EWMA. Since an

attacker must be in proximity for jamming to be effective, this results in higher RSSI values. During periods of

triggered and continuous jamming, the EWMA of RSSI value increased significantly, as illustrated in Figure 9. This

increase indicated a jamming attack. Normal RSSI behavior is characterized by values staying within predefined

thresholds based on previous data from non-attack conditions, reflecting packets received from a legitimate

gateway. While simply applying thresholds to RSSI values may result in numerous false positives due to natural

variations in the communication channel, incorporating EWMA improves the accuracy of anomaly detection.

We customized our network processor (CV32E40P) to include an NwHPC that monitored the RSSI of each

incoming packet. Within Diwall, we implemented the EWMA algorithm in a hardware block to analyze the RSSI

values and make decisions. For the hardware EWMA, we assigned a value of 𝜆 = 0.25. Previous research [28] has

suggested that this value should be between 0.2 and 0.5. To detect jamming attacks, we conducted a profiling
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phase to capture the legitimate behavior of RSSI dataset in a controlled, attack-free environment between the

gateway and an IoT node. During this phase, we calculated the EWMA control limits and identified the UCL

(𝑈𝐶𝐿 = −65) and LCL (𝐿𝐶𝐿 = −106) thresholds. These thresholds represent the legitimate upper and lower limits

of the EWMA values. The LCL and UCL values were calculated as:

UCL = 𝐸𝑊𝑀𝐴0 + 𝑓 · 𝜎𝑒𝑤𝑚𝑎 LCL = 𝐸𝑊𝑀𝐴0 − 𝑓 · 𝜎𝑒𝑤𝑚𝑎 (2)

where EWMA0 is the target value, 𝑓 is a tuning value usually set at 3-sigma control limits and 𝜎𝑒𝑤𝑚𝑎 is the

standard deviation of historical EWMA values estimated as:

𝜎2𝑒𝑤𝑚𝑎 = 𝜎2𝑟𝑠𝑠𝑖 ·
(
𝜆

2 − 𝜆

)
(3)

where 𝜎𝑟𝑠𝑠𝑖 is the standard deviation of historical RSSI values.

EWMA, a statistical technique, efficiently detects small shifts in time-series data owing to its low complexity

and requires updates only for newly observed data. It effectively combines current and historical data, facilitating

the quick detection of small shifts. The computational complexity of EWMA is minimal, requiring only a single

update per packet based on the RSSI, which ensures low overhead.

Setting the value 𝜆 = 0.25 in Equation 1 simplifies the implementation of EWMA. This is because multiplying by

0.25 is equivalent to dividing the value by 4, which can be approximated by right-shifting the binary representation

of the RSSI by 2 bits. The same strategy can be applied to previous (1 − 𝜆)EWMA𝑛−1 values. For instance,
multiplying by 0.75 can be represented by adding 0.25 and 0.5, which can be approximated by right-shifting by 2

and 4 bits, respectively.
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5 RESULTS AND DISCUSSION
In this section, we detail the experimental results of Diwall’s effectiveness in a full IoT setup, including detection

accuracy, FPGA resource usage, and performance relative to a baseline network processor. Additionally, a

discussion of the proposed module results and limits is provided.

5.1 Diwall Detection Rate
To evaluate and validate the detection effectiveness of Diwall’s model parameters generated in Subsections 4.2 and

4.3, we conducted a test campaign using the physical testbed depicted in Figure 6. The environmental conditions

for assessing jamming and packet injection are outlined in Subsection 4.1. In this evaluation, several performance

metrics are utilized, including accuracy (ACC), which measures the correctness of predictions by calculating the

ratio of correct predictions to total predictions. It is defined as:

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN (4)

where True Positives (TP) refer to instances where malicious packets are correctly identified, while True Negatives

(TN) represent the correct identification of legitimate packets. False Positives (FP) occur when the system

incorrectly flags legitimate packets as malicious, leading to false alerts. Conversely, False Negatives (FN) arise

when malicious packets go undetected, being incorrectly classified as legitimate. False Negative Rate (FNR) and

False Positive Rate (FPR) are also calculated to provide insights into the model’s strengths and weaknesses.

Table 4 summarizes the test campaign and performance metrics related to the achieved detection rate, where

our proposed module is integrated into a simplified MAC layer and in a LoRaWAN network.

Table 4. Evaluation of Diwall Detection Rates for Packet Injection and jamming Attacks in LoRa and LoRaWAN networks.
With PI (Packet Injection), JT (Jamming Trigger), JC (Jamming Continuous), and PLR (Packet Loss Rate).

MAC Layer Attacks FP FN TP TN FNR FPR ACC PLR

Simplified MAC PI 53 13 193,327 195,704 0.007% 0.027% 99.98% 2.72%

JT 0 1 402 1000 0.25% 0% 99.92% 59.7%

JC 0 1 413 1000 0.24% 0% 99.92% 58.7%

LoRaWAN PI 0 1 5589 5630 0.017% 0% 99.99% N/A

JT + JC 0 2 6335 5520 0.031% 0% 99.98% N/A

LoRa and Simplified MAC Layer. In this evaluation, we assessed the generated Detector’s models. For the

Decision Tree, the parameters are HPC1=BRANCH_TAKEN with < 𝐾1 = 65.5 and HPC2=LD_STALL with < 𝐾2 = 14.

The EWMA control limits are defined with UCL (𝑈𝐶𝐿 = −65) and LCL (𝐿𝐶𝐿 = −106). During a packet injection

attack, the network traffic comprises 200, 000 benign packets and an equal number of packets subjected to stack

and heap buffer overflow. During the experiment, 400, 000 packets were sent and 389, 097 were successfully

received, resulting in a packet loss rate (PLR) of approximately 2.72% as reported in the last column of Table 4.

This PLR was deemed acceptable for LoRa networks. The reduced PLR can be attributed to the indoor location of

the testbed. The detection accuracy for packet injection was significant at 99.98%. These results are obtained

with numbers of FP of approximately 53 (0.027%) and FN of approximately 13 (0.007%), both of which are

notably low. This high accuracy is backed by the distinct behavior of microarchitectural HPCs, enabling effective

differentiation between legitimate packets and those affected by buffer overflow. Complete 100% accuracy was

not realized with our Decision Tree model. This was owing to our testing under the most challenging scenario,

where the sizes of benign and malicious packets were very similar, being 10 and 13 bytes, respectively.
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For the jamming attack assessment, we examined both the triggered and continuous detection rates. To create

an ideal environment for the jammer, we used a long interval of approximately 1 second between transmitted

packets. The LoRa transmitter is positioned 8 meters from the victim, with the jammer situated close to the

victim. In the experiment, the LoRa transmitter dispatches approximately 2, 000 legitimate packets to a victim.

Concurrently, the jammer sends an equivalent traffic volume split between the two jamming types. The observed

PLR is 59%, which is typical for jamming scenarios. This high PLR occurs because most data packets are lost or

corrupted owing to interference caused by the jamming signal. The combined detection rate achieved by Diwall
for both jamming methods is approximately 99.92%. This accuracy is accompanied by the absence of FP and

negligible FN of approximately 1 (0.24%). While our evaluation is based on received packets, implementing a

security policy on Diwall to verify the RSSI value even if there are no received packets could potentially elevate

the detection rate to 100%.

LoRa and LoRaWAN. After successfully studying a simplified MAC layer and achieving promising detection

rates, we extended the Diwall methodology to the LoRaWAN protocol using a LoRaMac-node stack [35]. In

this integration, we targeted a code section of parsing LoRaWAN packets in periodic uplink application that

was instrumented with libDiwall functions. After training, new parameters were generated for the Decision

Tree model, with K1=59 and K2=595, where HPC1 represents LD_STALL and HPC2 represents INSTR, indicating
the number of instructions executed by the network processor during the parsing of the LoRaWAN MAC packet.

The EWMA control limits remained unchanged with UCL (𝑈𝐶𝐿 = −65) and LCL (𝐿𝐶𝐿 = −106), as we utilized
the same physical layer and the same distances as previously between devices. During the evaluation, some

modifications were applied to the LoRa PHY layer of the victim device to facilitate successful injection and

jamming. The reception period continuously on SF7 maintained open for consistent frame reception. Only the

first channel, 868.1𝑀𝐻𝑧, of the LoRaWAN stack was employed to intensify our jamming efforts and enhance

the probability of successful attacks. The last two rows of Table 4 provides a summary of key metrics, including

TP, TN, FP, FN, and accuracy rates, obtained during packet injection and jamming attacks on the LoRaWAN

network. Our observations for both packet injection and jamming attacks revealed detection accuracy rates that

approached 99.98%. This high accuracy is notable because of the absence of FP and a minimal FN of approximately

1 (0.017%) to 2 (0.031%); every legitimate frame is recognized as a true negative, and the majority of alerts are

raised. This demonstrates that Diwall does not generate false alerts during normal end-device operations or

adherence to its policy. Of the 23, 000 frames analyzed during the experiment, only three malicious network

packets were incorrectly identified as false negatives. This result further highlights the efficiency of the proposed

approach. This indicates that Diwall successfully identifies jamming and packet injection attacks in LoRaWAN

networks, while maintaining a minimal rate of false negatives.

5.2 FPGA Resources, Performance Overhead and Code Size
In this section, we delve into the implementation cost obtained on the FPGA board. In Table 5, we present the area

metrics of Diwall and the network processor in terms of lookup tables (LUTs), flips flops (FFs), and the maximum

frequency for an FPGA (XC7A100TICSG324-1) deployed on an Arty-A7 100T board. All overhead percentages for

Diwall provided in the table are calculated relative to the CPU of the network processor, rather than the total

available FPGA resources These results are obtained using the Xilinx Vivado v2020.2 tool. We evaluate three

variants of the network processor:

• V1: This is the RISC-V baseline version, devoid of any Diwall component. By default, only one HPC is

enabled for generic use and not affected to any microarchitectural event. This serves as a comparison

benchmark for V2 and V3.

• V1’: V1 integrated with the HPCs: (HPC1, HPC2). This version illustrates the effect of activating 2 HPCs on

the RISC-V CPU.
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Table 5. Resource Utilization and Maximum Frequency of Implementation for 5 Versions of the Network Processor with and
without Diwall

Network Processor Overheads relative to CPU Freq

CV32E41P HPCs Diwall LUT FF MHz

V1 (Base) 1 (Default) ✗ 4676 (+00%) 2136 (+00%) 65.69

V1’ 2 ✗ 4777 (+2.16%) 2217 (+3.79%) 65.60

V1” 3 ✗ 4897 (+4.73%) 2298 (+7, 58%) 65.62

V2 ([7]) 2 ✓ 5105 (+9.17%) 2352 (+10.11%) 65.50

V3 (This work) 3 ✓ 5345 (+14.30%) 2625 (+22.89%) 65.07

• V1”: V1 integrated with the HPCs: (HPC1, HPC2), and NwHPC. This version illustrates the effect of activating

three HPCs on the RISC-V CPU.

• V2: It builds on V1’ by incorporating the HPMtracer and Detector for detecting packet injection attacks.

This highlights the overhead introduced by the previous version of Diwall [7] in contrast to the V1 baseline.

• V3: It builds on V1” by incorporating the HPMtracer, EWMA preprocessing, and Detector for detecting

jamming and packet injection attacks. This highlights the overhead introduced by Diwall in contrast to the

V1 baseline.

For Diwall architecture in V3, CV32E41P employs three HPCs. Two counters track microarchitectural events

(HPC1 and HPC2), whereas a dedicated register-based HPC NwHPC measures the network metric RSSI.

Comparison between V3 and V1” with V1:

• The integration of the three HPCs incurs an overhead of 7.58% in FFs and 4.73% in LUTs.

• Diwall itself contributes to an area overhead of approximately +22.83% in FFs and 14.30% in LUTs.

• The additional FFs and LUTs in Diwall are predominantly associated with the three counters.

When comparing V1” and V1’ with V1, we observe that an increase in the number of HPCs can lead to a

significant increase in overhead. Designers should consider this tradeoff between the number of features used in

a dataset and the detection rate, alongside the overhead of HPCs.

When examining the performance implications of Diwall design units V3 and V2 regarding V1:

• There is no substantial impact on design performance.

• The maximum frequency consistently hovers at approximately 65𝑀𝐻𝑧.

We compare the code size percentages in two scenarios: one with and one without the Diwall integration
overhead. The proposed solution doesn’t impact the code size of a LoRaMAC-node. Integrating LibDiwall into
an IoT protocol stack for configuration and control adds only 74 extra bytes to the code size. In the context of

a LoRaMAC-node [35] implementation in the RISC-V BSP, this represents a 0.07% increase in code size. This

evaluation was conducted on a mid-range FPGA, but Diwall can also be implemented on smaller FPGAs suitable

for IoT devices.

The outcomes highlighted in this subsection emphasize that Diwall is a resource-efficient hardware solution,

particularly for IoT end-devices with limited resources. It effectively detects both packet injection and jamming

attacks at the network processor level.

5.3 Discussion
In this paper, we initially evaluated a hardware-based HIDS named Diwall with a LoRa PHY layer using a

simplified MAC layer, and then with a LoRaWAN network. The simplified MAC layer is instrumented with
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the necessary instructions for controlling the detection mechanism from software. In our evaluation, we tested

jamming and packet injection attacks. In this context, we achieved an overall detection accuracy of approximately

99.94%. Statistically, out of 10, 000 LoRa packets, only six are incorrectly predicted. These mispredictions are

largely attributed to packets not being received due to adverse channel conditions and a high PLR, particularly

during jamming attacks.

We opted for the simplified MAC to enable rapid prototyping. By focusing on MAC processing post-PHY layer,

we were able to more effectively identify interesting metrics in a shorter time frame. Consequently, the parameters

generated for Diwall’s Detector are not universally applicable, and may vary under different conditions. This

results in an oversimplification of the synthetic dataset. This may lead to a loss of precision due to overfitting to

the synthetic data when scaling up.

Several limitations can be enumerated. Limitation (𝑙𝑎): the values generated for K1 and K2, as well as the
microarchitectural events selection, such as LD_STALL and BRANCH_TAKEN, result from the usage of the simplified

MAC layer. These results can be modified if a different monitored MAC layer window is defined.

Limitation (𝑙𝑏 ): There is a potential vulnerability regarding adaptive attackers who could try to evade detection

by crafting attacks that avoid triggering the monitored HPCs. For instance, attackers might design exploits that

minimize LD_STALL and BRANCH_TAKEN, thereby flying under the radar. However, since the proposed method

tracks cumulative HPC values rather than a sequence of actions, any modification to the program workflow, such

as forging packets to mimic legitimate behavior or reusing existing code gadgets, leads to higher HPC values,

which Diwall detects as an attack. Similarly, for a jamming attack to be successful, the attacker must be in close

proximity to the victim or use a higher transmit power transmission [17], leading to higher RSSI values. While

an attacker could attempt to mimic normal RSSI values by positioning themselves near the legitimate gateway,

this does not guarantee effective jamming. The success of jamming largely depends on the attacker’s closeness to

the target or use of a higher transmit power transmission [17], which typically results in higher than normal

RSSI values.

Limitation (𝑙𝑐 ): changes in RSSI can occur for legitimate behavior of the gateway, and can affect the generation

of UCL and LCL, as RSSI values vary based on location. Usually, jammers provide higher RSSI value because of

their proximity to the victim node, which will deviate up to the UCL. The jammer may use lower RSSI values to

avoid detection but needs to transmit higher RSSI values to effectively jam legitimate signals. An adjustment

mechanism of Diwall’s parameters, should overcome these limitations.

Several IoT protocol designers utilize the LoRa PHY layer as a foundation and develop custom MAC layers

to fulfill their requirements. Developers can leverage the proposed framework for simulation and training to

enhance the security of their MAC layer. To illustrate a potential use case of Diwall, we tested our framework in

LoRaWAN networks, a widely used MAC layer for LoRa in IoT end-devices. We equipped the LoRaMAC-node, an

open-source IoT protocol stack for LoRaWAN, with the module detailed in Section 3 to detect packet injection

and jamming attacks. Within the MAC layer stack, various software parts can be monitored using our approach.

We specifically selected a window within the LoRaMAC-node software that corresponds to the reception function

of LoRa frames from the PHY layer. The selected software window is instrumented with instructions provided

by LibDiwall. During the execution of this software window, microarchitectural events and RSSI values are

monitored, as explained in Subsection 3.2. We introduced modifications to the monitored window to create

vulnerabilities for packet injection attacks. After training, both K1 and K2 values were adjusted, and a new

microarchitectural event INSTR was selected. It refers to the number of retired instructions and was monitored

using HPC2. These parameter changes result from the monitored software window change, as discussed earlier in

this section about the limitation (𝑙𝑎). Indeed, the LoRaMAC-node stack is substantially more complex than the

previous simplified MAC layer. The UCL and LCL values remained the same, as the experimental setup was not

modified. The overall detection accuracy achieved in this experiment was approximately 99.98%. There was no

drop in performance compared to the synthetic simulation utilized in the simplified MAC layer. Effectively, it
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means that instead of relying solely on software patches to mitigate buffer overflow vulnerabilities, Diwall can
monitor the network processor behavior and distinguish between legitimate and malicious activities.

Some limitations remain and could be addressed in future work. Limitation (𝑙𝑑 ): first, it is vital to carefully
choose the monitored window because buffer overflow can occur in different parts of MAC layer software stack.

Notably, buffer overflows can produce excessive values of microarchitectural events. Limitation (𝑙𝑒 ): second,
patches introduced by IoT stacks developers to the monitored window may impact the previously generated

decision parameters, requiring retraining.

To address these challenges, we could extend our approach to incorporate a hardware module dedicated to

updating decision parameters. New parameters can be regenerated periodically or based on a new selected

monitored window, which may increase reconfigurability and allow overcoming limitations (𝑙𝑑 ) and (𝑙𝑒 ).

6 CONCLUSION AND FUTURE WORK
In this paper, we present an embedded, lightweight strategy for monitoring IoT devices and detecting wireless

attacks. While previous research has primarily focused on network-based IDS for IoT, often limited by single-layer

metrics, gateway-level host-based IDS utilize resource-intensive algorithms for analysis and detection. We outline

the hybrid hardware and software implementation of the Diwall detection module and associated mechanism.

An experimental evaluation for a synthetic case using simulated packets and a more realistic case using a

LoRaMAC node have been detailed. The security strategy employed includes microarchitecture and network

metrics monitoring at the network processor level, with a focus on wireless attack detection. The Detector module

analyzes the EWMA value RSSI to detect jamming attacks and a dedicated HPC, added to the RISC-V processor,

monitors RSSI metadata in hardware. Furthermore, a Decision Tree model consumes microarchitectural HPC data

to identify packet injection attacks which attempt to exploit memory vulnerabilities. Diwall was implemented on

an FPGA and integrated within a RISC-V processor. The initial evaluation methodology focused on a streamlined

MAC layer tasked with parsing network packets received from the LoRa PHY layer. The module and associated

mechanism underwent evaluation utilizing a comprehensive open-source IoT protocol stack, encompassing both

LoRa PHY and LoRaWAN MAC layers.

The detection rates in the LoRaWAN context reached 99.98%. Thus, Diwall demonstrates the ability to promptly

detect packet injection that exploit memory vulnerabilities, as well as real-time recognition of jamming attacks.

The latter has been achieved using a low-complexity FPGA implementation. The FPGA eliminates the need for a

complete system reprogramming when new attack scenarios emerge. The FPGA implementation introduces an

area overhead of approximately 14.30%, consuming 22.89% of LUTs and FFs compared to the CV32E40P baseline

on an Arty A7 100T board, without affecting the maximum clock frequency of 65 𝑀𝐻𝑧. The implementation

represents a negligible increase in code size of 0.07% regarding the LoRaMAC-node software, corresponding to

74 bytes of code memory.

This work could be extended with potential security and flexibility enhancements, by (1) evaluating security

in the context of a more complex threat model involving an attacker’s perception of Diwall presence and (2)

investigating more advanced attack scenarios. One improvement to address these points would be to use a

more complex model, like a combination of a decision tree and an isolation forest, for anomaly detection and

classification. Another envisioned enhancement involves the development of a Diwall version capable of complete

configuration using the CPU control status registers (CSRs), thereby enhancing the adaptability of its parameters.

In this work, we focused on remote attackers, but future efforts will extend the threat model to include

attackers with physical access to IoT devices, such as those performing fault injection and side-channel attacks.

Additionally, poisoning attacks will be considered, particularly when employing online training in hardware, to

prevent attackers from manipulating decision thresholds established during training. The IDS could support post-

quantum cryptographic schemes, such as secure key exchange and digital signatures, to enhance resilience against
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emerging quantum threats. This integration ensures secure communication with the gateway and authenticates

alerts generated by the IDS, particularly when transmitting alerts for further analysis, thereby mitigating potential

disruptions across the entire IoT environment. Another potential avenue for future work involves developing our

IDS as an IP hardware component for integration with various SoC architectures through hardware/software

co-design. Finally, the energy consumption of our proposed IDS approach will be studied to ensure efficient

operation in resource-constrained environments.

All related materials, including datasets and code, are available open source on GitHub
1
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