
Energy Efficient Loop Unrolling for
Low-Cost FPGAs

Naveen Kumar Dumpala, Shivukumar B. Patil, Daniel Holcomb, and Russell Tessier
University of Massachusetts, Department of Electrical and Computer Engineering, Amherst, MA 01003

Abstract—Many FPGA computations, including block ciphers,
require repetitive loop operations that are difficult to parallelize.
Sequential loop implementation leads to significant clock power
while loop unrolling can lead to significant glitch power. In this
paper, we provide a low overhead approach to unroll block
ciphers and other loops in low-cost FPGAs to reduce energy
consumption. A latch-based glitch filter is introduced for unrolled
loops that reduces loop energy per operation by over an order of
magnitude. Our filters and associated control for unrolled loops
can be automatically instantiated as a macro for FPGA designs,
allowing for easy designer use. We demonstrate our approach for
SIMON-128 and AES-256 block ciphers implemented on a Xilinx
Artix-7 FPGA.

I. INTRODUCTION

The energy consumption and latency of block ciphers used
for encryption and other loop based functions are significant
issues for many low-cost, embedded FPGA applications. Sim-
ply reducing the clock frequency needed to sequence loop-
based ciphers reduces energy at the cost of increased latency.
Although often modest in size compared to other computing
elements, block ciphers are critical system components that
typically serve at the boundary of device I/O. A well-known
technique to reduce block cipher latency while controlling
energy consumption is the use of loop unrolling [1]. However,
unrolling leads to significant glitch power, increasing the block
cipher’s effects on FPGA dynamic energy. This effect is partic-
ularly apparent for high round count ciphers (e.g. SIMON-128
has 68 rounds) used in embedded FPGA applications.

In this paper we present an automated tool that will
unroll block ciphers to meet required latency constraints while
minimizing energy consumption. We address the glitch power
issue by inserting latch-based glitch filters made from available
FPGA logic resources in the unrolled computation path. The
key aspect of our work is the use of a chain of FPGA
carry elements that generate a set of signals with predictable
delay to open latches after latch inputs have settled. When
possible, the system clock is used to clock block cipher
circuitry, eliminating the need to generate additional FPGA
clock signals. We have macroized the delay generation and
latch insertion circuitry so necessary circuitry can be easily
inserted into a user’s design using a script. We demonstrate
our approach for Xilinx Artix-7 devices operating at a range
of clock speeds below 100 MHz. AES-256 and SIMON-128
block ciphers are used for experimentation.

II. RELATED WORK

Block ciphers for encryption algorithms such as AES
and DES are modestly-sized but important parts of many
low-cost embedded systems. These components encrypt or

decrypt data under predefined latency constraints. Most block
ciphers contain numerous simple round computations using
keys derived from a user-specified key. The rounds can be
performed sequentially with registers buffering data after ev-
ery round. Alternatively, multiple copies of the round logic
can be generated, effectively unrolling the computation. The
use of sequential implementations of block ciphers has the
benefit of small area and power at the cost of long latency,
especially for ciphers like SIMON-128 that requires 68 rounds.
In many cases the latency incurred by simply using the low
frequency system clock to clock the sequential version will not
meet block cipher latency constraints. Unrolling block cipher
loops reduces the number of clock cycles needed to encrypt
or decrypt data. Register energy is also reduced since flip
flops toggle less per cipher operation. Although unrolling is
known to reduce energy [1] [2] in some cases, it is prone
to cause energy-consuming glitching as combinational pulses
formed early in the combinational path propagate through the
combinational circuit.

A variety of techniques have been developed to address
glitch filtering in FPGAs. Most techniques [3] [4] involve the
use of combinational path balancing to ensure that logic input
signals arrive at the same time, minimizing glitch generation.
Although effective, these techniques require the insertion of
delay elements that are not present in commercial FPGAs.
Several computer-aided design approaches to address glitching
have been proposed. Guarded evaluation for FPGAs [5] can
be used to prevent evaluation of combinational paths that
do not affect the final circuit output. An alternative CAD
approach selectively uses don’t care conditions [6] to prevent
the formation of glitches. Although guarded evaluation and
don’t care analysis are effective for shallow paths, unrolled
circuitry is often too complex to completely eliminate glitches
in this manner. We view guarded evaluation and don’t care
synthesis as complementary to our work because they can be
used in conjunction with our approach.

Although many FPGA designs now operate at clock speeds
well in advance of 100 MHz, low-cost embedded FPGA
applications still use system clocks that are below this fre-
quency [7]. For example, low-energy optical processing can
be performed at system frequencies of 30 MHz [8]. These low
frequency designs generally benefit from low dynamic energy
consumption due to reduced design throughput and limited
clock generation circuitry. The use of a single system clock
for the entire design eliminates the need for the use of high-
energy phase-locked loops (PLL) for clock generation.



RTL design w/
block cipher

Evaluate
latency 

constraints

Sequential 
version OK?

System 
Clk. Freq.

Round Circuit

Required
Latency

Insert 
unrolled 

circuitry and 
glitch filters

Insert 
sequential 
cipher 
circuitry

Yes

No

Fig. 1: Software flow for automatic block cipher unrolling

Encryption 
Round

Encryption 
Round

Latch
(LDCE)

D

G

Latch 
(LDCE)

D

G

Register

Key 1

delay

Carry chain delay Carry chain delay

Clk

Encryption 
Round

Carry chain delay

Key 2 Key N

Tr
Tc

LUT

Ri-1 Di-1

Eni-1

Ri Di

Eni

Fig. 2: Unrolled block cipher with latch-based glitch filtering

III. APPROACH

The steps in our automated flow are shown in Fig. 1. The
inputs to the flow are the RTL code of a single round of the
cipher, the frequency of the system clock, and the latency
constraint of the block cipher. The first block in the system
evaluates whether the latency constraint can be met by simply
sequentially using a single round and the system clock. If not,
the amount of unrolling needed is determined. In a final step,
glitch filtering is added to the partially (or wholly) unrolled
block cipher design that is clocked by the system clock.

In general, determining the amount of unrolling needed
to meet block latency constraints can straightforwardly be
determined by synthesizing the single round of the loop
and determining its latency. The more difficult task is the
implementation and insertion of the glitch filtering in the
FPGA.

A. Glitch Filter Insertion

In our system, we use the glitch filter implementation
shown in Fig. 2 for unrolled designs. The block cipher input
provided from the launch flip flops goes through one or more
encryption rounds. The output of this circuitry is latched using
a delayed enable (En) signal. The glitch filter is implemented
using the transparent D-latch which, to avoid glitching, is
enabled after combinational outputs of the round(s) have
settled. The amount of delay needed is determined as part of
the system outlined in Fig. 1. In our implementation, latches
are implemented using Artix-7 LDCE primitives.

The enable pulse to the glitch filter is generated by ANDing
a delayed and inverted version of the system clock signal
with itself. This pulse propagates through delay elements and
connects to the enable input of glitch filters. To effectively
filter glitches, the propagation delay of carry chains (Tc) used
to create delay elements must be greater than the round delay

Fig. 3: Glitch filtering timing waveform

MUXCY

MUXCY

MUXCY

MUXCY

Logic1

Logic0

Logic1

Logic0

Logic1

Logic0

Logic1

Logic0

MUXCY

MUXCY

MUXCY

MUXCY

Logic1

Logic0

Logic1

Logic0

Logic1

Logic0

Logic1

Logic0

MUXCY

MUXCY

MUXCY

MUXCY

Logic1

Logic0

Logic1

Logic0

Logic1

Logic0

Logic1

Logic0

Next Enable 
Generation

Enable to 
Latch

Enable
Pulse

RoutingRouting

Fig. 4: Carry chain delay implementation in Artix-7 FPGA

(Tr). A timing waveform of the glitch filtering approach for
one round of SIMON-128 computation is shown in Fig. 3.
The waveforms were generated via gate-level simulation of
the FPGA design using Vivado Xsim. Value Ri−1 drives the
first latch which is sampled using enable Eni−1 and produces
a 128-bit Di−1 with 70 toggled signals. If latching is not used,
glitching increases the number of transitions to 130.

The key issues in glitch filter deployment are determining
how long latch enables should be delayed for each delay
line tap and accurately implementing the delay line in the
FPGA so that taps are generated at these times. In our FPGA
implementation, we use the multiplexers that make up the logic
slice carry chain to generate predictable delays. By connecting
chains in adjacent slices, long multi-tap delay chains can be
formed.

Carry chains are provided in FPGAs to perform fast
arithmetic operations. As many block cipher designs do not
use arithmetic circuitry, carry chains can be repurposed for
delay generation without creating significant area overhead.
The organization of a carry chain based delay chain is shown
in Fig. 4. Each slice is equipped with four carry multiplexers
(MUXCY) which can be cascaded into the carry chain of the
next slice. The enable pulse is given to the first MUXCY
and an output is taken from the third MUXCY. The MUXCY
select lines are preset to allow propagation of the enable pulse
through the carry chain. Multiple slices of carry chains are
needed to generate delays greater than an encryption round.
The output from the last slice is connected to the glitch filter
latch and the input of the next delay element carry chain.
Delay through a single slice carry chain was determined to
be around 650 ps, Routing delays between multiplexers in
adjacent slices are tightly controlled with routing constraints



to use a predictable fast path. Since slices are adjacent, these
delays can be predicted.

IV. EXPERIMENTAL METHODOLOGY

Our automated energy-efficient unrolling approach was
applied to AES-256 and SIMON-128 block ciphers. AES-
256 uses 128 bit data, a 256-bit key, and 14 encryption
rounds. SIMON-128 uses 128-bit data and key and requires
68 encryption rounds. The synthesizable AES design was
obtained from Opencores.org. The synthesizable SIMON core
was written from scratch. The cores were tested for correctness
by comparing the generated ciphertext with golden reference
values.

Our carry chain based delay circuit is parameterized and
tunable based on the round delay of an encryption or other
loop-based circuit. In our experiments we use three carry chain
slice delays per round for SIMON-128 and seven slice delays
per round for AES-256. Each slice has eight storage elements
of which four can be configured as latches. It is easy to
automatically integrate this circuitry and the delay chain into
the encryption design using a script after delay analysis is
performed. These resources are automatically instantiated as
macros in our system.

AES-256 and SIMON-128 block ciphers were imple-
mented on an Xilinx Artix-7 (xc7a50tftg256-2) device using
Vivado. The block cipher designs were specified in Verilog
HDL and the carry chain delays and glitch filters were inserted
as generated macroblocks. Vivado place and route was guided
by timing constraints. Once timing was met, post place and
route netlist and standard delay format (SDF) files were
generated for gate level timing simulation. This simulation
captured the glitching behavior of the circuit. The Vivado
Xsim simulator was used to perform timing simulation and
generate a signal activity interchange format (SAIF) file, which
recorded all the switching activity of the signals. Vivado Power
Analyzer tools were used with the post route netlist, timing
constraints, signal activity file and device operating parameters
to generate a power consumption report. We integrated the
power consumption values over simulation time to compute
the energy consumed for the encryption.

V. RESULTS

In our first experiment, we assess the tradeoff between
energy reduction and area increase for glitch reduction latch
insertion. To obtain this comparison, the loops are fully un-
rolled. Glitch filters introduced between rounds reduce overall
round energy but add area and can consume energy themselves.
To explore the optimum spacing between glitch filters, we
measured energy and area after inserting latches after different
numbers of rounds. Table I shows energy consumption with
regards to distance of glitch filter insertion. Given the modest
area overhead of the delay chains and latches, the optimal
placement is determined to be adding glitch filters after each
round for AES-128 and after two rounds for SIMON-128.
For the fully unrolled case, glitch filter insertion leads to a
16% area increase for SIMON (2,411 versus 2,073 slices) and
a 1.8% increase for AES (4,029 versus 3,957). The reduced
overhead for AES is expected since it has fewer, larger rounds.

1 2 3 5 7 max
Dynamic energy (pJ/bit)
SIMON-128 31.9 26.5 37.2 79.7 135.5 1,083.8
AES-256 59.7 220.9 516.3 882.0 1394.7 2,273.0
Area (slices)
SIMON-128 2,775 2,411 2,337 2,296 2,289 2,073
AES-256 4,029 4,150 4,211 4,298 4,308 3,957

TABLE I: Dynamic energy per bit (pJ/bit) and overall block
cipher area if glitch filter insertion is performed every n rounds
where n is 1 to 7. Max indicates no glitch filtering was
used. Both block ciphers were fully unrolled to generate these
results.

SIMON-128
Sequential Unrolled Unrolled + Filtered

Data+Key 47.8 1,081.1 21.2
Clocking 305.4 2.6 5.3
Total 353.2 1,083.7 26.5

AES-256
Sequential Unrolled Unrolled + filtered

Data+Key 208 2,272 57
Clocking 181 1 3
Total 389 2,273 60

TABLE II: Energy breakdown in pJ/bit for block ciphers.
All three SIMON and AES versions generate one encryption
every 340 ns and 175 ns, respectively. The local clock for the
sequential version was generated with a PLL

We now consider a scenario in which the system clock
frequency is slow enough to allow all rounds of the block
cipher computation to complete within one system clock cycle.
Three alternative design styles are considered for completing
the computation within one cycle of the system clock: (1)
fully unrolled designs complete computation in a single system
cycle but consume high energy due to glitch propagation across
rounds; (2) fully unrolled designs with glitch filters add latch-
based filters to prevent glitch propagation between rounds; (3)
a sequential design, which is inherently not prone to glitches,
that is executed many times within the system clock cycle by
using a fast local clock generated from a phase locked loop.

Table II shows the energy consumption of the three differ-
ent single system-cycle implementations of SIMON-128 and
AES-256. All three cases for SIMON and AES generated
an encryption result every 340 ns and 175 ns, respectively.
The unrolled implementation consumes significant energy but
glitch filtering reduces this energy by 97% for SIMON-128
and AES-256. Sequential implementation reduces data energy
but the PLL used to generate a local clock from the system
clock makes overall energy higher than the glitch filtering im-
plementation. For the SIMON sequential design, we generated
high frequency local clocks using system clocks ranging from
10-100 MHz. Our experiments showed that for SIMON-128,
the PLL consumes between 96 and 126 mW over this range
of frequencies. Similarly, for AES with an input system clock
range from 10-40 MHz, the PLL consumes 86 to 123 mW
while the clock power is about 11 mW. Clearly, PLLs add
significant power and should be avoided in low energy designs.
Fig. 5 shows the energy versus area tradeoffs of the three
implementation choices.

Full loop unrolling is only feasible for extremely slow
system clocks, and we now evaluate the same three design



0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500

A
re

a 
(S

lic
es

)

Energy (pJ/bit)

AES-Glitch Filtered

AES-sequential

AES-Unrolled

SIMON-Unrolled

SIMON-Glitch filtered

SIMON-sequential

Fig. 5: SIMON-128 and AES-256 energy versus area for
different implementations. All implementations of the same
cipher have the same encryption latency.

styles at a range of more typical system clock frequencies.
As described in Section III, our software system considers
the required latency of the block cipher and the input system
clock frequency in determining how much unrolling should be
performed. Glitch filters are added to the unrolled design to
suppress glitches.

For each system clock frequency, we again evaluate the
energy and area of the three equivalent-latency alternatives.
Once again, the encryption latencies are 340 ns for SIMON
and 175 ns for AES. Results are shown in Figs. 6 and 7. The
energy consumption of the PLL at different clock frequencies
is shown in the graphs for reference. At fast system clock
speeds (left side of figure) only a single round is computed in
each system clock period, so glitching is not an issue. As the
system clock is slowed enough to allow computing multiple
rounds within a system clock cycle, the unrolled design without
glitch filter becomes inefficient due to glitching. The unrolled
design with glitch filters remains highly efficient across all
clock frequencies, but pays an ever-increasing price in area
(Fig. 5). The sequential design with PLL is the most compact
in area, but due to the PLL power consumption it cannot
match the efficiency of the glitch filtered unrolled design.
The discontinuity in the unrolled (without filtering) curves
results from the lack of repetitive activity in the key generation
circuitry for fully-unrolled versus partially-unrolled versions.

Our results show that unrolling without glitch filters incurs
a high cost in both area and energy, and is therefore not a
justifiable design style. The choice between using unrolling
with glitch filters and using a sequential design with a PLL-
generated local clock depends on the particular constraints and
cost objectives of the design which are considered in our flow.
If energy is the primary objective, then the unrolled design
with glitch filters will be the best choice; if reducing area is the
primary objective and a PLL is available, then the sequential
design will be preferred.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a new system to implement loops
in low-cost FPGA in an energy-efficient manner. The system
automatically unrolls loops to an appropriate depth and inserts
latch-based filters to suppress glitches. The system clock used
for other circuitry in the design can be reused for the unrolled

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350

En
er

gy
 (

p
J/

b
it

)

System clock period (ns)

Unrolled

Sequential

PLL

Filtered

Fig. 6: Energy comparison of SIMON-128 implementations
with the same block cipher latency of 340 ns. The fully
unrolled data points are on the right and unrolled by a factor
of 2 are on the left. Filtered indicates unrolled and filtered.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140 160 180

En
er

gy
 (

p
J/

b
it

)

System clock period (ns)

Unrolled

Sequential

PLL Energy

Filtered

Fig. 7: Energy comparison of AES implementations with the
same block cipher latency of 175 ns.

circuitry eliminating the need for an energy-consuming PLL.
In the future we plan to test our approach on other loop
computations such as sorting and searching algorithms.1

REFERENCES

[1] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F.-X. Standaert,
“Towards green cryptography: A comparison of lightweight ciphers from
the energy viewpoint,” in Proc. CHES, Sep. 2012, pp. 390–407.

[2] S. N. Dhanuskodi and D. Holcomb, “Energy optimization of unrolled
block ciphers using combinational checkpointing,” in Proc. RFIDSec,
Nov. 2016.

[3] J. Lamoureux, G. Lemieux, and S. Wilton, “Glitchless: Dynamic power
minimization in FPGAs through edge alignment and glitch filtering,”
IEEE TVLSI, vol. 16, no. 11, pp. 1521–1534, Nov. 2008.

[4] S. Huda and J. Anderson, “Towards PVT-tolerant glitch-free operation
in FPGAs,” in Proc. FPGA, Feb. 2016.

[5] C. Ravishankar, J. H. Anderson, and A. Kennings, “FPGA power
reduction by guarded evaluation considering logic architecture,” IEEE
TCAD, vol. 31, no. 9, pp. 1305–1318, Aug. 2012.

[6] W. Shum and J. H. Anderson, “FPGA glitch power analysis and reduc-
tion,” in Proc. ISLPED, Aug. 2011.

[7] Expanding Applications For Low Cost FPGAs, Lattice Semiconductor,
Apr. 2007.

[8] K. Kepa, D. Coburn, J. C. Dainty, and F. Morgan, “High speed optical
wavefront sensing with low cost FPGAs,” Measurement Science Review,
vol. 8, no. 4, pp. 87–93, 2008.

1This research was supported by NSF/SRC grant CNS-1619558.


