
Interconnect Testing in Cluster-Based FPGA Architectures

Ian G. Harris
Department of Electrical and Computer

Engineering
University of Massachusetts

Amherst, MA 01003

harris@ecs.umass.edu

Russell Tessier
Department of Electrical and Computer

Engineering
University of Massachusetts

Amherst, MA 01003

tessier@ecs.umass.edu

ABSTRACT
As IC densities are increasing, cluster-based FPGA archi-
tectures are becoming the architecture of choice for ma-
jor FPGA manufacturers. A cluster-based architecture is
one in which several logic blocks are grouped together into
a coarse-grained logic block. While the high density local
interconnect often found within clusters serves to improve
FPGA utilization, it also greatly complicates the FPGA in-
terconnect testing problem. To address this issue, we have
developed a hierarchical approach to de�ne a set of FPGA
con�gurations which enable interconnect faults to be de-
tected. This technique enables the detection of bridging
faults involving intra-cluster interconnect and extra-cluster
interconnect. The hierarchical structure of a cluster-based
tile is exploited to de�ne intra-cluster con�gurations sepa-
rately from extra-cluster con�gurations, thereby improving
the eÆciency of the con�guration de�nition process. By
guaranteeing that both intra-cluster and extra-cluster con-
�gurations have several test transparency properties, hier-
archical fault detectability is ensured.

Categories and Subject Descriptors
T2.1 [Testing and DFT]: FPGA Testing

General Terms
�eld-programmable gate array, interconnect testing, hierar-
chical test

1. INTRODUCTION
Field programmable gate array (FPGA) technology has dras-
tically reduced the cost of hardware manufacture, making
hardware implementation economically feasible for appli-
cations which were previously restricted to software. As
the use of FPGAs in commercial products becomes more
commonplace, the signi�cance of reliability and test has a
greater �nancial impact. The increasing importance of the
FPGA test problem has driven substantial research activ-
ity in a variety of FPGA test approaches. Because the cost

of manufacture is e�ectively zero for the FPGA customer,
the cost impacts of testing and design-for-test (DFT) are a
major part of the overall cost. The impact of test on over-
all cost is even greater for FPGA technology than it is for
traditional ASICs.

FPGA architectures have several properties which make the
FPGA test problem unique from the test problem for ASICs.
The ability to alter functionality through recon�guration
is both a blessing and a curse for test generation. The
ability to recon�gure has the potential to enable FPGA
testing with no real area or performance overhead in the
functional circuit. Recon�gurability also allows operational
faults to be tolerated on-the-
y by using the hardware re-
dundancy inherent in FPGAs [8]. Many ASIC DFT ap-
proaches involve modifying the circuit functionality to in-
corporate test functionality and to ease the testing prob-
lem. A reprogrammable FPGA can implement this test
functionality with none of the circuit overheads which oc-
cur with ASIC DFT. Recon�gurability does incur other test
costs, including increased test generation complexity and in-
creased test application time. The 
exibility of the FPGA
functionality introduces a new problem of identifying a set
of test con�gurations which does not exist for ASIC testing.
Although recon�gurability can enhance testability, the com-
plexity of the test generation problem can a�ect design time
and therefore time-to-market. The choice of test con�gura-
tions determines which faults are detectable, and therefore
determines the maximum achievable fault coverage. Since
it is not possible for all faults to be detectable in a single
con�guration, several test con�gurations are needed. The
multitude of con�gurations required for testing impacts test
application time because of the relatively slow rate of recon-
�guration.

In order to provide a solution for real architectures now
and in the future, it is necessary to understand the cur-
rent trends in industrial FPGA architectures. Several ma-
jor FPGA manufacturers are moving toward cluster-based
FPGA architectures [4]. A characteristic of cluster-based ar-
chitectures, as shown in Figure 2, is that connectivity inside
the clusters is typically high. High density local interconnect
serves to improve FPGA utilization, but also greatly compli-
cates the testing problem. Since pad density increases much
more slowly than logic density, the high density interconnect
in a cluster-based architecture creates a test access problem
for embedded lines and logic. Novel testing approaches are
needed to address and e�ectively test densely interconnected



cluster-based architectures.

We present a tool which automatically generates a test plan
to detect pairwise interconnect bridging faults in an arbi-
trary cluster-based FPGA architecture. Each test plan is
composed of a set of FPGA con�gurations which mutually
enable all target faults to be detected. By exploiting the hi-
erarchy inherent in the structure of a cluster-based tile, our
approach partitions the test con�guration de�nition process
to greatly improve the eÆciency of the process. A built-
in self-test (BIST) technique is used to increase access to
embedded FPGA logic. Since test con�gurations in our ap-
proach are replicated across the tile array, the process of
de�ning test con�gurations is independent of the size of the
FPGA array.

2. PREVIOUS WORK
Research in FPGA testing has investigated a wide range
of test architectures and techniques, but to our knowledge,
the problem of testing a cluster-based architecture has not
been investigated. The FPGA test problem has been di-
vided by several researchers into the interconnect test prob-
lem [10, 16, 14], and the FPGA logic test problem [17, 9].
The limited number of I/O pads greatly reduces test access
from o�-chip. The pad limit has been overcome by several
researchers by using a number of BIST techniques [6, 12,
13, 14, 3] to reduce the need for pads. Some portion of
the FPGA hardware is con�gured as test generation and re-
sponse analysis circuitry which is used to test the remainder
of the FPGA. In order to test all of the FPGA logic, several
con�gurations are required by these techniques to ensure
that all FPGA logic is tested in some con�guration. Several
approaches to on-line fault detection have been introduced
which implement BIST by exploiting unutilized FPGA logic
and routing to implement modular redundancy [11, 3].

The need for external controllability and observability has
also been reduced by using an iterative logic array (ILA)
test architecture [7, 9, 6, 12, 13]. An ILA architecture com-
posed of an array of identical cells allows the controllability
and observability of each cell to be e�ectively accomplished
through its neighboring cells.

3. CLUSTER-BASED FPGAS
We assume an island-style FPGA architecture [5] which is
composed of an array of identical tiles as shown in Figure
1a. Each tile is composed of a cluster [4] and surrounding
interconnect. The interconnect structure of each tile is a set
of lines which can be connected by a set of programmable
interconnect points (PIP) which act as switches. A typical
tile interconnect structure is shown in Figure 1b. The switch
matrix shown in Figure 1c is a commonly used structure
in FPGA architectures which is composed of a set of lines
entering each side. A PIP connects each line to one line on
each side of the matrix. Each PIP in the switch matrix is
seen as a dashed line in Figure 1c.

For the purposes of testing, it is necessary to distinguish the
tile I/O from the cluster I/O. Cluster I/O are the input and
output pins of the cluster, while tile I/O pins refer to the
points at which a tile can communicate with a neighboring
tile. The tile I/O pins include the endpoints of wire segments
which can connect to a neighboring tile via a PIP.

CLBCLB

CLB CLB

Tile

(a)

matrix
switch

(b)

Cluster

W1

W2

S1 S2

E2

E1

N2N1

(c)

Figure 1: FPGA Structure (a) Tile array, (b) Extra-
Cluster Interconnect, (b) Switch Matrix

We assume that each cluster is composed of a set of basic
logic elements (BLE) [4], each of which is composed of a
set of programmable lookup tables (LUT), multiplexers, and

ip-
ops. The most general assumption is that each BLE
input can connect to the output of any other BLE and to
any cluster input. The output of each BLE is assumed to
be connected directly to a cluster output.

LUT D Q

LUT D Q

LUT D Q

Cluster
Inputs

BLE

Outputs
Cluster

Figure 2: FPGA Cluster

4. FPGA TESTING METHODOLOGY
We propose the use of a built-in self-test (BIST) strategy
for the testing of an FPGA structure. BIST techniques in
general are associated with high performance and area over-
head incurred by on-chip test hardware. BIST overhead is
not an issue for FPGA BIST because the test hardware is
easily inserted and removed by recon�guration. By embed-
ding test logic inside the FPGA, BIST enables test access to
internal components. This is particularly important for the
testing of cluster-based FPGA structures which have higher
localized interconnect density than other FPGAs.

In each con�guration, FPGA circuitry dedicated as BIST
logic will perform test generation and response analysis to
test non-BIST FPGA circuitry. To accomplish BIST, we use
the test structure presented in [14] in which the FPGA is
con�gured as many independent BISTERs structures, shown
in Figure 3.

Each BISTER is composed of a test pattern generator (TPG),
an output response analyzer (ORA), and two blocks under
test (BUTs). The TPG is simply a counter which applies
an exhaustive test sequence to the BUTs. Each BUT is a
single tile in the FPGA which is being tested. The ORA
is a comparator which sets the Pass/Fail 
ip-
op to '1' if
the outputs of both BUTs do not agree. Each BISTER will



BUT

BUT

TPG

ORA

FF

Start/Reset

Pass/Fail

Figure 3: BISTER Test Structure

be implemented as a rectangular block of tiles, and many
BISTERs will be implemented on the FPGA to cover the
tile array. The number of tiles in a BISTER will depend on
the number of tiles needed to implement the TPG and ORA
logic.

ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

4,1

3,1

2,1

1,1 1,2 1,3 1,4

3,2

4,2 4,3

3,3

2,32,2

3,4

4,4

2,4

ORA
TPG/

BUT

TPG/
ORA

TPG/
ORA ORA

TPG/

BUT ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

ORA
TPG/

4,1

3,1

2,1

1,1 1,2 1,3 1,4

3,2

4,2 4,3

3,3

2,32,2

3,4

4,4

2,4

TPG/
ORA

TPG/
ORA ORA

TPG/

BUT

BUT

(a) (b)

Figure 4: Shifting BISTERs Across FPGA Array,
(a) BISTER in lower left, (b) BISTER shifted right

It is important to notice that the tiles which are dedicated to
the TPG and ORA logic are not completely tested. In order
to guarantee testing of all tiles, the FPGA will be recon�g-
ured to shift the BISTERs across the entire array as shown
in Figure 4. Over the course of several recon�gurations, all
tiles will be tested by acting as a BUT in a BISTER. Since
the tiles adjacent to a BUT must implement either TPG or
ORA logic, the perimeter tiles cannot be tested by simply
shifting the BISTERs. In order to ensure that perimeter
tiles are tested, the layout of the BISTER must be modi�ed
to use the I/O pads to access the tiles on the periphery.

In addition to providing good test access, the use of this
BIST strategy has several signi�cant e�ects on the test con-
�guration de�nition and test sequence de�nition problems.
The BIST strategy decomposes the testing problem of the
entire FPGA into many identical problems of a size which
is �xed by the test requirements for a single tile. Since the
size of the smaller problem is �xed, the BIST approach is
easily scalable to FPGA arrays of any size.

5. FPGA INTERCONNECT FAULTS
Detection of interconnection faults in cluster-based archi-
tectures is a diÆcult problem because the high density of
internal cluster interconnect makes test access diÆcult. We
propose a formulation of the problem which includes the
testing of intra-cluster interconnect which is internal to the
cluster, as well as extra-cluster interconnect which surrounds
each cluster. All pairs of lines are classi�ed as either con-
nectable if there is a PIP between them, and non-connectable
if there is no intervening PIP. We assume the possibility of

two types of defects, a short defect which causes two lines
to be crossed, and an open defect which causes a single line
to be broken, or causes a connectable line pair to be uncon-
nectable. Given the two classes of line pairs and the two
defect types, we assume 4 fault classes which are previously
presented in [10]. The interconnect faults which we target
are subsets of bridging faults whose detection requirements
have been outlined in previous work [15, 2]. We summarize
the 4 fault classes and the detection requirements for each
class in terms of the controllability and observability of each
line involved.

� Permanent Connection (PC) - A short on any pair
of lines. Both a�ected lines must be separately control-
lable and at least one a�ected line must be observable.
Also, any PIP between the two a�ected lines must be
con�gured to be o�.

� Permanent Disconnection (PD) - An open on any
pair of C lines. Both a�ected lines must be control-
lable and observable. Also, the PIP between the two
a�ected lines must be con�gured to be on.

� Stuck-At 0 (SA0) - A short between a line and
ground (special case of a PC fault). The a�ected line
must be controllable and observable.

� Stuck-At 1 (SA1) - A short between a line and power
(special case of a PC fault). The a�ected line must be
controllable and observable.

6. TEST CONFIGURATION DEFINITION
The goal of test con�guration de�nition is to identify a set
of con�gurations for the tiles acting as BUTs in a BISTER.
The set of con�gurations must have the property that the
fault detection requirements stated in Section 5 must be
satis�ed for all faults in at least one con�guration. The size
of the set of test con�gurations should be minimized to re-
duce test application time. The test con�guration de�nition
process is hierarchical, de�ning the intra-cluster con�gura-
tions separately from the extra-cluster con�gurations. Test
transparency constraints are placed on the intra-cluster and
extra-cluster con�gurations to ensure hierarchical controlla-
bility and observability.

6.1 Intra-Cluster Configurations
The intra-cluster con�gurations are de�ned to ensure that
all intra-cluster interconnect faults are detectable in at least
one con�guration, and to facilitate the testing of the extra-
cluster interconnect. The cluster will be contained in the
control and observe paths of many extra-cluster intercon-
nect lines. The cluster must be con�gured to be transparent
from a controllability and observability perspective. The
cluster outputs are not identical to the cluster inputs, but
the cluster outputs must have the following transparency
properties with respect to the cluster inputs.

1. A fault e�ect on a cluster input must propagate to
at least one cluster output. This condition ensures the
propagation of fault e�ects on extra-cluster which feed
the cluster inputs.



2. The cluster outputs must be separately controllable.
This condition ensures the controllability of the extra-
cluster interconnect which is driven by the cluster out-
puts.

6.1.1 BLE Configurations
The observability of the cluster inputs and BLE output
branches must be achieved by propagating fault e�ects through
the BLEs to reach the cluster outputs. Also, the controlla-
bility of the BLE outputs must be achieved through the
BLEs. The con�guration of the BLEs is central to ensuring
maximal controllability and observability inside the cluster.
The con�gurations of components inside the BLEs are im-
portant to enable controllability of the BLE output lines, as
well as observability of the cluster inputs lines and the BLE
output branches.

Each BLE is composed of a LUT and a multiplexer, both of
which must be con�gured. To maximize the controllability
and observability through a BLE, we have chosen to con-
�gure each LUT to act as a 4-input XOR gate. The XOR
operation provides good controllability because the output
value may be determined by controlling any single input.
The XOR also provides good observability because a fault
e�ect on any single input is guaranteed to propagate to its
output. To simplify the interconnect testing process, we
con�gure the multiplexers inside the BLEs to drive the BLE
output with the LUT output directly, bypassing the 
ip-

op. This eliminates sequential behavior during testing and
ensures that the application of an exhaustive test pattern
set is suÆcient to detect all faults which are non-redundant
in each con�guration.

6.1.2 BLE Input Multiplexer Configurations
The con�gurations of the BLE input multiplexers (IMUX)
a�ect both the controllability and observability of the clus-
ter interconnect. The IMUXes determine controllability of
BLE outputs by determining the function which de�nes the
output of each BLE n. Because all LUTs are con�gured
as XOR gates, each output BLE function is an XOR of a
subset of cluster inputs as seen in Figure 5a. In Figure
5a, the input sources determined by the multiplexer con-
�gurations are labelled and shown in bold. Based on the
multiplexer con�gurations, the BLE output functions are
expressed as follows: BLE1 = IN1 � IN2 � IN3 � IN4,
BLE1 = IN1 � IN2 � IN3 � IN4 � IN5 � IN6 � IN7.
Notice that the most general cluster-based architecture al-
lows a multiplexer to be con�gured to create a loop as shown
in Figure 5b, which would either create sequential activity
(if the BLE output is clocked) or an asynchronous activity.
Both of these possibilities would greatly complicate testing,
so we do not allow multiplexers to be con�gured to create
a loop. This assumption matches the implementation of
Xilinx Virtex [1] part which is a cluster-based architecture
which does not contain interconnect to implement self-loops
inside a cluster.

We have developed an algorithm to de�ne the con�gura-
tion of each IMUX in each overall FPGA con�guration.
We have identi�ed the following IMUX con�guration goals
which must be satis�ed by the algorithm. These properties
are required to make all intra-cluster faults detectable in at

FFLUT

FFLUT

BLE1

BLE2

IN2
IN1

IN3
IN4

IN5
IN6
IN7

FFLUT

(a) (b)

Figure 5: Input Multiplexer Con�gurations, (a)
BLE output function determined by input mux con-
�gurations, (b) Illegal input mux con�guration cre-
ating a self-loop.

least one con�guration, and to ensure the transparency of
the cluster for the testing of extra-cluster faults.

� All BLE outputs are separately controllable from
each other, and from all cluster inputs - This
property ensures that each intra-cluster fault can be
activated in each con�guration, and enables the ac-
tivation of extra-cluster faults associated with extra-
cluster lines driven by cluster outputs. Guaranteeing
this property is accomplished by de�ning input multi-
plexer con�gurations so that each BLE output function
is di�erent, and is not dependent on a single cluster in-
put.

� Each input multiplexer is con�gured to select
data from each of its inputs in at least one con-
�guration - This property ensures that all cluster in-
put branches and BLE output branches are observable
in at least one con�guration.

� There is a sensitized path from each cluster in-
put stem to a cluster output in every con�gura-
tion - This property ensures the transparent propaga-
tion of extra-cluster fault e�ects through the cluster.
This property is accomplished by con�guring at least
one input multiplexer to receive data from each cluster
input in each con�guration. Every cluster input stem
can be associated with at least one BLE output whose
value is dependent on that cluster input stem.

Algorithm 1 Intra-Cluster Con�guration Algorithm

label all intra-cluster faults as undetected
repeat
repeat
select a BLE which is not con�gured, b
initialize IMUX con�gurations of b
repeat
enumerate next IMUX con�guration
compute BLE output function

until BLE function is unique
until all BLEs are con�gured
identify detectable faults

until all faults are detectable in some con�guration



The algorithm for intra-cluster test con�guration de�nition
is shown in Algorithm 1. The algorithm contains 3 main
loops. The inner loop, de�nes the con�guration of a single
BLE by enumerating the con�gurations on all 4 of its input
multiplexers until a satisfactory con�guration is found. A
set of BLE IMUX con�gurations is considered satisfactory if
the resulting BLE output function is unique from the func-
tions of all other BLEs, and is unique from all single cluster
inputs. The middle loop invokes the inner loop with each
BLE until all BLEs are con�gured to produce a complete
cluster con�guration. The outer loop invokes the middle
loop to de�ne a single con�guration, and then evaluates the
detection of intra-cluster bridging faults. The outer loop
continues to invoke the middle loop until all intra-cluster
faults are detected in at least one con�guration.

6.2 Extra-Cluster Configurations
The extra-cluster con�guration de�nes current 
ow paths
through the extra-cluster interconnect. These current 
ow
paths between tile input and output pins are used to control
and observe each interconnect segment on the path. We
model the extra-cluster con�guration de�nition problem as
a 
ow problem through an interconnect graph. Each node in
the graph represents an extra-cluster interconnect segment,
and each edge represents the existence of a PIP between two
segments.

One goal of extra-cluster test con�guration de�nition is to
create 
ow paths between tile I/O nodes which allow the
detection criteria of each fault to be satis�ed in at least
one con�guration. In addition to enabling the detection of
extra-cluster faults, the extra-cluster con�guration must en-
able transparent controllability and observability of the em-
bedded cluster. This goal is accomplished by creating 
ow
paths from tile I/Os to every cluster input, and from ev-
ery cluster output to tile I/Os, in every con�guration. An
example of a con�guration which exhibits this type of test
transparency is shown in Figure 6. The bold lines indicate
segments which are contained in 
ow paths, and the bold
PIPs indicate which PIPs are switched on in the con�gura-
tion in order to instantiate the paths. Each cluster input
and output is directly connected to the edges of the tile via
a set of 
ow paths. Notice that 
ow through the cluster
does not impact the testability of extra-cluster interconnect
because the cluster is transparent for controllability and ob-
servability purposes.

IN1
OUT2 IN2

OUT3

IN3
OUT4

OUT1
IN4

Figure 6: Transparent Extra-Cluster Con�guration

Algorithm 2 Extra-Cluster Con�guration Algorithm

create interconnect graph
repeat
label all nodes as untouched
repeat
select an untouched node n
identify an untouched path from n to a cluster I/O
label all nodes on the path as touched
identify an untouched path from n to a tile I/O
label all nodes on the path as touched

until paths connect all cluster I/O to tile I/O
repeat
select an untouched node n
identify an untouched path from n to a tile I/O
label all nodes on the path as touched
identify an untouched path from n to a tile I/O
label all nodes on the path as touched

until no addition untouched paths can be created
identify detectable faults

until all faults are detectable in some con�guration

The algorithm for extra-cluster test con�guration de�nition
is outlined in Algorithm 2. The two inner loops de�ne a
single test con�guration by identifying a set of paths through
the extra-cluster interconnect which must be activated. The
�rst inner loop guarantees that the cluster I/O are directly
controllable and observable from the tile I/O. The second
inner loop serves to increase the number of extra-cluster
interconnects which are controllable and observable. Each
pass of the outer loop de�nes a single test con�guration. The
tasks, select an untouched node n, identify an untouched path
from n to a cluster I/O, and identify an untouched path from
n to a tile I/O are performed using several heuristics which
target lines associated with faults which are undetected in
the current con�guration.

7. EXPERIMENTAL RESULTS
We have implemented the presented algorithms for test con-
�guration de�nition and we have applied the algorithms to
de�ne test con�gurations for a range of cluster-based tiles
of di�erent sizes. In test results we assume that the cluster
has the structure shown in Figure 2 [4], with N BLEs and I
cluster inputs. We assume that the extra-cluster structure of
each tile is of the form shown in Figure 1b. We assume that
cluster inputs and outputs are equally distributed around
the sides of the cluster. Each cluster I/O on the north face
may connect to all horizontal tracks via a set of PIPs, and
the same is true between cluster I/O on the west face and the
vertical tracks. The cluster I/O on the east and south faces
are assumed to connect directly to tracks in the neighboring
tiles.

These results are summarized in Table 1. The �rst two
columns of Table 1 are the Clus. Prms which indicate the
size of the cluster in terms of the number of cluster inputs,
I, and the number of BLEs in a cluster, N . The remain-
der of the columns in the table are divided into the results
of Intra-Cluster con�guration de�nition, and Extra-Cluster
con�guration de�nition. Two results are presented for both
intra-cluster and extra-cluster con�guration de�nition: (1)
Confs - the number of con�gurations de�ned by our algo-
rithm, and (2) FCov - the percent of bridging faults de-



Clus. Prms. Intra-Cluster Extra-Cluster
N I Confs min FCov Confs FCov

4 8 13 11 100.0% 9 100.0%
4 10 14 13 100.0% 9 100.0%
4 12 17 15 100.0% 8 100.0%
6 12 19 17 100.0% 9 99.5%
6 14 20 19 100.0% 11 99.1%
6 16 22 21 100.0% 11 99.0%
8 16 28 23 100.0% 11 99.3%
8 18 28 25 100.0% 11 98.9%
8 20 28 27 100.0% 13 99.1%

Table 1: Experimental results with a variety of clus-
ter sizes

tected across all con�gurations. In addition to these results,
a min result is provided for intra-cluster results, indicating a
theoretical lower bound on the number of intra-cluster con-
�gurations required. This lower bound is computed as the
fanin of the input multiplexers (I+N), less 1 to account for
the self-loop multiplexer input which we do not test.

The results in Table 1 show that testing the intra-cluster in-
terconnect is the bottleneck in the number of con�gurations
required. This is expected because the ratio of intra-cluster
interconnect segments to cluster I/O pins is much higher
than the 1:1 ratio between extra-cluster interconnect and
the tile I/O. The intra-cluster fault coverage achieved is al-
ways 100%, while the fault extra-cluster fault coverage is
sometimes slightly less than complete. This is a result of a
weakness in the heuristic used to de�ne 
ow paths through
the extra-cluster interconnect, rather than a result of inher-
ent complexity in the extra-cluster con�guration de�nition
problem. By manually adding a single extra-cluster con�g-
uration, the extra-cluster fault coverage can be increased to
100% in all cases.

8. CONCLUSIONS
We have presented a hierarchical technique to de�ne test
con�gurations for the detection of interconnect faults in cluster-
based FPGA architectures. We have used the concept of test
transparency to de�ne con�gurations which enable test ac-
cess to the high-density logic cluster embedded within each
FPGA tile. We have demonstrated that this technique can
be used to successfully de�ne a small set of test con�gu-
rations which allow the detection of nearly all targeted in-
terconnect faults. In the future, we intend to consider a
formulation of the FPGA test problem which incorporates
the testing of the LUTs and multiplexers inside each BLE.

9. REFERENCES
[1] Virtex data sheet. Xilinx Corporation, 1998.

[2] M. Abramovici and P. R. Menon. A practical
approach to fault simulation and test generation for
bridging faults. IEEE Transactions on Computers,
C-34(7):658{663, July 1985.

[3] M. Abramovici, C. Stroud, C. Hamilton,
S. Wijesuriya, and V. Verma. Using roving STARs for
on-line testing and diagnosis of FPGAs in
fault-tolerant applications. In International Test
Conference, September 1999.

[4] V. Betz and J. Rose. Cluster-based logic blocks for
FPGAs: Area-eÆciency vs. input sharing and size. In
IEEE CICC, pages 551{554, 1997.

[5] S. D. Brown, R. J. Francis, J. Rose, and Z. G.
Vranesic. Field-Programmable Gate Arrays. Kluwer
Academic Publishers, 1992.

[6] G. Gibson, L. Gray, and C. Stroud. Boundary scan
access of built-in self-test for �eld programmable gate
arrays. In IEEE International ASIC, pages 57{61,
September 1997.

[7] W. K. Huang, F. J. Meyer, X.-T. Chen, and
F. Lombardi. Testing con�gurable LUT-based FPGAs.
IEEE Transactions on Very Large Scale Integration
Systems, 6(2):276{283, June 1998.

[8] V. Lakamraju and R. Tessier. Tolerating operational
faults in cluster-based FPGAs. In 8th International
ACM/SIGDA Symposium on Field Programmable
Gate Arrays, February 2000.

[9] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian.
SRAM-based FPGAs: Testing the LUT/RAM
modules. In International Test Conference, pages
1102{1111, October 1998.

[10] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian.
Testing the interconnect of RAM-based FPGAs. IEEE
Design & Test of Computers, 15(1):45{50,
January-March 1998.

[11] N. R. Shnidman, W. H. Mangione-Smith, and
M. Potkonjak. On-line fault detection for bus-based
�eld programmable gate arrays. IEEE Transactions
on Very Large Scale Integration Systems,
6(4):656{666, December 1998.

[12] C. Stroud, E. Lee, and M. Abramovici. BIST-based
diagnostics of FPGA logic blocks. In International
Test Conference, pages 539{547, November 1997.

[13] C. Stroud, E. Lee, S. Konala, and M. Abramovici.
Using ILA testing for BIST in FPGAs. In
International Test Conference, pages 68{75, October
1996.

[14] C. Stroud, S. Wijesuriya, C. Hamilton, and
M. Abramovici. Built-in self-test of FPGA
interconnect. In International Test Conference, pages
404{411, October 1998.

[15] M. J. Y. Williams and J. B. Angel. Enhancing
testability of large-scale integrated circuits via test
points and additional logic. IEEE Transactions on
Computers, C-22(1):46{60, January 1973.

[16] L. Zhao, D. M. H. Walker, and F. Lombardi. Bridging
fault detection in FPGA interconnects using iDDQ. In
International Symposium on Field Programmable Gate
Arrays, pages 95{104, February 1998.

[17] L. Zhao, D. M. H. Walker, and F. Lombardi.
Detection of bridging faults in logic resources of
con�gurable FPGAs using iDDQ. In International Test
Conference, pages 1037{1046, October 1998.


