
Efficient Key-Dependent Message
Authentication in Reconfigurable Hardware
Jérémie Crenne∗, Pascal Cotret∗, Guy Gogniat∗, Russell Tessier†, and Jean-Philippe Diguet∗

∗Laboratoire Lab-STICC, Université de Bretagne-Sud, Lorient, France
†Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA

Abstract—Cryptographic message authentication is a
growing need for FPGA-based embedded systems. In
this paper a customized FPGA implementation of a
GHASH function that is used in AES-GCM, a widely-
used message authentication protocol, is described. The
implementation limits GHASH logic utilization by spe-
cializing the hardware implementation on a per-key
basis. The implemented module can generate a 128-
bit message authentication code in both pipelined and
unpipelined versions. The pipelined GHASH version
achieves an authentication throughput of more than 14
Gbit/s on a Spartan-3 FPGA and 292 Gbit/s on a Virtex-
6 device. To promote adoption in the field, the complete
source code for this work has been made publically-
available.

I. INTRODUCTION

As the application space of FPGA systems con-
tinues to diversify, the importance of optimized high
performance security solutions has grown in impor-
tance. For example, secure point-to-peripheral broad-
band communications now require data rates between
1 and 100 Gbit/s [1]. Often, the distributed nature of
these channels makes them vulnerable to security at-
tacks, necessitating low-overhead preventive measures.
FPGA-optimized security blocks targeted to message
authentication protocols are needed to reach this goal.

Recently, the block cipher Advanced Encryption
Standard (AES) in counter mode (CTR) was combined
with Galois Counter Mode (GCM) of operation [2] to
provide both message encryption and authentication.
This approach has proven popular since it is not
constrained by intellectual property rights and has been
shown to be provably secure [3]. A key aspect of GCM
is a 128-bit Galois field multiplication GF(2128). One
or more instantiations of this GMULT operation are
needed to perform the Galois Hash (GHASH) function
required for message authentication. Mathematically,
a cryptographic GHASH function is a construct that
performs universal hashing over a binary Galois field
to generate a message authentication code (MAC) [4].
The goal of the function is to authenticate the source
of a message and its integrity. Although hardware and
software implementations of GHASH are available [5],
most require the use of multipliers which make them
less suitable for low-cost, resource-efficient FPGAs.

GMULTGMULT GMULT GMULT

GMULT

AAD M1

PAD

LEN

MAC

Xn

128

128

128

128

128 128

128

128

TAG

H

128

H

128 128

128

M2

H

128

128

Mn

H

128

H

128128 128

128

X0 X1 X2 128

128

2x128-bit XOR

Fig. 1. Block diagram of a combinational implementation of the
GHASH function.

In this work, a GHASH implementation customized
for FPGA deployment is described. The GHASH
module is specifically designed to take advantage of
the specialization offered by FPGA lookup tables and
flip flops. The custom key used for authentication
is synthesized into the module structure, specializing
the associated circuitry and reducing module area. A
pipelined version of the module is presented to provide
high throughput. Message authentication rates of up to
292 Gbit/s have been evaluated.

The rest of this paper is organized as follows.
Background on AES-GCM and GHASH functions is
provided in Section II. Implementation details of our
approach are provided in Section III and experimental
results are discussed in Section IV. Section V con-
cludes the paper.

II. BACKGROUND

A. GHASH Functional Definition

As shown in Figure 1, a GHASH function is com-
posed of chained GF(2128) multipliers (GMULT) and
bitwise exclusive-OR (XOR) operations. Each 2x128
XOR function includes 128 2-bit XOR operations.

978-1-4577-1740-6/11/$26.00 © 2011 IEEE

GHASH inputs include: 1) A 128-bit hash key H .
This key is derived from a symmetric cryptographic
key K. 2) An M -bit message requiring authentication.
The message can be divided into n 128-bit blocks
M1-Mn. If necessary, the last message block Mn is
padded with zeros to create a 128-bit word. 3) An
optional 128-bit additional authenticated data (AAD)
value. This data value, which is authenticated but not
encrypted, is generally used to identify the source of
an authenticated message. 4) A 128-bit LEN value
which expresses the word lengths of AAD and the
message M . 5) A 128-bit cryptographic pad value
(PAD) which ciphers the function output TAG to
generate the message authentication code (MAC). The
resulting 128-bit is expressed as:

H = E(K, 0128) (1)
X0 = GMULT (H,AAD) (2)
Xi = GMULT (H,Mi ⊕Xi−1) (3)

for i = 1...n

LEN = length(AAD)64 || length(M)64 (4)
TAG = GMULT (H,Xn ⊕ LEN) (5)
MAC = PAD ⊕ TAG (6)

where E(K,B) denotes an AES block cipher encryp-
tion of a value B with a secret key K. The expression
0128 denotes a string of 128 zero bits, and A ‖ B
denotes the concatenation of bit strings A and B. The
multiplication of two elements A,B ∈ GF(2128) is de-
noted as GMULT(A,B), and the addition in the Galois
field of A and B, denoted as A ⊕ B, is equivalent
to the XOR operation. The function length() returns
a 64-bit word describing the number of bits in its
argument, with the least significant bit on the right. In
general, an efficient GHASH implementation depends
on the software or hardware design of the GF(2128)
multiplier.

B. GHASH Hardware Implementation
Previously, Paar [6] summarized the efficiency of

various hardware finite field multiplication methods
for GF(2q). Although bit serial implementations have
linear area and performance with O(q) and digit se-
rial implementations with digit size D vary in area
with O(qD) and performance as O(q/D), their per-
formances are generally considered insufficient for
contemporary message authentication throughput.

Even though the sizes of parallel implementations
are generally larger than serial- and digit-based im-
plementations, the desired throughput performance of
authentication motivates their use. Since the hardware
complexity of a parallel implementation is O(q2), a
128-bit implementation which includes over 10,000
lookup tables (LUTs) can easily be required if hard-
ware optimizations are not considered. Fortunately,

multiplication over GF(2128) can be expressed as a se-
ries of polynomial multiplications and modular reduc-
tions, leading to implementations based on Reyhani-
Masoleh [7], Mastrovito [5] and Karatsuba-Ofman
algorithms. These implementations have been shown
to provide multi-Gbit/s throughput at the cost of over
8,000 LUTs per function. In Section IV, a comparison
of our new GHASH implementations including an
optimized GF(2128) multiplier is made versus these
previous approaches.

C. GHASH Software Implementation

Ideas for FPGA-optimized hardware implementa-
tions of GF multiplication in GHASH functions can
be identified by considering previous software imple-
mentations. Software binary field multiplication gener-
ally uses a variety of time-memory tradeoffs [8]. Cur-
rently, software implementations take two forms, one
which considers the hash key H from Equation (1) as
fixed and one which assumes a time-changing H value.
The multiplication operation GMULT(H,B) between
the hash key H and an arbitrary element B, as shown
in Equations (2), (3) and (5), is linear over the field
GF(2). By setting H to be constant, this property can
be exploited to allow efficient table-driven lookups for
function results rather than expensive GF operations
[8]. In many cases, the table-driven approach provides
a significant software performance improvement for
a modest memory cost. Table implementation can be
optimized to limit the amount of memory required to
encode operations based on H and allow multiport
(parallel) table access to provide high throughput.

D. New Hardware Implementation and Limitations

In our new hardware module implementation, con-
stant key specialization in the FPGA is used. The fine-
grained LUT parallelism found in FPGAs is used to
implement a precomputed table for GMULT opera-
tions based on a constant H . As shown in Section IV,
this provides the implementation of a parallel GF(2128)
multiplier with significantly reduced LUT count while
providing multi-Gbit/s throughput. The specialization
of the GMULT table can be accommodated for mul-
tiple keys if a portfolio of bitstreams for different H
values is maintained. These benefits can have a direct
impact on some, but not all, applications of AES-
GCM.

Network attacks are a concern for a variety of orga-
nizations. Preventing the unauthorized access, modifi-
cation, and misuse of network resources is key to pro-
viding a secure environment. Virtual private networks
(VPN) are widely employed to connect private local
area networks to remote locations. Each connection
uses a secure tunnel over an unsecure channel for
packet transmission. For many VPNs, the secret key
used for encryption and authentication is changed on

2

Algorithm 1 Precomputation of the table T ; H ∈
GF (2128)

1: R← 11100001 ‖ 0120
2: H ← E(K, 0128)
3: V ← H
4: for i = 0 to 127 do
5: if V127 = 0 then
6: V ← rightshift(V)
7: else
8: V ← rightshift(V)⊕R
9: end if

10: T [i]← V
11: end for

a weekly, monthly or yearly basis. Current commer-
cial high-end security appliances allow a maximum
throughput of 40 Gbit/s and potentially up to 10,000
client VPN users per session [9]. VPN infrastruc-
ture can potentially benefit from our key-dependent
GHASH implementation to achieve a throughput of
40 Gbit/s. Another application which requires au-
thentication with slow changing keys is embedded
system memory protection [10]. This application re-
quires infrequent key changes over weeks or months.
Additional applications with infrequent key changes
could similarly benefit from key specialization.

As mentioned earlier, not all AES-GCM applica-
tions are suitable for our approach. The IEEE MAC-
SEC Ethernet encryption standard uses AES-GCM for
authentication [11]. In typical use, the required key
may change on a per-packet basis. In our implemen-
tation this would require per-packet FPGA reconfigu-
ration, a prohibitive cost.

III. GHASH DESIGN ARCHITECTURES

In this section, a GHASH module which generates
authenticated 128-bit data every two clock cycles is
described. This design combines the two combinatorial
GMULT blocks shown on the left of Figure 1 with an
output register. This module is designed to be easily
integrated into a complex design. Multiple instantia-
tions of the module can be chained together to form a
higher throughput pipelined implementation.

A. Table precomputation

The efficient use of a GMULT lookup table based on
a fixed H requires the precalculation of table values.
For a constant value H , a table T can be constructed to
represent GF(2128) multiplication between an H value
and a 128-bit input value. Each element of the table
is a 128-bit vector. Based on GMULT specifications
[2], the algorithm needed to fill the table is shown in
Algorithm 1. The ith bit of an element A is denoted
as Ai. The leftmost bit is A0, and the rightmost
bit is A127. The multiplication operation uses the

B0

128 128

B1

128 128

B127

128 128

128-bit

128-bit

T[0]

T[1]

T[127]

128

128

128

GMULT(H,B)

MAC

IN

Clk

Rst
<<< 128-bit extension

2x128-bit AND

1 2

3

128-bit
128 128 128

128

<<< <<< <<<

O0 O1 O127

O126

128

128 128

Fig. 2. Basic GHASH module implementation

element R = 11100001 ‖ 0120 [2]. The function
rightshift() moves the bits of its argument one bit to
the right. The hash key H is the result of the invocation
of the AES block cipher with a zeroed 128-bit word
at its input. This operation is highlighted in line 2
in Algorithm 1 where K is a secret key. Every 128-
bit vector T is calculated with a simple conditional
statement along with 128-bit XORs and right shifts
(line 5 to 9).

The unoptimized table contains 128 vectors of 128
bits, i.e. 16,384 memory bits, either stored in registers
or in RAM. As explained in the next subsection, a large
fraction of the bits are needed in parallel. Direct table
implementation in LUTs is clearly prohibitive due to
size and performance concerns of implementation in
more than 10,000 LUTs. Direct implementation in
block RAMs (BRAMs) would at first appear to be
a reasonable option since these primitives operate at
high speed (e.g. 550 MHz on a Virtex-5). However,
BRAMs have at most two read ports, limiting parallel
access. To be able to perform needed parallel access
to the data, the block RAM contents would need to
be replicated numerous times (e.g. up to 64x for a
Spartan device). In general, many FPGA designs are
constrained by BRAM availability.

Our implementation avoids the distributed and par-
allel RAM problem by directly synthesizing binary 1
values in the table T into GMULT logic. For most H
and associated K values, the bit value population of T
is not strictly 50% 1s and 50% 0s, leading to possible
optimization. As a result, the AND gate outputs shown
in Figure 2 can be set to 0 in many cases, reducing the
amount of logic required to implement the GHASH
function. Fixed binary 1 AND inputs in the figure
convert the AND gates accordingly. Subsequently,

3

0

10

20

30

40

50

60

70

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

Ta
b

le
 T

Sp
ar

si
ty

(%
)

Generated Key K

High

Avg.

Low

Fig. 3. Fraction of table T logic value 0s for 100 generated keys
K

Algorithm 2 Multiplication in GF (2128). Computes
the value X = GMULT (H,B) with H constant; B,
X ∈ GF (2128)

1: for i = 0 to 127 do
2: X ← 0
3: if Bi = 1 then
4: X ← X ⊕ T [i]
5: end if
6: end for
7: return X

the 128×128-bit XOR tree can be pruned to further
reduce logic. By trimming single bits with a 0 logic
value and optimizing the 1 logic values before the
mapping process, the synthesized design is reduced.
Additionally, the logic is structured to take advantage
of the wide-input, single output structure of FPGA
LUTs.

To study the average logic value distribution of
a table T , we randomly generated 108 keys K and
evaluated the bit value 0 population of tables. The
Mersenne Twister pseudo random number generation
algorithm [12] was chosen to generate the K values.
It has a period of 219937-1, is uniformly distributed,
and passes numerous tests for statistical randomness,
including the Diehard tests [13] and part of the strin-
gent TestU01 tests [14]. For this given range of keys
K, a low, average, and high logic value 0 percentage
of 30%, 50%, and 70% was determined. A sample
distribution for 100 keys K is shown in Figure 3. The
logic density of a design is related to the percentage of
bit value 0s. The tiniest and fastest module is obtained
for a percentage of 70%. A 30% distribution results
in a larger and slower implementation. Our designs
implemented in Section IV assume a 50% distribution.

B. Basic module

The basic unoptimized GHASH module shown in
Figure 2 contains a purely combinatorial GF(2128)
multiplier GMULT(H,B), a 128×128-bit XOR tree and

GMULT
(H,B)

INi

Bi

Xi

=

INi Bi

Xi

128

128

128

128

128

M1/2/…

128

128

X

LEN1/2/…

128 128

PAD1/2/…

128

128

TAG

AAD1/2/…

B0 IN0 B1 IN1 B2 IN2

X0 X1 X2

MAC

128

1 2 3

Fig. 4. A multi-stage pipelined GHASH module implementation.
The bottom of the figure shows the structure of one pipeline stage

a 128-bit output register. The detailed implementation
of the multiplier (Algorithm 2) is the basis for this
architecture. Three sub-modules form the basis for
the design (Figure 2): 1) the 128×128-bit table T
on the left (synthesized into logic), 2) the circuitry
to perform conditional statements on the right and
3) the 128×128-bit XOR on the bottom right. To
avoid a 1 cycle penalty during typical synchronous
conditional statements, the statements are implemented
in a combinatorial fashion. Every B input bit, B0

to B127, is extended 128 times (essentially a wire
fanout) and ANDed with the corresponding vectors of
table T . The module accepts a single 128-bit input B
and generates one 128-bit output MAC. A feedback
path allows iteration across multiple 128-bit chunks
of a message for authentication, as shown in Figure 1.
The operation of the module is controlled by a small
sequencer. For example, to authenticate a message
composed of a 128-bit AAD and a 512-bit message
M , the input B follows the sequence AAD, M1, M2,
M3, M4, LEN , and PAD. The resulting MAC is
available in the output register after 6 cycles.

C. Pipelined module

A multistage pipelined module can be derived from
multiple instantiations of the basic module. The basic
design is replicated n times to provide a n-stage
pipelined module. For every new stage, a GF(2128)
GMULT(H,B), a 2×128-bit XOR and a 128-bit reg-
ister is added. Figure 4 illustrates the architecture

4

Design Device Resources Frequency Throughput T-put/slice
Family Part M / G / K PAR LUT FF Slices (MHz) (Gbit/s) (Mbit

s×slice)
Basic GHASH Virtex-4 xc4vlx25 � / • / • • 2,469 165 1,277 250.0 16.0 12.5
Basic GHASH Virtex-5 xc5vlx50t � / • / • • 2,008 128 533 303.0 19.4 36.4
Basic GHASH Virtex-6 xc6vlx75t � / • / • • 1,714 143 447 384.6 24.6 55.1
Basic GHASH Spartan-3 xc3s1000l � / • / • • 2,429 150 1,242 114.9 7.4 5.9
Pipe GHASH (n=4)1 Virtex-4 xc4vlx25 � / • / • • 12,186 793 6,182 222.2 113.8 18.4
Pipe GHASH (n=8)1 Virtex-5 xc5vlx50t � / • / • • 17,611 1,152 4,594 232.6 238.1 51.8
Pipe GHASH (n=8)1 Virtex-6 xc6vlx75t � / • / • • 15,414 1,358 3,985 285.7 292.6 73.4
Pipe GHASH (n=1)1 Spartan-3 xc3s1000l � / • / • • 4,875 280 2,484 116.3 14.9 6.0

Huo et al. [7] Virtex-5 xc5vlx30 • / � / � � 8,864 411 2,9922 240.2 30.8 10.32

Lu et al. [15] Virtex-5 xc5vlx50t � / • / � � 9,405 430 3,1752 120.2 15.4 4.82

Zhou et al. [16] Virtex-5 xc5vlx85 • / � / � • n/a n/a 4,628 324.0 41.5 8.9
Chen et al. [17] Virtex-4 xc4vlx60 � / • / � • n/a n/a 10,756 312.5 40.0 3.7
Henzen et al. [18] Virtex-5 xc5vlx220 � / • / � • n/a n/a 14,799 233.0 119.3 8.1
Wang et al. [5] Virtex-5 xc5vlx85t � / • / � � 32,410 2,612 10,9432 240.3 123.1 11.22

1 number of pipeline stages
2 estimation based on LUTs per slice

TABLE I
COMPARISON OF NEW MODULES VERSUS RELATED PREVIOUS IMPLEMENTATIONS

of a pipelined design. Once fully initialized, this
design outputs the MAC of a 128-bit AAD and a
128-bit message M every clock cycle. Feedback is
not needed for 128-bit and 256-bit messages since
message authentication is performed every clock cycle.
To authenticate messages longer than 256 bits, the
pipelined design can be adapted by 1) providing a
feedback path from the last stage to the input of the
first stage, 2) loading the corresponding output register
with the AAD, if required and 3) scheduling the data
evaluation. For this last step, input IN can receive
a 128-bit message block, a 128-bit LEN value or a
128-bit PAD value.

IV. RESULTS

Both the basic GHASH module (Figure 2) and
pipelined chains of modules were written in Verilog
and targeted to several contemporary Xilinx Spartan
and Virtex families using the standard Xilinx Synthesis
Technology (XST) and ISE 13.1 flows. ModelSim 6.6a
was used for design simulation both before and after
FPGA place-and-route. Simulation was performed un-
der nominal conditions of voltage (0.95V), temperature
(85°C) and effort settings for mapping and place-
and-route. The timing of design I/Os was omitted so
modules could be considered as standalone functions.

A. Performance evaluation

Table I provides a summary of the frequency,
throughput, and resource usage for the new designs
versus previously-published results. Table I is provided
as a high-level reference since the listed previous
designs are the most similar in nature to the ones
reported in this work. Unlike the previous efforts, our
new approach is optimized both for FPGA LUTs and
specialized on a per-key basis. Because there is a large
diversity of previous implementations, we compare our

design to GF(2128) multiplier-only designs (M), full
GHASH architectures (G) and key-dependent structure
(K). Note the filled dots in the M / G / K column. Ad-
ditionally, some designs reported performance results
prior to place-and-route, as indicated in the table (PAR
column). In some cases, only LUTs are reported in
the previous work. Slice counts are estimated in these
cases by considering the number of LUTs per slice in
the target architecture.

To evaluate the area efficiency of our approach in the
context of resource usage, we use the metric through-
put per slice for comparison between the architec-
tures. This metric is widely used in the cryptographic
community. If increased throughput is needed for our
architecture, multiple pipelined copies of our new
modules could be instantiated, as discussed in Sec-
tion III. For highest performance, the basic GHASH
module operates at 384.6 MHz on a Virtex-6 device.
The design uses 143 FFs, which includes a 128-bit
output register and duplicated registers to improve fan-
out, and 1,714 LUTs, which are primarily used for
the GF(2128) multiplier. Two processing cycles are
required per output so 384.6×106×128/2=24.6 Gbit/s
of throughput is achieved.

An 8-stage pipelined GHASH module operates at
285.7 MHz on a Virtex-6. In total, it consumes
1,358 FFs and 15,414 LUTs. This implementation
produces the 128-bit MAC of a 1 KByte message
every clock cycle. One cycle processing is needed,
so 285.7×106×128×8=292.6 Gbit/s of throughput
is achieved. Overall throughput per slice is 73.4
Mbit/slice.

The HDL source code, simulation testbenches, and
software tools to reproduce reported results for the two
module variants are publicly available at this URL:
http://code.google.com/p/ghash/

5

http://code.google.com/p/ghash/

B. Comparison with Prior Work

Huo et al. [7] proposed a bit-parallel implementation
of the GF(2128) multiplier based on Arash Reyhani-
Masoleh algorithm. Wang et al. [5] reported a high-
speed GHASH architecture based on an advanced
multiplication algorithm. The Mastrovito multiplier
used 32,410 LUTs to provide a throughput of 123.1
Gbit/s (11.2 Mbit/slice). These two papers report per-
formance results prior to place-and-route, requiring
throughput estimation. Zhou et al. [16] described a
Virtex-5 GF(2128) multiplier implementation using the
Karatsuba-Ofman algorithm with 4,628 slices and a
throughput of 41.5 Gbit/s (8.9 Mbit/slice). Chen et al.
[17] proposed an 4-stage pipelined GHASH implemen-
tation on a Virtex-4 with 10,756 slices and an authen-
tication throughput of 40 Gbit/s (3.7 Mbit/slice). Hen-
zen and Fichtner [18] proposed a complete parallel-
pipelined AES-GCM module for 100 Gbit/s Ethernet
applications. The GHASH function is based on a
composite field, consumes 14,799 slices and gives a
119.3 Gbit/s throughput (8.1 Mbit/slice) on a Virtex-
5.

For all measured comparisons, our new GHASH
module shows improved throughput per area. Raw
throughput on a Virtex-5 of 238.1 Gbit/s is superior
to the highest reported previous approach at a reduced
GHASH area. The specialized nature of our design fa-
cilitates implementation on low cost Spartan-3 devices.
The pipelined version of the module achieves about 14
Gbit/s of throughput and uses 4,875 LUTs packed in
2,484 slices.

While our results are interesting in terms of both re-
duced overhead and high throughput, the effectiveness
of our design is tied to the frequency in which the hash
key H , derived from secret key, K, changes. From
AES-GCM specifications, a single key allows for the
authentication of 4 GByte/s (32 Gbit/s) of data over 64
years without compromised security [2]. This term is
generally much longer than a typical digital system
lifetime. However, as outlined in Section II-D, key
changes may be required more frequently depending
on the target application. The reconfigurable nature
of the FPGA makes changes to hash keys which
have been embedded in hardware possible. A new
bitstream can be dynamically loaded into the FPGA,
when needed. Other key customization approaches [5],
[7], [15], [16], [18] require only a key register reload.

V. CONCLUSION

In this paper, a new FPGA-optimized implemen-
tation of a GHASH message authentication block
has been presented. The module takes advantage of
the specialization offered by FPGAs to customize
GHASH hardware based on a secret key. Significant
improvements in throughput per area versus previous

approaches are achieved for a variety of Xilinx archi-
tectures.

REFERENCES

[1] Intel, “Thunderbolt™ Technology,” 2011.
[2] D. McGrew and J. Viega, “The Galois/Counter Mode of

Operation (GCM). Updated submission to NIST, Modes of
Operation Process,” 2005.

[3] M. Dworkin, “Recommendation for Block Cipher Modes of
Operation: Galois/Counter mode (GCM) and GMAC,” NIST
Special Publication 800D-38D, Nov. 2007.

[4] M. Wegman and L. Carter, “New hash functions and their use
in authentication and set equality,” Journal of Computer and
System Sciences, vol. 22, no. 3, pp. 265–279, Jun. 1981.

[5] J. Wang, G. Shou, Y. Hu, and Z. Guo, “High-speed architec-
tures for GHASH based on efficient bit-parallel multipliers,”
in Proceedings: IEEE International Conference on Wireless
Communications, Networking and Information Security, Jun.
2010, pp. 582–586.

[6] C. Paar, “Implementation options for finite field arithmetic for
elliptic curve cryptosystems,” in Proceedings: Elliptic Curve
Cryptosystems Workshop, Nov. 1999.

[7] J. Huo, G. Shou, Y. Hu, and Z. Guo, “The design and
FPGA implementation of GF(2128) multiplier for GHASH,”
in Proceedings: International Conference on Network Security,
Wireless Communications and Trusted Computing, Jun. 2009,
pp. 554–557.

[8] V. Shoup, “On fast and provably secure message authentication
based on universal hashing,” in Proceedings: Advances in
Cryptology, Aug. 1996, pp. 313–328.

[9] Cisco ASA 5500 Series Adaptive Security Appli-
ances Models Comparison, Cisco Corporation, 2011.
[Online]. Available: http://www.cisco.com/en/US/products/
ps6120/prod_models_comparison.html

[10] R. Vaslin, G. Gogniat, J.-P. Diguet, R. Tessier, D. Unnikrish-
nan, and K. Gaj, “Memory security management for recon-
figurable embedded systems,” in Proceedings: International
Conference on Field-Programmable Technology, Dec. 2008,
pp. 153–160.

[11] K.-S. Han, K.-O. Kim, T. W. Yoo, and Y. Kwon, “The design
and implementation of MAC security in EPON,” in Proceed-
ings: International Conference on Advanced Communication
Technology, May 2006, pp. 1676–1680.

[12] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator,” ACM Transactions on Modeling and Computer
Simulation, vol. 8, no. 1, pp. 3–30, January 1998.

[13] G. Marsaglia, “The Marsaglia Random Number CDROM
including the Diehard Battery of Tests of Randomness,” 1995.

[14] P. L’Ecuyer and R. Simard, “TestU01: A C library for empiri-
cal testing of random number generators,” ACM Transactions
on Mathematical Software, vol. 33, no. 4, pp. 22:1–22:40,
August 2007.

[15] Y. Lu, G. Shou, Y. Hu, and Z. Guo, “The research and
efficient FPGA implementation of Ghash core for GMAC,”
in Proceedings: International Conference on E-Business and
Information System Security, May 2009, pp. 1–5.

[16] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving
throughput of AES-GCM with pipelined Karatsuba multipli-
ers on FPGAs,” in Proceedings: International Workshop on
Reconfigurable Computing: Architectures, Tools and Applica-
tions, Mar. 2009, pp. 193–203.

[17] T. Chen, W. Huo, and Z. Liu, “Design and efficient FPGA im-
plementation of Ghash core for AES-GCM,” in Proceedings:
International Conference on Computational Intelligence and
Software Engineering, Dec. 2010, pp. 1–4.

[18] L. Henzen and W. Fichtner, “FPGA parallel-pipelined AES-
GCM core for 100G Ethernet applications,” in Proceedings:
European Solid State Circuits Conference, Sep. 2010, pp. 202–
205.

6

http://www.cisco.com/en/US/products/ps6120/prod_models_comparison.html
http://www.cisco.com/en/US/products/ps6120/prod_models_comparison.html

	Introduction
	Background
	GHASH Functional Definition
	GHASH Hardware Implementation
	GHASH Software Implementation
	New Hardware Implementation and Limitations

	GHASH Design Architectures
	Table precomputation
	Basic module
	Pipelined module

	Results
	Performance evaluation
	Comparison with Prior Work

	Conclusion
	References

