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~ calability is a common ob- 
jective in the design ofmul- 
tiprocessors, judging by the 
number of parallel machine 
architectures touted as 
"scalable" or "large-scale." 

Such claims to scalability are hard to 
refute (or prove) because scalability 
has no commonly accepted, precise 
definition. There is, however, some 
consensus that as the size of a scalable 
machine is increased, a correspond- 
ing increase in performance is ob- 
tained. Furthermore, the increase 
in performance is related to com- 
munication patterns in applications 
programs and the communication 
infrastructure provided by the ma- 
chine. This article presents a precise 
definition for scalability derived from 
these observations. 

Why do we care about scalability? 
Primarily, once an architecture is 

architecture to be the fraction of the 
parallelism inherent in a given algo- 
rithm that can be exploited by any 
machine of that architecture as a 
function of problem size. For a given 
algorithm and problem size, we de- 
rive the inherent parallelism as the 
ratio of the serial execution time and 
the runtime on an ideal realization of 
a parallel random access machine 
(PRAM) 1. For the same algorithm 
and problem size, we then derive the 
maximum speedup attainable by a 
machine of any size with the architec- 
ture of interest. (In this paper, ma- 
chine size is stated in terms of p, the 
number of processors.) The maxi- 
mum speedup, specified as a function 
of problem size, is called the asymp- 
totic speedup of the architecture for the 
given algorithm. Thus the inherent 
parallelism of the algorithm is its 
asymptotic speedup on an ideal 

shown to be PRAM machine. Our 
~ ' ~  l ~  ! !  i measure of scalabil- 

d [ ~ l ~ "  • ~ ~ • • d [ ~  • ity follows as the ratio 
• • •  ~ J i F W ~  • W w ~  • • •  • •  of the asymptot ic  
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scalable, then machines I 1 ~ ~ 1 1 ~ ~ ~  
whose size varies over a J ~ "  ~ '  I ~ ~ "  I L ' ~  
wide ran e can use that 
same architecture. There is I • 
a caveat to this argument, - ~ - •  . ~ .  on the given architecture and 
however. We believe it is 
unlikely that practical machines dif- 
fering in size by several orders of 
magnitude will have the same struc- 
ture: there are size-related issues that 
are simply not relevant when build- 
ing small machines. Nevertheless, we 
can use scalability to aid our study of 
large machines. For designers of new 
architectures, small experimental pro- 
totypes can demonstrate the viability 
of ideas in much larger machines. If  
a system can be shown to scale well 
for a certain class of algorithms, then 
measurements from simulations of 
those algorithms on relatively few 
processors can be used to predict the 
behavior of systems in which the 
number of processors is too large for 
simulation to be practical. 

We define the scalability of a given 

D a n i e l  N u s S b a u m  

on the PRAM. 
As an example, let us compute the 

scalability of a hypercube machine 
on the problem of adding s numbers, 
ignoring overflows, where individual 
additions are structured as a bal- 
anced binary tree. We assume that 
individual binary additions complete 
in a single cycle and that single-word 
communications between directly 
connected processors also take one 
cycle. On an ideal PRAM realiza- 
tion, this addition can be done in log 
s steps. Similarly, an s-processor 
hypercube can achieve the minimum 
runtime of log s. Thus the scalability 

(s) of a hypercube for the above 
problem is one. Intuitively, a scala- 
bility of one implies the hypercube 
communication structure allows full 
exploitation of the parallelism in- 

a n d  A n a n t  A g a r w a l  
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heren~! in the given algorithm, re- 
gardless of problem size 

Scalability is by no means the 
only consideration in the design of  
a parallel processor. Other factors 
such as processor efficiency, pro- 
grammability, flexibility, and cost- 
effectiveness are also important in 
evaluating a machine design; in 
fact, when building a machine of  a 
knowrL size, scalability may not be a 
consideration at all. 

Background 
Notions of  scalability are invariably 
tied to notions of speedup. 
Scalability might be defined as fol- 
lows: 

A scalable architecture exhib- 
its speedup linearly propor- 
tional to p, the number  of  
processors employed. 

We argue that this definition is de- 
ficient, using two commonly ac- 
cepted notions of  speedup--simple 
speedup and scaled speedup. Sim- 
ple speedup keeps problem size 
fixed and scaled speedup allows 
problem size to grow with machine 
size [61]. 

I f  simple speedup is used, it is 
easy to show no architecture is scal- 
able by the definition of  scalability 
stated above. Amdahl's classic 
paper [1] argues that when prob- 
lem size is fixed, speedup is 
bounded by the reciprocal of  the 
serial fraction of  the algorithm. 
More accurately, speedup is 
bounded by the ratio between the 
serial complexity for the algorithm 
and the length of  the critical path 
through the dataflow graph for 
that algorithm. Flatt and Kennedy 
[4] are even more pessimistic, show- 
ing that as the number  of  proces- 
sors is increased, the running time 
eventually hits a minimum, after 
which adding processors can only 
cause t:he algorithm to take longer 
to complete. Hard performance 
limits imply lack of  scalability by the 

]Specifically, we use an  exclusive read ,  exclu- 
sive wri te  (EREW) PRAM, which is an  ideal- 
ized mode l  o f  a parallel  c o m p u t e r  that  satis- 
fies all nonconf l ic t ing m e m o r y  accesses in one  
cycle and  queues  conflict ing m e m o r y  accesses 
to be satisfied one  af ter  ano the r ,  each  requir-  
ing one  t ime unit [7]. 

IlIH 
simple definition given above, ren- 
dering simple speedup inadequate. 

Perhaps simple speedup is the 
wrong performance metric to use 
in a definition of  scalability: we now 
try using scaled speedup instead. 
Gustafson [6] defines scaled 
speedup to allow the problem size 
(as measured by its serial complex- 
ity) to increase linearly with p, the 
number  of  processors, following 
the rationale that one often uses 
nmltiprocessors to run larger pro- 
grams, not to run the same pro- 
grams faster. Unfortunately, for 
most interesting algorithms, maxi- 
mum achievable speedup does not 
increase as fast as serial complexity; 
so even using Gustafson's more lib- 
eral definition for speedup, no ar- 
chitecture is scalable by the simple 
definition given above. Further- 
more, Flatt and Kennedy show that 
for any algorithm in which the 
overhead due to parallelism in- 
creases with p, the scaled speedup is 
necessarily less than linear, and that 
when the parallelism overhead is 
linear or worse with p, there is actu- 
ally a hard upper  bound on the 
achievable scaled speedup. 

Goodman, Hill, and Woest [5] 
restrict the simple scalability defini- 
tion given above to scalable algo- 
rithms. Parallelism in scalable algo- 
rithms grows at least linearly with 
the serial complexity. Furthermore, 
they relax the speedup require- 

P for small networks, ment to 

and ~ for large networks, where 
Z 

p is the number  of  processors. This 
approach has two drawbacks: it 
excludes a large class of  interesting 
algorithms, and it fails to distin- 
guish between scalable algorithms 
that exhibit very different commu- 
nication patterns. Using the defini- 
tion presented by Goodman et al., it 
is possible to devise scalable algo- 
rithms that make most interesting 
architectures appear unscalable. 

The simple definition for 
scalability given above has problems 
both with respect to the meaning of  
speedup and with respect to differ- 
ences in behavior between different 

algorithms. A good definition for 
scalability must take both of  these 
issues into account. 

Requirements 
In our  view, a useful definition of  
scalability has several requirements. 
First, it must express both the ef- 
fects of  the architecture's intercon- 
nection network and the communi- 
cation patterns inherent to the 
algorithm. The  communication 
behavior of  an algorithm can be 
expressed in terms of  properties of  
its communication graph such as 
the clustering of  communication 
edges and the frequency of  com- 
munication along those edges. 

Second, the definition must mea- 
sure an architecture's scalability 
with respect to a given algorithm. 
Because different algorithms can 
have widely different communica- 
tion patterns, their performance 
can scale differently with machine 
size on a given architecture. Certain 
architectures might yield good per- 
formance only for algorithms 
whose communication patterns are 
well matched to the architecture's 
network structure. However, it may 
be possible to generalize the defini- 
tion of  scalability to classes of  algo- 
rithms. 

Third, we must carefully distin- 
guish between algorithmic scalability 
and architectural scalability. Algorith- 
mic scalability is related to the par- 
allelism inherent in an algorithm, 
and can be measured through its 
speedup on an architecture with an 
idealized communication structure, 
such as a PRAM. By defining archi- 
tectural scalability as the relative 
performance between the ideal and 
the real architectures, we will isolate 
those aspects of  scalability arising 
from algorithmic behavior from 
those arising from machine design. 
This machine-oriented view of  
scalability is useful from the view- 
point of  a computer  architect, and 
is the basis for our definition in this 
article. However, the end-user 
might prefer a different notion of  
scalability that combines our con- 
cepts of  algorithmic and architec- 
tural scalability. 

Fourth, the effects of  physical 
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constraints imposed by the three- 
dimensionality of  space and funda- 
mental limits on communicat ion 
speeds have to be considered. This 
issue is taken up in the section 
called Physical Constraints. 

Fifth, scalability should be an 
indicator of  the best achievable per- 
formance, without regard  to effi- 
ciency or  cost-effectiveness. For 
algorithms whose parallelism over- 
head increases with p as p becomes 
large, increased speedup can only 
be obtained at the expense of  lower 
efficiency [4], even when Gus- 
tafson's notion of  scaled speedup is 
the speedup metric employed.  
Since efficiency is not the pr imary 
thrust of  this article, we base our  
definit ion of  scalability on asymptotic 
speedup. For a given algorithm, ar- 
chitecture and problem size, the 
asymptotic speedup is the best 
achievable speedup on a machine 
on any size. This definit ion keeps 
the problem size constant while al- 
lowing the number  of  processors to 
become arbitrarily large. 

We will not consider cost-effec- 
tiveness in our  definition. However, 
the cost often manifests itself indi- 
rectly through its impact on ma- 
chine size. For example,  architec- 
tures that make use of  full-map 
directories [2] are commonly said to 
be nonscalable due to cost consider- 
ations. The  full-map directory 
scheme requires memory at each 
node propor t ional  to p, the number  
of  processors. This has the effect of  
increasing node size (and conse- 
quently the communication time) as 
p increases, thus increasing overall 
machine cycle time, producing a 
corresponding decrease in 
scalability. 

Finally, any at tempt to define 
scalability ought  to yield more in- 
formation than a simple predicate. 
A simple predicate hides informa- 
tion as to how badly the architec- 
ture fails or how well it succeeds in 
being scalable. We want a definition 
that reflects behaviors of  different  
algorithms in a concrete fashion. 

With these ideas in mind, we 
present  the following informal def- 
inition for scalability: 

For a given algorithm, an ar- 
chitecture's scalability is the 
ratio of  the algori thm's asymp- 
totic speedup when run on the 
architecture in question to its 
corresponding asymptotic 
speedup when run on an 
EREW PRAM, as a function of  
problem size. 

Intuitively, this definition measures 
the fraction of  the parallelism in- 
herent  to the given algori thm that 
can be realized by the architecture 
in question. In the next two sec- 
tions, we formalize this definition. 

ASymptotic Speedup 
For a given architecture, algorithm, 
and problem size s, the asymptotic 
speedup S(s) is the best speedup 
that can be attained, varying only p, 
the number  of  processors. 

We formally define the asymp- 
totic speedup S(s) for a given paral- 
lel algori thm as follows: 

s =- problem size 
Tseq(S) =-- ®(Serial Running 

Time) 
Tmr(S ) =- O(Minimum Parallel 

Running Time) 

S(s) ~ Tseq(S) 
Tpar(s) 

The  problem sizes is the indepen-  
dent  variable upon which all other  
metrics are based. Note that s is a 
function of  the encoding of  the 
input, and that a change in the 
units of  s for a given problem 
changes only the form of  the result. 
For example,  in muhiplying square 
matrices, we can use the number  of  
elements n or the number  of  rows r 
as the problem size. The  runt ime 
for a s traightforward matrix multi- 
ply algori thm is n~ in the first case 
and r ~ in the second case. These 
two expressions are equivalent by 
the substitution n = r 2. 

T~q(S) is the serial running  time. 
Meaningful measurements  of  
asymptotic speedup mandate  the 
use of  good serial algorithms, even 
if they differ  in structure from the 
corresponding parallel algorithms. 
In practice, however, expedience 
may justify using the single proces- 
sor running  time of  the parallel al- 
gori thm as an estimate of  the se- 

quential runn ing  time. Although 
we show in the next section that our  
choice of  the serial algori thm does 
not affect scalability, it is still useful 
for calculating asymptotic speedup,  
which is an interesting metric in it- 
self. 

Tpar(S) is the minimum parallel 
running  time for the given algo- 
rithxn witla problem size s. This time 
is calculated using as many proces- 
sors as necessary to achieve the 
minimum runtime for the given 
problem size. We assume that issues 
of  parti t ioning, placement and 
scheduling are addressed by either 
the machine itself (including its 
software system) or explicitly by the 
programmer .  In  other  words, we 
consider solutions to these issues 
not to be part  of  the algorithm, but 
instead, part  of  the machine. 

Finally, the asymptotic speedup S(s) 
is def ined to be the ratio between 
the serial running  time T, eq(S) and 
the minimum parallel running  time 
Tpar(s). 

In our  definition of  scalability, 
we are only interested in results 
obtained from solving large prob- 
lems. Therefore ,  we express both 
T~eq(S) and Tpa,.(s) using ® notation. 
® is the "asymptotic limit" or the 
"dominant  term" operator ,  defined 
more precisely as follows: 

®:V s,f(s), g(s) ~ R,f(s) = O(g(s)) ¢:> 
::1 kl ,  k2, so E R +: I s  I > so 
Iklg(s)l <- ~(s)l <-Ikzg(s)l 

Use of  the O opera tor  enforces 
the requirement  that the problem 
size s be large enough to display 
asymptotic behavior. 

Scalability 
We define the scalability ~(s) of  a 
machine for a given algori thm to be 
the ratio of  the asymptotic 
speedups on the real machine and 
on the ideal realization of  an EREW 
PRAM. The  normalization with 
respect to an ideal machine reflects 
a focus on the communication 
structure of  the given architecture 
and an a t tempt  to separate archi- 
tectural and algorithmic behavior. 
The  asymptotic speedups for the 
ideal machine and for the given 

architecture are St(s) = Ti'a"(S) and 
T~eq(S) 
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SR(s) = Tl'a'~(s) respectively. Thus,  
T , , , ~ ( s )  

3t{('5)__ Tparl(S) 
r e ( s )  - - -  

Sl(S) Tparn(S) 

Intuitively, the larger the 
scalability, the better  the perfor-  
mance that the given architecture 
can yield running  the given algo- 
rithm. 

We choose the EREW PRAM as 
our  ideal architecture since its be- 
havior resembles that of  a real sys- 
tem when ignoring the effects of  
interconnection networks and 
caches. The  asymptotic speedup  
St(s) for an EREW PRAM is simply 
a measure of  the parallelism inher-  
ent to the test algorithm. 

This definit ion is valid for a spe- 
cific architecture running  a specific 
algorithm. While it may be possible 
to generalize our  scalability defini- 
tion to a class of  architectures or a 
class of  algorithms, we do not at- 
tempt  to do so in this article. 

Out" definit ion yields more infor- 
mation than does a simple predi-  
cate. I f  a predicate is needed,  one 
can easily be generated from the 
definition. An architecture could be 
said to be f(s)-scalable if its 
scalab~lity is at least f(s) for a given 
algorithm. For example,  the 

1 
Omega-network [8] is 

log s 
scalable for comput ing the parity of  
s bits, as shown in the next section. 

An Example: Parity of  $ Bits 
Table 1 gives running  times, 
asymptotic speedups and scalabil- 
ities for various architectures run-  
ning a parallel parity calculation. 
This calculation examines s bits, 
de termining  whether  the number  
of  bits set is even or  odd using a bal- 
anced binary tree. In all cases, cer- 
tain potentially relevant factors are 
ignored,  such as part i t ioning over- 
head, scheduling overhead and 
program load time (the assumption 
is that the code and data are distrib- 
uted to the appropr ia te  processors 
before the program is run). The  
analysis in this section assumes unit  
communicat ion time between di- 
rectly connected communicat ion 
nodes and unit computat ion time 
for a simple two-bit parity calcula- 
tion. For  the given algorithm, 
Tseq(S) = s, Tm,~(s ) = log s, and 

S 
S 1 ( s  ) - 

log s" 
On the real architectures, the 

parity algori thm's per formance  is 
limited by network diameter .  For 
example,  on a one-dimensional  
mesh, the network diameter  is pro- 
port ional  to the number  of  proces- 
sors p, yielding a total parallel run-  

s 
ning time o f -  + p. The  optimal 

P 
part i t ion of  the problem for such a 
machine uses p = X/ss processors, so 
that each processor per forms the 
parity computat ion on X/ss bits lo- 

$ c a l a b i l l t l e s  o f  v a r i o u s  d i r e c t  [9] a n d  I n d i r e c t  [10 ]  
n e t w o r k - b a s e d  a r c h i t e c t u r e s .  FOr t h e  p a r i t y  

c a l c u l a t i o n ,  
s 

Tseq(S) = S, Tpar,(S) = log S, a n d  S,(S) - lOg S" 

1-d mesh 2-d mesh 3-d mesh Hypercube Omega 
(direct) (direct) (direct) (direct) (Indirect) 

TparR(S) S½ S½ S~ log S log 2 S 

SR(S) s~ S] s] S s 
log s log 2 s 

log s log s log S 1 
• qs) 1 

S½ s~ S~ log S 

cally. This parti t ion gives the best 
match between computat ion costs 
and communicat ion costs, with par- 
allel running  time Tp,,r,,(s) = s½, real 
asymptotic speedup  SR(s )= s½ and 

log s .  The  other  scalability ~ ( s ) =  s½ 

two mesh networks examined use 
similar part i t ions to match their  
own communicat ion structures with 
their  computat ional  loads, yielding 
results of  a similar form. Not sur- 
prisingly, xtt(s) increases as the com- 
munication latency decreases in 
networks with smaller diameters.  

The  hypercube and the Omega-  
network provide richer communi-  
cation structures (and lower diame- 
ters) than meshes of  lower dimen-  
sionality. The  hypercube does as 
well as a PRAM for this algori thm, 
yielding ~(s) = 1. The  Omega-  
network does not exploit  locality: 
communicat ion with all processors 
takes the same amount  of  time. 
This loss of  locality hurts its perfor-  
mance when compared  to the hy- 
percube, but  its lower d iameter  
gives it bet ter  scalability than any of  
the meshes. Al though per formance  
is limited by network diameter  for 
the parity algorithm, for many 
other  algorithms, network band- 
width is the performance- l imit ing 
factor. 

The  above analysis assumed unit  
communicat ion time between di- 
rectly connected communicat ion 
nodes. We now examine the validity 
of  this assumption and propose a 
modif ied definit ion of  scalability 
that incorporates the effects of  
physical constraints. 

Physical Constraints 
Physical constraints impose limita- 
tions on the communicat ion speed 
between nodes, making our  as- 
sumptions of  unit  communicat ion 
time between directly connected 
nodes unrealistic. When a network 
with more than three dimensions, 
for example,  a hypercube,  is em- 
bedded  in three-dimensional  space, 
wires in some dimensions of  the 
network will be much longer  than 
wires in o ther  dimensions. I f  the 
network clock cycle is related to the 
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length of the longest wire (assum- 
ing a synchronous system with a 
single bit on a given wire at a given 
time), networks with higher dimen- 
sionality will have a slower clock, 
and will therefore yield larger val- 
ues for Tp~,~(s) and correspondingly 
lower values for ~(s). For example, 
the length of the longest wire in a 
naive embedding of a p-processor 
hypercube into three-dimensional 
space is O(X}~). (A better embed- 
ding exists but we use the naive 
embedding here for simplicity.) 

The notion of three-space 
scalability can now be defined to ac- 
count for the increase in communi- 
cation costs due to physical con- 
straints. If  SR3(s) reflects the 
asymptotic speedup on a real archi- 
tecture implemented in three- 
dimensional space, 

q'~(s)  ~ SR~(s) = T~a~,(s) 

Sl(s) Tparn~(s) 

We now apply this modified defi- 
nition to the parity algorithm run- 
ning on a hypercube. The slower 
network clock constrained by the 
longest wire in the network (®(~'p)) 
produces a corresponding increase 
in the communication time between 
every pair of directly connected 
nodes. Therefore,  for the given 
algorithm, the communication cost 
in a hypercube implemented in 
three-dimensional space is worse 
than that of a three-dimensional 
mesh. On p processors, the runt ime 
of an s-bit parity computation is 

s + ~ log p. The runt ime for this 
P 
computation is minimized when 

(s--2~) 'a processors, yielding 
P = log s 

Tp~n(s) = s l  log~ s and Sn(s) = 
s~ a 

- -  The resulting scalability of 
log~ s' 

the hypercube ~3(s ) _ logdsl is 

lower than the scalability of a three- 
dimensional mesh by a factor of 
log~ s. 

The above analysis takes in- 
creased wire length into account, 
but ignores the effect of wire thick- 
ness. If  nonzero wire thickness is 

also considered, the scalability of 
the hypercube is further dimin- 
ished. 

Summary 
This article proposes a definition of 
scalability based on the communica- 
tion patterns in parallel algorithms 
and the communication structures 
provided by parallel architectures. 
Intuitively, the scalability of an ar- 
chitecture measures the fraction df 
the parallelism inherent  to a given 
algorithm that can be exploited by 
any machine with that architecture. 
We define scalability tit(s) of an ar- 
chitecture for a given algorithm 
with problem size s as the ratio of 
the algorithm's asymptotic speedup 
on the architecture in question and 
its corresponding asymptotic 
speedup on an EREW PRAM. The 
asymptotic speedup for the given 
algorithm and architecture, speci- 
fied as a function of problem size, is 
the maximum speedup attainable 
by any machine of the given archi- 
tecture, regardless of the number  
of processors employed. 
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