
"V"

~ calability is a common ob-
jective in the design ofmul-
tiprocessors, judging by the
number of parallel machine
architectures touted as
"scalable" or "large-scale."

Such claims to scalability are hard to
refute (or prove) because scalability
has no commonly accepted, precise
definition. There is, however, some
consensus that as the size of a scalable
machine is increased, a correspond-
ing increase in performance is ob-
tained. Furthermore, the increase
in performance is related to com-
munication patterns in applications
programs and the communication
infrastructure provided by the ma-
chine. This article presents a precise
definition for scalability derived from
these observations.

Why do we care about scalability?
Primarily, once an architecture is

architecture to be the fraction of the
parallelism inherent in a given algo-
rithm that can be exploited by any
machine of that architecture as a
function of problem size. For a given
algorithm and problem size, we de-
rive the inherent parallelism as the
ratio of the serial execution time and
the runtime on an ideal realization of
a parallel random access machine
(PRAM) 1. For the same algorithm
and problem size, we then derive the
maximum speedup attainable by a
machine of any size with the architec-
ture of interest. (In this paper, ma-
chine size is stated in terms of p, the
number of processors.) The maxi-
mum speedup, specified as a function
of problem size, is called the asymp-
totic speedup of the architecture for the
given algorithm. Thus the inherent
parallelism of the algorithm is its
asymptotic speedup on an ideal

shown to be PRAM machine. Our
~ ' ~ l ~ ! ! i measure of scalabil-

d [~ l ~ " • ~ ~ • • d [~ • ity follows as the ratio
• • • ~ J i F W ~ • W w ~ • • • • • of the asymptot ic

111 1 U I U l l t S l . - speedups

scalable, then machines I 1 ~ ~ 1 1 ~ ~ ~
whose size varies over a J ~ " ~ ' I ~ ~ " I L ' ~
wide ran e can use that
same architecture. There is I •
a caveat to this argument, - ~ - • . ~ . on the given architecture and
however. We believe it is
unlikely that practical machines dif-
fering in size by several orders of
magnitude will have the same struc-
ture: there are size-related issues that
are simply not relevant when build-
ing small machines. Nevertheless, we
can use scalability to aid our study of
large machines. For designers of new
architectures, small experimental pro-
totypes can demonstrate the viability
of ideas in much larger machines. If
a system can be shown to scale well
for a certain class of algorithms, then
measurements from simulations of
those algorithms on relatively few
processors can be used to predict the
behavior of systems in which the
number of processors is too large for
simulation to be practical.

We define the scalability of a given

D a n i e l N u s S b a u m

on the PRAM.
As an example, let us compute the

scalability of a hypercube machine
on the problem of adding s numbers,
ignoring overflows, where individual
additions are structured as a bal-
anced binary tree. We assume that
individual binary additions complete
in a single cycle and that single-word
communications between directly
connected processors also take one
cycle. On an ideal PRAM realiza-
tion, this addition can be done in log
s steps. Similarly, an s-processor
hypercube can achieve the minimum
runtime of log s. Thus the scalability

(s) of a hypercube for the above
problem is one. Intuitively, a scala-
bility of one implies the hypercube
communication structure allows full
exploitation of the parallelism in-

a n d A n a n t A g a r w a l

COMMUNICATIONS OF THE ACM/March 1991/Vol.34, No.3 S 7

heren~! in the given algorithm, re-
gardless of problem size

Scalability is by no means the
only consideration in the design of
a parallel processor. Other factors
such as processor efficiency, pro-
grammability, flexibility, and cost-
effectiveness are also important in
evaluating a machine design; in
fact, when building a machine of a
knowrL size, scalability may not be a
consideration at all.

Background
Notions of scalability are invariably
tied to notions of speedup.
Scalability might be defined as fol-
lows:

A scalable architecture exhib-
its speedup linearly propor-
tional to p, the number of
processors employed.

We argue that this definition is de-
ficient, using two commonly ac-
cepted notions of speedup--simple
speedup and scaled speedup. Sim-
ple speedup keeps problem size
fixed and scaled speedup allows
problem size to grow with machine
size [61].

I f simple speedup is used, it is
easy to show no architecture is scal-
able by the definition of scalability
stated above. Amdahl's classic
paper [1] argues that when prob-
lem size is fixed, speedup is
bounded by the reciprocal of the
serial fraction of the algorithm.
More accurately, speedup is
bounded by the ratio between the
serial complexity for the algorithm
and the length of the critical path
through the dataflow graph for
that algorithm. Flatt and Kennedy
[4] are even more pessimistic, show-
ing that as the number of proces-
sors is increased, the running time
eventually hits a minimum, after
which adding processors can only
cause t:he algorithm to take longer
to complete. Hard performance
limits imply lack of scalability by the

]Specifically, we use an exclusive read , exclu-
sive wri te (EREW) PRAM, which is an ideal-
ized mode l o f a parallel c o m p u t e r that satis-
fies all nonconf l ic t ing m e m o r y accesses in one
cycle and queues conflict ing m e m o r y accesses
to be satisfied one af ter ano the r , each requir-
ing one t ime unit [7].

IlIH
simple definition given above, ren-
dering simple speedup inadequate.

Perhaps simple speedup is the
wrong performance metric to use
in a definition of scalability: we now
try using scaled speedup instead.
Gustafson [6] defines scaled
speedup to allow the problem size
(as measured by its serial complex-
ity) to increase linearly with p, the
number of processors, following
the rationale that one often uses
nmltiprocessors to run larger pro-
grams, not to run the same pro-
grams faster. Unfortunately, for
most interesting algorithms, maxi-
mum achievable speedup does not
increase as fast as serial complexity;
so even using Gustafson's more lib-
eral definition for speedup, no ar-
chitecture is scalable by the simple
definition given above. Further-
more, Flatt and Kennedy show that
for any algorithm in which the
overhead due to parallelism in-
creases with p, the scaled speedup is
necessarily less than linear, and that
when the parallelism overhead is
linear or worse with p, there is actu-
ally a hard upper bound on the
achievable scaled speedup.

Goodman, Hill, and Woest [5]
restrict the simple scalability defini-
tion given above to scalable algo-
rithms. Parallelism in scalable algo-
rithms grows at least linearly with
the serial complexity. Furthermore,
they relax the speedup require-

P for small networks, ment to

and ~ for large networks, where
Z

p is the number of processors. This
approach has two drawbacks: it
excludes a large class of interesting
algorithms, and it fails to distin-
guish between scalable algorithms
that exhibit very different commu-
nication patterns. Using the defini-
tion presented by Goodman et al., it
is possible to devise scalable algo-
rithms that make most interesting
architectures appear unscalable.

The simple definition for
scalability given above has problems
both with respect to the meaning of
speedup and with respect to differ-
ences in behavior between different

algorithms. A good definition for
scalability must take both of these
issues into account.

Requirements
In our view, a useful definition of
scalability has several requirements.
First, it must express both the ef-
fects of the architecture's intercon-
nection network and the communi-
cation patterns inherent to the
algorithm. The communication
behavior of an algorithm can be
expressed in terms of properties of
its communication graph such as
the clustering of communication
edges and the frequency of com-
munication along those edges.

Second, the definition must mea-
sure an architecture's scalability
with respect to a given algorithm.
Because different algorithms can
have widely different communica-
tion patterns, their performance
can scale differently with machine
size on a given architecture. Certain
architectures might yield good per-
formance only for algorithms
whose communication patterns are
well matched to the architecture's
network structure. However, it may
be possible to generalize the defini-
tion of scalability to classes of algo-
rithms.

Third, we must carefully distin-
guish between algorithmic scalability
and architectural scalability. Algorith-
mic scalability is related to the par-
allelism inherent in an algorithm,
and can be measured through its
speedup on an architecture with an
idealized communication structure,
such as a PRAM. By defining archi-
tectural scalability as the relative
performance between the ideal and
the real architectures, we will isolate
those aspects of scalability arising
from algorithmic behavior from
those arising from machine design.
This machine-oriented view of
scalability is useful from the view-
point of a computer architect, and
is the basis for our definition in this
article. However, the end-user
might prefer a different notion of
scalability that combines our con-
cepts of algorithmic and architec-
tural scalability.

Fourth, the effects of physical

S 8 March 1991/Voi.34, No.3/@OMMUNICATION$ OF THE ACM

constraints imposed by the three-
dimensionality of space and funda-
mental limits on communicat ion
speeds have to be considered. This
issue is taken up in the section
called Physical Constraints.

Fifth, scalability should be an
indicator of the best achievable per-
formance, without regard to effi-
ciency or cost-effectiveness. For
algorithms whose parallelism over-
head increases with p as p becomes
large, increased speedup can only
be obtained at the expense of lower
efficiency [4], even when Gus-
tafson's notion of scaled speedup is
the speedup metric employed.
Since efficiency is not the pr imary
thrust of this article, we base our
definit ion of scalability on asymptotic
speedup. For a given algorithm, ar-
chitecture and problem size, the
asymptotic speedup is the best
achievable speedup on a machine
on any size. This definit ion keeps
the problem size constant while al-
lowing the number of processors to
become arbitrarily large.

We will not consider cost-effec-
tiveness in our definition. However,
the cost often manifests itself indi-
rectly through its impact on ma-
chine size. For example, architec-
tures that make use of full-map
directories [2] are commonly said to
be nonscalable due to cost consider-
ations. The full-map directory
scheme requires memory at each
node propor t ional to p, the number
of processors. This has the effect of
increasing node size (and conse-
quently the communication time) as
p increases, thus increasing overall
machine cycle time, producing a
corresponding decrease in
scalability.

Finally, any at tempt to define
scalability ought to yield more in-
formation than a simple predicate.
A simple predicate hides informa-
tion as to how badly the architec-
ture fails or how well it succeeds in
being scalable. We want a definition
that reflects behaviors of different
algorithms in a concrete fashion.

With these ideas in mind, we
present the following informal def-
inition for scalability:

For a given algorithm, an ar-
chitecture's scalability is the
ratio of the algori thm's asymp-
totic speedup when run on the
architecture in question to its
corresponding asymptotic
speedup when run on an
EREW PRAM, as a function of
problem size.

Intuitively, this definition measures
the fraction of the parallelism in-
herent to the given algori thm that
can be realized by the architecture
in question. In the next two sec-
tions, we formalize this definition.

ASymptotic Speedup
For a given architecture, algorithm,
and problem size s, the asymptotic
speedup S(s) is the best speedup
that can be attained, varying only p,
the number of processors.

We formally define the asymp-
totic speedup S(s) for a given paral-
lel algori thm as follows:

s =- problem size
Tseq(S) =-- ®(Serial Running

Time)
Tmr(S) =- O(Minimum Parallel

Running Time)

S(s) ~ Tseq(S)
Tpar(s)

The problem sizes is the indepen-
dent variable upon which all other
metrics are based. Note that s is a
function of the encoding of the
input, and that a change in the
units of s for a given problem
changes only the form of the result.
For example, in muhiplying square
matrices, we can use the number of
elements n or the number of rows r
as the problem size. The runt ime
for a s traightforward matrix multi-
ply algori thm is n~ in the first case
and r ~ in the second case. These
two expressions are equivalent by
the substitution n = r 2.

T~q(S) is the serial running time.
Meaningful measurements of
asymptotic speedup mandate the
use of good serial algorithms, even
if they differ in structure from the
corresponding parallel algorithms.
In practice, however, expedience
may justify using the single proces-
sor running time of the parallel al-
gori thm as an estimate of the se-

quential runn ing time. Although
we show in the next section that our
choice of the serial algori thm does
not affect scalability, it is still useful
for calculating asymptotic speedup,
which is an interesting metric in it-
self.

Tpar(S) is the minimum parallel
running time for the given algo-
rithxn witla problem size s. This time
is calculated using as many proces-
sors as necessary to achieve the
minimum runtime for the given
problem size. We assume that issues
of parti t ioning, placement and
scheduling are addressed by either
the machine itself (including its
software system) or explicitly by the
programmer . In other words, we
consider solutions to these issues
not to be part of the algorithm, but
instead, part of the machine.

Finally, the asymptotic speedup S(s)
is def ined to be the ratio between
the serial running time T, eq(S) and
the minimum parallel running time
Tpar(s).

In our definition of scalability,
we are only interested in results
obtained from solving large prob-
lems. Therefore , we express both
T~eq(S) and Tpa,.(s) using ® notation.
® is the "asymptotic limit" or the
"dominant term" operator , defined
more precisely as follows:

®:V s,f(s), g(s) ~ R,f(s) = O(g(s)) ¢:>
::1 kl , k2, so E R +: I s I > so
Iklg(s)l <- ~(s)l <-Ikzg(s)l

Use of the O opera tor enforces
the requirement that the problem
size s be large enough to display
asymptotic behavior.

Scalability
We define the scalability ~(s) of a
machine for a given algori thm to be
the ratio of the asymptotic
speedups on the real machine and
on the ideal realization of an EREW
PRAM. The normalization with
respect to an ideal machine reflects
a focus on the communication
structure of the given architecture
and an a t tempt to separate archi-
tectural and algorithmic behavior.
The asymptotic speedups for the
ideal machine and for the given

architecture are St(s) = Ti'a"(S) and
T~eq(S)

COMMUNICATIONS OF THE ACM/March 1991/Vo1.34, No.3 E: 9

SR(s) = Tl'a'~(s) respectively. Thus,
T , , , ~ (s)

3t{('5)__ Tparl(S)
r e (s) - - -

Sl(S) Tparn(S)

Intuitively, the larger the
scalability, the better the perfor-
mance that the given architecture
can yield running the given algo-
rithm.

We choose the EREW PRAM as
our ideal architecture since its be-
havior resembles that of a real sys-
tem when ignoring the effects of
interconnection networks and
caches. The asymptotic speedup
St(s) for an EREW PRAM is simply
a measure of the parallelism inher-
ent to the test algorithm.

This definit ion is valid for a spe-
cific architecture running a specific
algorithm. While it may be possible
to generalize our scalability defini-
tion to a class of architectures or a
class of algorithms, we do not at-
tempt to do so in this article.

Out" definit ion yields more infor-
mation than does a simple predi-
cate. I f a predicate is needed, one
can easily be generated from the
definition. An architecture could be
said to be f(s)-scalable if its
scalab~lity is at least f(s) for a given
algorithm. For example, the

1
Omega-network [8] is

log s
scalable for comput ing the parity of
s bits, as shown in the next section.

An Example: Parity of $ Bits
Table 1 gives running times,
asymptotic speedups and scalabil-
ities for various architectures run-
ning a parallel parity calculation.
This calculation examines s bits,
de termining whether the number
of bits set is even or odd using a bal-
anced binary tree. In all cases, cer-
tain potentially relevant factors are
ignored, such as part i t ioning over-
head, scheduling overhead and
program load time (the assumption
is that the code and data are distrib-
uted to the appropr ia te processors
before the program is run). The
analysis in this section assumes unit
communicat ion time between di-
rectly connected communicat ion
nodes and unit computat ion time
for a simple two-bit parity calcula-
tion. For the given algorithm,
Tseq(S) = s, Tm,~(s) = log s, and

S
S 1 (s) -

log s"
On the real architectures, the

parity algori thm's per formance is
limited by network diameter . For
example, on a one-dimensional
mesh, the network diameter is pro-
port ional to the number of proces-
sors p, yielding a total parallel run-

s
ning time o f - + p. The optimal

P
part i t ion of the problem for such a
machine uses p = X/ss processors, so
that each processor per forms the
parity computat ion on X/ss bits lo-

$ c a l a b i l l t l e s o f v a r i o u s d i r e c t [9] a n d I n d i r e c t [10]
n e t w o r k - b a s e d a r c h i t e c t u r e s . FOr t h e p a r i t y

c a l c u l a t i o n ,
s

Tseq(S) = S, Tpar,(S) = log S, a n d S,(S) - lOg S"

1-d mesh 2-d mesh 3-d mesh Hypercube Omega
(direct) (direct) (direct) (direct) (Indirect)

TparR(S) S½ S½ S~ log S log 2 S

SR(S) s~ S] s] S s
log s log 2 s

log s log s log S 1
• qs) 1

S½ s~ S~ log S

cally. This parti t ion gives the best
match between computat ion costs
and communicat ion costs, with par-
allel running time Tp,,r,,(s) = s½, real
asymptotic speedup SR(s)= s½ and

log s . The other scalability ~ (s) = s½

two mesh networks examined use
similar part i t ions to match their
own communicat ion structures with
their computat ional loads, yielding
results of a similar form. Not sur-
prisingly, xtt(s) increases as the com-
munication latency decreases in
networks with smaller diameters.

The hypercube and the Omega-
network provide richer communi-
cation structures (and lower diame-
ters) than meshes of lower dimen-
sionality. The hypercube does as
well as a PRAM for this algori thm,
yielding ~(s) = 1. The Omega-
network does not exploit locality:
communicat ion with all processors
takes the same amount of time.
This loss of locality hurts its perfor-
mance when compared to the hy-
percube, but its lower d iameter
gives it bet ter scalability than any of
the meshes. Al though per formance
is limited by network diameter for
the parity algorithm, for many
other algorithms, network band-
width is the performance- l imit ing
factor.

The above analysis assumed unit
communicat ion time between di-
rectly connected communicat ion
nodes. We now examine the validity
of this assumption and propose a
modif ied definit ion of scalability
that incorporates the effects of
physical constraints.

Physical Constraints
Physical constraints impose limita-
tions on the communicat ion speed
between nodes, making our as-
sumptions of unit communicat ion
time between directly connected
nodes unrealistic. When a network
with more than three dimensions,
for example, a hypercube, is em-
bedded in three-dimensional space,
wires in some dimensions of the
network will be much longer than
wires in o ther dimensions. I f the
network clock cycle is related to the

60 March 1991/Vo1.34, No.3/COMMUNICATIONS OF THE ACM

length of the longest wire (assum-
ing a synchronous system with a
single bit on a given wire at a given
time), networks with higher dimen-
sionality will have a slower clock,
and will therefore yield larger val-
ues for Tp~,~(s) and correspondingly
lower values for ~(s). For example,
the length of the longest wire in a
naive embedding of a p-processor
hypercube into three-dimensional
space is O(X}~). (A better embed-
ding exists but we use the naive
embedding here for simplicity.)

The notion of three-space
scalability can now be defined to ac-
count for the increase in communi-
cation costs due to physical con-
straints. If SR3(s) reflects the
asymptotic speedup on a real archi-
tecture implemented in three-
dimensional space,

q'~(s) ~ SR~(s) = T~a~,(s)

Sl(s) Tparn~(s)

We now apply this modified defi-
nition to the parity algorithm run-
ning on a hypercube. The slower
network clock constrained by the
longest wire in the network (®(~'p))
produces a corresponding increase
in the communication time between
every pair of directly connected
nodes. Therefore, for the given
algorithm, the communication cost
in a hypercube implemented in
three-dimensional space is worse
than that of a three-dimensional
mesh. On p processors, the runt ime
of an s-bit parity computation is

s + ~ log p. The runt ime for this
P
computation is minimized when

(s--2~) 'a processors, yielding
P = log s

Tp~n(s) = s l log~ s and Sn(s) =
s~ a

- - The resulting scalability of
log~ s'

the hypercube ~3(s) _ logdsl is

lower than the scalability of a three-
dimensional mesh by a factor of
log~ s.

The above analysis takes in-
creased wire length into account,
but ignores the effect of wire thick-
ness. If nonzero wire thickness is

also considered, the scalability of
the hypercube is further dimin-
ished.

Summary
This article proposes a definition of
scalability based on the communica-
tion patterns in parallel algorithms
and the communication structures
provided by parallel architectures.
Intuitively, the scalability of an ar-
chitecture measures the fraction df
the parallelism inherent to a given
algorithm that can be exploited by
any machine with that architecture.
We define scalability tit(s) of an ar-
chitecture for a given algorithm
with problem size s as the ratio of
the algorithm's asymptotic speedup
on the architecture in question and
its corresponding asymptotic
speedup on an EREW PRAM. The
asymptotic speedup for the given
algorithm and architecture, speci-
fied as a function of problem size, is
the maximum speedup attainable
by any machine of the given archi-
tecture, regardless of the number
of processors employed.
A c k n o w l e d g m e n t s
The research reported here has
benefited greatly from discussions
with Tom Leighton. Useful com-
ments from Steve Ward and Mark
Hill are also gratefully acknowl-
edged. []

References
1. Amdahl, G.M. Validity of the single-

processor approach to achieving
large scale computing capabilities. In
A1FPS Conference Proceedings (Apr.
1967).

2. Censier, L.M. and Feautrier, P. A
new solution to coherence problems
in multicache systems. IEEE Trans.
Comput. C-27, 12 (Dec. 1978), 1112-
1118.

3. Eager, D.L., Zahorjan, J., and
Lazowska, E.D. Speedup versus effi-
ciency in parallel systems. IEEE
Trans. Comput. 38, 3 (Mar. 1989).

4. Flatt, H.P. and Kennedy, K. Perfor-
mance of parallel processors. Parallel
Comput. 31, 1989. 1-20.

5. Goodman, J.R., Hill, M.D., and
Woest, P.J. Scalability and its applica-
tion to multicube. Department of
Computer Sciences, University of
Wisconsin-Madison, 1988.

6. Gustafson, J.L. Reevaluating Am-

dahl's Law. Commun. ACM 31, 5 (May
1988), 532-533.

7. Karp, R.M. and Ramachandran, V.
Parallel algorithms for shared-
memory machines. Tech. Rep. 408,
University of California at Berkeley,
Fall 1988.

8. Lawrie, D.H. Access and alignment
of data in an array processor. 1EEE
Trans. Comput. C-24, 12 (Dec. 1975),
1145-1155.

9. Seitz, C.L. Concurrent VLSI Archi-
tectures. IEEE Trans. Comput. C-33,
12 (Dec. 1984).

10. Siegel, J. lnterconnection Networks for
Large-Scale Parallel Processing.
McGraw-Hill, 1990. Second Edi-
tion.

CR Categories and Subject Descrip-
tors: C.1.2 [Multiple Data Stream
Architectures]:Iparallel processors,
interconnection architectures; C.4 [Per-
formance of Systems] :--Perform-
ance attributes

General Terms: Algorithms, Design,
Experimentation, Performance, Theory

About the Authors:
DANIEL NUSSBAUM has been doing
graduate research with the Laboratory
for Computer Science at the Massachu-
setts Institute of Technology in Cam-
bridge, Mass. since 1983. He is currently
pursuing a Ph.D. His primary research
interests include parallel architectures,
languages, algorithms and operating
systems.

ANANT AGARWAL has been with the
Laboratory for Computer Science at the
Massachusetts Institute of Technology
since January 1988. He is an assistant
professor of electrical engineering and
computer science. At Stanford, he par-
ticipated in the MIPS and MIPS-X proj-
ects. His current research interests
include the design of scalable muhi-
processor systems, VLSI processors,
parallel-processing software, and per-
formance evaluation.

Authors' Present Address: Daniel
Nussbaum and Anant Agarwal are at
the Laboratory for Computer Science,
Room NE43-629 Mass. Inst. of Tech.,
545 Tech. Square, Cambridge, MA
02139. Email: Nussbaum--dann@
masala.lcs.mit.edu, AgarwalIagarwal@
masala.lcs.mit.edu

This research was funded by DARPA contract
#N00014-87-K-0825

Q ACM 0002-0782/91/0300-056 $1.50

C O M M U N I C A T I O N S OF THE ACM/March 1991/Vol.34, No.3 6 1

