aSoC: A Scalable On-Chip
Communication Architecture

Russell Tessier, Jian Liang, Andrew Laffely, and Wayne Burleson
University of Massachusetts, Amherst
Reconfigurable Computing Group

ECEG669: Lecture 24

Outline

= Design philosophy

s Communication architecture

= Mapping tools / simulation environment
m Benchmark designs

= Experimental results

= Prototype layout

ECEG669: Lecture 24

Design Goals / Philosophy

m Low-overhead core interface for on-chip streams
= On-chip bus substitute for streaming applications
= Allows for interconnect of heterogeneous cores
= Differing sizes and clock rates
m Based on static scheduling
= Support for some dynamic events, run-time reconfiguration

m Development of complete system

= Architecture, prototype layout, simulator, mapping tools,
target applications

ECEG669: Lecture 24

aSoC Architecture

/ wmunicaﬂo
nterf
o terface

South Core

-

=

Heterogeneous Cores
Point-to-point connections
2 Communication Interface

ECEG669: Lecture 24

West

Ctrl

Core

Point to Point Data Transfer

—:-=»Cycle2 === Cycle3

m Data transfers from tile to tile on each communication cycle
m Schedule repeats based on required communication patterns

ECEG669: Lecture 24

Core and Communication Interface

—

Schedule
instruction

Interface Decoder
controller .
PC logic

Flow control

Interconnect

ECEG669: Lecture 24

Communication Interface Overview

= Interconnect memory controls crossbar configuration
m Programmable state machine
m Allows multiple streams

= Interface controller manages flow control
m Supports simple protocol based on single packet buffering

= Communication data memory (CDM) buffers stream data
m Single storage location per stream

= Coreport provides storage and synchronization

m Storage for input and output streams
m Requires minimal support for synchronization

ECEG669: Lecture 24

Interface Control Circuitry

) O O O ON

ECE669: Lecture 24

Data Dependent Stream Control

= Two types of branches
= Unconditional branch — end of schedule reached

= Conditional branch — test data value to modify
schedule sequence

= Provides minimal support for reconfiguration
m Requires core interface support

E"ITEPDTI Lo E;:l'-».'[

coreport to £,

COreport to west
coreport to I,

go to Ox0

ECEG669: Lecture 24

Inter-tile Flow Control / Buffer

= Provide minimum amount of storage per stream at
each node (1 packet)

m First priority: transfer data from storage
m Send and acknowledge simultaneously
m Can’t send same stream on consecutive cycles

Data

Buffer Full

ECEG669: Lecture 24

Inter-tile Flow Control

Data from
west | 0

Data from 1
west

To _
Crossbar

— 1

Flow
contro

Clear Addr Data Valid Bit

Data
Wr Add

I:Qead Addr |

Read Addr

ECEG669: Lecture 24

Coreport Interface to Communication

From Interconnect Flow
From Core Memory Control Bits To Core
Output Coreport | CPO CPI NSEW NSEW 1 Input Coreport
Valid Valid
Data : Data :
Bit
Coreport
Access?
5 f|3 w55 § 8
< ol < = 0 g < 0O
> []
CPO CPI
i ! i In ce U
S i g Crosshar '
E > > » E
W > > > W

m Data buffer provides synchronization with flow control

m Stream indicators (CPO, CPl) provide access to flow
control bits ECE669: Lecture 24

Adapting the IP Core

Input Coreport Output Coreport

Multiplier Core

= Multiplier example
= State machine sequencer

ECEG669: Lecture 24

Design Mapping Tool Flow

Support multiple core clock speeds and design
formats

Automate scheduling/routing

Allow feedback between core characteristics and
mapping decisions

Generate both core and communication
programming information

_ots of room for improvement (Streamilt,
HW/SW partitioning, estimators)

ECEG669: Lecture 24

Design Mapping Tools

Basic block exec. time
Partition/Assignment estimation

Source

Inter-core
S e Synchronization

Front-end
parse

Communication Core

4 _________________

scheduling compilation

SUIF

= Stream schedules Code core I|.F.
optimization _
generat|on
Graph-based /
Inter. Format R4000 Bit streams Communication
Instructions instructions

ECEG669: Lecture 24

Design Mapping Tool Front End

Current system isolates computation into basic
blocks

m Stream-oriented front-end (e.g. Streamlt) more
appropriate.

Front-end preprocessing

= Built on SUIF
= Performs standards optimizations

Intermediate form used for subsequent
partitioning placement, and scheduling (routing)

User Interface allows for interaction and feedback

ECEG669: Lecture 24

Partitioning and Assignment

m Clustering used to collect blocks based on cost function:

1
COSt = X* Tcompute + y* —— 4+ Z* Cotal

overlap

m Cost function takes both computation and communication
Into account
" T ompute = €Stimate overall compute time
= T erap = €Stimate overall time of overlapping communication
m C.., — estimate overall communication time

m Swap-based approach used to minimize cost across cores
based on performance estimates.

ECEG669: Lecture 24

Scheduled Routing

m Number and locations of streams known as a result of
scheduling

m Stream paths routed as a function of required path
bandwidth (channel capacity)

m Basic approach
= Order nets by Manhattan length

= Route streams using Prim’s algorithm across time slices based
on channel cost

m Determine feasible path for all streams

= Attempt to “fill-in” unused bandwidth in schedule with
additional stream transfers

ECEG669: Lecture 24

Back-end Code Generation

m C code targeted to R4000 cores
= Subsequently compiled with gcc

= Verilog code for FPGA blocks
= Synthesized with Synopsys and Altera tools

= Interconnect memory instructions for each
Interconnect memory

= Limited by size of interconnect memory

ECEG669: Lecture 24

Simulation Overview

m Simulation takes place in two phases

= Core simulator determines computation cycles between
Interface accesses

= Cycle accurate interconnect simulator determines data
transfer between cores taking core delay into account.

MEM?Z

RISCI1() {
for (i=0; i<Length; i=i+1) {

data = RECEIVE MEM |
x= RECEIVE FPGAI;
¥ = data + x¥a;
CompElock (20);
Send v To MACH;
Send v To MEMZ2;

(a) Codes for RISC] with comnwnication primitives (b} Data streams of IIR application

ECEG669: Lecture 24

Simulation Environment

Core codes from AppMapper

R4000 Sim. FPGA Sim.
(SimpleScalar (Quartus

Computation delays

Core speed —
Topology —— ' Network comm. Core C representation

Ol [OE2on —— simulation | events simulation Of cores
Cl instruction — |

Combined

Simulator Lib. S A

System statistics

System performance

ECEG669: Lecture 24

Core Simulators

Simplescalar (D. Burger/T. Austin — U. Wisconsin)
= Models R4000-like architecture at the cycle level

Breakpoints used to calculate cycle counts between
communication network interaction

Cadence Verilog —XL
= Used to model 484 LUT FPGA block designs
Modeled at RTL and LUT level
Custom C simulation

= Cycle counts generated for memory and multiply
accumulate blocks

Simulators invoked via scripts

ECEG669: Lecture 24

Interconnect Simulator
m Based on NSIM (MIT NuMesh Simulator — C.
Metcalf)
m Each tile modeled as a separate process

= Interconnect memory instructions used to control
cycle-by-cycle operation

m Core speeds and flow control circuitry modeled
accurately.

m Adapted for a series of on-chip interconnect
architectures (bus-based architectures)

ECEG669: Lecture 24

Target Architectural Models

i ke |

e

(a) 9—Core aSOC Topology (b) 16—Core aSOC Topology

m FPGA blocks contain 121 4-LUT clusters

s Custom MAC and 32Kx8 SRAM (Mem) blocks
m Same configurations used for all benchmarks

ECEG669: Lecture 24

Example: MPEG-2

MAC4

(1N e

Control In Buf W

R4000 DCT source MACO
R4000 | | block frame source A
otio -recon. [

LU MAC1

source A

source

- recon.
MAC3
R4000 - source |__,

- recon.

m Design partitioned across eleven cores
= Other applications: IR filter, image processing, FFT

ECEG669: Lecture 24

Core Parameters

Speed Area (?2)
Comm. 2.5 ns| 2500 x 3500
Interface
MIPs R4000 5ns| 4.3 x 107 **
MAC 5ns| 1500 x 1000
FPGA 10ns| 30000 x

30000

MEM (32Kx8) 5 ns|10000x 10000

@ Communication interface, MAC, FPGA, and
MEM sizes determined through layout (Tsmc 0.18um)

= ** R4000 size from MIPs web page

ECEG669: Lecture 24

Mapping Statistics

Design No. Cores | No. \EVE el Max Max CPort
Streams Instruct. Streams Per | Mem.
Cl Depth
IR 9 11 2 5 5
IR 16 20 2 5 5
IMG 9 8 2 3 3
IMG 16 15 4 4 4
FET 16 29 0 7 !
MPEG 16 19 4 8 8

®= Number of Interconnect Mem instructions (ClI
Instruct) deceptively small

= Likely need to better fold streams in schedule

ECEG669: Lecture 24

Comparison to IBM CoreConnect

9 Core Model 16 Core Model

Execution Time (ms) IIR| IMG IR IMG FFT MPEG
R4000 0.049 | 327.0 0.350 327.0 0.79 152
CoreConnect 0.012| 220 0.016 30.5 0.12 173
Coreconnect (burst) 0.012| 189 0.015 24.3 0.12 172
aSoC 0.006 9.6 0.006 7.3 0.09 83
aSoC Speed-up vs. 2.0 2.3 2.5 3.3 1.3 2.1
burst

Used aSoC Links 8 8 33 27 41 26
aSoC max. link usage 10% 8% 37% 28% 2% 25%
aSoC ave. link usage 1% % 22% 25% A 5%
CoreConnect busy 91% | 100% 100% 99% 32% 67%
(burst)

= Still work to do on mapping environment to boost aSoC
link utilization

ECEG669: Lecture 24

Comparison to Hierarchical CoreConnect

9-core Model 16-Core Model
Execution IR IMG IIR| IMG FFT | MPEG
Time (ms)
Hier 0.013 26.0 15.7 37.4 0.15 178
CoreConnect
aSoC 0.006 9.6 7.0 7.3 0.09 83
aSoC speedup 2.1 2.7 2.2 5.1 1.6 2.2

Multiple levels of arbitration slows down hierarchical
CoreConnect

ECEG669: Lecture 24

aS0C Comparison to Dynamic Network

m Direct comparison to oblivious routing network *

9-Core Model 16 Core Model

Execution IR IMG IR IMG MPEG
Time (ms)

Dynamic 0.008 14.4 8.7 9.7 162.0
Routing

aSoC 0.006 6.1 7.0 7.3 82.5
aSoC 1.3 2.4 1.3 1.3 2.0
Speedup

1. W. Dally and H. Aoki, “Deadlock-free Adaptive Routing in Multi-computer Networks

Using Virtual Routing”, IEEE Transactions on Parallel and Distributed Systems, April 1993
ECEG669: Lecture 24

aSoC Layout

v E I
i

‘Eﬁ FF":._I'ﬂI.. L-l:'_‘lI.E: r:ﬁﬁm
3 "_J

%EEE“%E Eed e
A L!unn.nfn-n"-m | |

| [
A AL

II‘l’[E:ltdEE:

ECEG669: Lecture 24

aSoC Multi-core Layout

m Comm. Interface
consumes about
6% of tile

m Critical path in
flow control
between tiles

m Currently
Integrating
additional cores

Future Work: Dynamic Voltage Scaling

m Data transfer rate

to/fromcoreused | .~ 4)

to control voltage
and clock '

= Counter and CAM
used to select |

sources ; i
= May be software [ortnto south s Esst 3 P
controlled | '

' Instruction Memory |

ECEG669: Lecture 24

Future Work: Dynamic Voltage Scaling

_ V1 V2 V3 V4
Voltage Selection System

m CAM allows
selection cam A il

>
-
>07

Clock /128 \

Selector 64
132
/16
ﬁ Critical Path [|
Global /2 Check — ¢
Clock n Clock
Set I ” Enable
Data Rate Reset |
M easur ement | | %
|
Coreport In count count Coreport Out

|
Cor e Local Clock Loca Supply

ECEG669: Lecture 24

Future Work

= Improved software mapping environment
m Integration of more cores

= Mapping of substantial applications

m Turbo codes
m Viterbi decoder

= More Integrated simulation environment

ECEG669: Lecture 24

Summary

m Goal: Create low-overhead interconnect
environment for on-chip stream communication

= |P core augmented with communication interface

= Flow control and some stream reconfiguration
Included In the architecture

= Mapping tools and simulation environment assist
In evaluating design

= |nitial results show favorable comparison to bus
and high-overhead dynamic networks.

ECEG669: Lecture 24

