ECE 669

Parallel Computer Architecture

Lecture 23

Parallel Compilation

74

UMASS

ECE669 L23: Parallel Compilation April 29, 2004

Parallel Compilation

° Two approaches to compilation
« Parallelize a program manually
» Sequential code converted to parallel code

° Develop a parallel compiler
Intermediate form
Partitioning

- Block based or loop based
Placement
Routing

ECE669 L23: Parallel Compilation April 29, 2004

Compilation technologies for parallel machines
Assumptions:

Input: Parallel program

Output: “Coarse” parallel program
& directives for:

. Which threads run in 1 task

. Where tasks are placed

. Where data is placed

. Which data elements go in each data chunk

Limitation: No special optimizations
for synchronization --
synchro mem refs treated
as any other comm.

ECE669 L23: Parallel Compilation April 29, 2004

Toy example

° Loop parallelization

Adding a total of 4n tntegers, ay, ag, -+ gy,

systermn.

Processor U will execute ag +as + - -+ + @y, .
Processor 0 will execute a, + apy0 + - -+ + ag,
Processor 0 will execute ag, + doyq0 + -+ +a

ill

Processor () wi

ECE669 L23: Parallel Compilation

execute ag, + agpgo + -+ a

ok ,{-}'J'FT.JLT;.‘L‘:.'U'F'

fairk

Caompute partial s ums.
ione partial sum per processor)

join

F1 com puies sumof parial sums.

April 29, 2004

_Example 0000000000000
° Matrix multiply

° Typically,
FORALL |
FORALL]
FOR k

cfi.i]=c[i.i]+ Ali.k]*B[k.]

° Looking to find parallelism...

ECE669 L23: Parallel Compilation April 29, 2004

Choosing a program representation...

° Dataflow graph

* No notion of storage problem
« Data values flow along arcs
 Nodes represent operations

ECE669 L23: Parallel Compilation April 29, 2004

Compiler representation

° For certain kinds of structured programs
Array

D
Data array Alin]

Index expressions

LOOP FORALL i
LOOP nest FORALL

° Unstructured programs

m Communication weight

ECE669 L23: Parallel Compilation April 29, 2004

Process reference graph

FORALL i FROM 0Oto 5
cfil= Af]+ ef]

Memory

(I

...... Not very useful

Monolithic
memory

 Nodes represent threads (processes) computation
 Edges represent communication (memory references)

« Can attach weights on edges to represent volume of
communication

 Extension: precedence relations edges can be added too

« Can also try to represent multiple loop produced threads as one
node

ECE669 L23: Parallel Compilation April 29, 2004

Process communication graph

do dy d,\ ds d,
1 11 . !
Po A1 P4 A1

I:)2

Allocate data items to nodes as well
Nodes: Threads, data objects
Edges: Communication

Key: Works for both shared-memory, object-oriented, and
dataflow systems! (Msg. passing)

ECE669 L23: Parallel Compilation April 29, 2004

PCG for Jacobi relaxation

O O O O OO0
O O O O O O
O 0 O O OO0

O O O O

O O O O Fine PcG
O O

O O O 00 O
O O O O

QO : Computation

QO : Data

Coarse PCG

Compilation with PCGs

Fine process communication
graph

Partitioning

Coarse process communication
graph

ECE669 L23: Parallel Compilation April 29, 2004

C

om

llation with PCGs

0-6-0-0

ECE669 L23: Parallel Compilation

Fine process communication
graph

Partitioning

Coarse process communication
graph

MP: >—
Placement % -

Coarse process communication
graph
... other phases, scheduling.
Dynamic?

April 29, 2004

Parallel Compilation

o

Consider loop partitioning

o

Create small local compilation

o

Consider static routing between tiles

o

Short neighbor-to-neighbor communication

o

Compiler orchestrated

ECE669 L23: Parallel Compilation April 29, 2004

Flow Compilation

C or Fortran Program

° Modulo unrolling

Modulo Unrolling

° Partitioning

° Scheduling

Small Memory Partitioning

Virtual Wires Scheduling

Custom Logic Generation

Traditional CAD O ptimizations

Hardware

ECE669 L23: Parallel Compilation April 29, 2004

Modulo Unrolling — Smart Memory

° Loop unrolling relies on (a) Data
dependencies Al
° Allow maximum parallelism B[]
° Minimize communication Code ——
for(i=0;<100;i++)
All]=A[l]"B[i+1]
(b) © | agl |8l A |50
Al B[]
$; Al B0 ||| AL [B

for{|=D'|{1Uﬂ;|+=4) {
Al=AII"B[I+1]
All+1]=AlI+1]"B[i+2]
Ali+2}=A[I+2]"B[i+3}
Ali+3}=A[I+3]"B[i+4]

for(i=0;i<100;i++)
Al=AlT"B[I+1]

ECE669 L23: Parallel Compilation April 29, 2004

Array Partitioning — Smart Memor

° Assign each line to separate
memory

° Consider exchange of data (d)

° Approach is scalable

Al

All | Bl

*_
>>>S
e o T
A

— >
I
+

}

ECE669 L23: Parallel Compilation

April 29, 2004

Communication Scheduling — Smart Memory

° Determine where data should be sent

° Determine when data should be sent

(e)

ECE669 L23: Parallel Compilation

All | B Alllgl
tmp3=Eyfi+1] trnp0=B,[i']
AJiT=AfI TR0 | |A [I1=A,[iTtmp1

All | B All | B0

tmp1 =B, tmp2=B[i]
A=A tmpz2 A=A tmp3

(f)

Al | B Al B
1: :[[=i'43-'| dB (0 1 tmp0=IdB, (i
mpa=IdE 12=IdA (i)
t2=IdA, (i) = 2: send(trmp0)
2 sendtmpa3) 3 tmpl=rev()
3. tmp0=rcv() 4: t3=t2*tmp1
4: t3=t2*tmp0 5: oA, (i
B stAl")
Afl (B A | Byl
1 tmpl =IdB Ji') = 1 tmp2=IdB,{i’)
t2=IdA(i" t2=IdA i)
2: send(tmpi) 2: send(tmp2)
3. tmp2=rcvi) 3. tmp3=rcv()
4 t3=t2*tmp2 4: t3=t2"tmp3
B astALli" 5. stA,(i)

April 29, 2004

Speedup for Jacobi — Smart Memory

° Virtual wires
Indicates scheduled
paths

° Hard wires are
dedicated paths

° Hard wires require
more wiring
resources

° RAW is a parallel
processor from MIT

ECE669 L23: Parallel Compilation

o 128 ¢
=
@
& 64}
%]
32t
16 }
8 B
4 B
2t - Custom-hard-wires
1 Custom-virtual-wires
I Raw
0 | | | |
0 4 8 12 16

Ntiles

Speedup scalability for jacobi

April 29, 2004

Partitionin

e Use heuristic for unstructured programs
» For structured programs...

...start from:
Arrays
A

Q B < List of
arrays
- List of
/ loops

Loop Nests

ECE669 L23: Parallel Compilation April 29, 2004

Notion of Iteration space, data space

Eg Forall [

Foral]
Ali,j]= Afi+2,j+1]+ A[i,j +1]

A Matrix
Data space
J Iteration space
O—
T Represents a “thread” with a given
value of i,j

ECE669 L23: Parallel Compilation April 29, 2004

Notion of Iteration space, data space

Eg Forall [

Forall]

°°°°° Data space

This thread affects the above
computation

lteration space

. .
I Represents a “thread” with a given
value of i,j

° Partitioning: How to “tile” iteration for MIMD M/Cs
data spaces?

ECE669 L23: Parallel Compilation April 29, 2004

Loop partitioning for caches

° Machine model

A
Memory

Network

Cache Cache Cache

« Assume all data is in memory
e Minimize first-time cache fetches

e Ignore secondary effects such as invalidations due to writes

ECE669 L23: Parallel Compilation April 29, 2004

Summary

° Parallel compilation often targets block based and
loop based parallelism

° Compilation steps address identification of
parallelism and representations

 Graphs often useful to represent program dependencies

° For static sc_hedulin%both computation and
communication can be represented

° Data positioning is an important for computation

ECE669 L23: Parallel Compilation April 29, 2004

