
ECE669 L23: Parallel Compilation April 29, 2004

ECE 669

Parallel Computer Architecture

Lecture 23

Parallel Compilation

ECE669 L23: Parallel Compilation April 29, 2004

Parallel Compilation

° Two approaches to compilation
• Parallelize a program manually
• Sequential code converted to parallel code

° Develop a parallel compiler
• Intermediate form
• Partitioning

- Block based or loop based
• Placement
• Routing

ECE669 L23: Parallel Compilation April 29, 2004

Compilation technologies for parallel machines

Assumptions:

Input: Parallel program

Output: “Coarse” parallel program
& directives for:

• Which threads run in 1 task
• Where tasks are placed
• Where data is placed
• Which data elements go in each data chunk

Limitation: No special optimizations
for synchronization --
synchro mem refs treated
as any other comm.

ECE669 L23: Parallel Compilation April 29, 2004

Toy example

° Loop parallelization

ECE669 L23: Parallel Compilation April 29, 2004

Example

° Matrix multiply

° Typically,

° Looking to find parallelism...

FORALL i
 FORALL j
 FOR k

 C i, j[]= C i , j[]+ A i , k[]∗B k , j[]

ECE669 L23: Parallel Compilation April 29, 2004

Choosing a program representation...

° Dataflow graph

• No notion of storage problem
• Data values flow along arcs
• Nodes represent operations

+

a0 b0

c0

+

a2 b2

c2

+

a5 b5

c5

ECE669 L23: Parallel Compilation April 29, 2004

Compiler representation

° For certain kinds of structured programs

° Unstructured programs

A

Data
X

Task
A

Task
B

LOOP
LOOP nest

Data array

Index expressions

Communication weight

Array

 A i , j[]

FORALL i
 FORALL j

ECE669 L23: Parallel Compilation April 29, 2004

Process reference graph

• Nodes represent threads (processes) computation
• Edges represent communication (memory references)
• Can attach weights on edges to represent volume of

communication
• Extension: precedence relations edges can be added too
• Can also try to represent multiple loop produced threads as one

node

FORALL i FROM 0 to 5

 C i[]= A i[]+ B i[]

P0 P1 P2 P5

Memory Monolithic
memory

or 2 1

......Not very useful

ECE669 L23: Parallel Compilation April 29, 2004

• Allocate data items to nodes as well
• Nodes: Threads, data objects
• Edges: Communication
• Key: Works for both shared-memory, object-oriented, and

dataflow systems! (Msg. passing)

Process communication graph

P0

A0 B0

C0

d1d0

1 1

1
P1

A01 A2

C1

d3d2

1 1

1
P2

B0

d5d4

P5

ECE669 L23: Parallel Compilation April 29, 2004

PCG for Jacobi relaxation

Fine PCG

Coarse PCG

4

4

4

4

4

: Computation

: Data

ECE669 L23: Parallel Compilation April 29, 2004

Compilation with PCGs

Fine process communication
graph

Partitioning

Coarse process communication
graph

ECE669 L23: Parallel Compilation April 29, 2004

Compilation with PCGs

Fine process communication
graph

Coarse process communication
graph

Placement

... other phases, scheduling.
Dynamic?

MP:

Partitioning

Coarse process communication
graph

ECE669 L23: Parallel Compilation April 29, 2004

Parallel Compilation

° Consider loop partitioning

° Create small local compilation

° Consider static routing between tiles

° Short neighbor-to-neighbor communication

° Compiler orchestrated

ECE669 L23: Parallel Compilation April 29, 2004

Flow Compilation

° Modulo unrolling

° Partitioning

° Scheduling

ECE669 L23: Parallel Compilation April 29, 2004

Modulo Unrolling – Smart Memory

° Loop unrolling relies on
dependencies

° Allow maximum parallelism

° Minimize communication

ECE669 L23: Parallel Compilation April 29, 2004

Array Partitioning – Smart Memory

° Assign each line to separate
memory

° Consider exchange of data

° Approach is scalable

ECE669 L23: Parallel Compilation April 29, 2004

Communication Scheduling – Smart Memory

° Determine where data should be sent

° Determine when data should be sent

ECE669 L23: Parallel Compilation April 29, 2004

Speedup for Jacobi – Smart Memory

° Virtual wires
indicates scheduled
paths

° Hard wires are
dedicated paths

° Hard wires require
more wiring
resources

° RAW is a parallel
processor from MIT

ECE669 L23: Parallel Compilation April 29, 2004

Partitioning

• Use heuristic for unstructured programs
• For structured programs...

...start from:

Arrays

List of
arrays

A B C

L0 L1 L2

Loop Nests

List of
loops

ECE669 L23: Parallel Compilation April 29, 2004

Notion of Iteration space, data space

E.g.

Forall i
Forall j
 A i , j[] = A i + 2 , j + 1[] + A i , j + 1[]

A Matrix

j

i

Data space

Iteration space

Represents a “thread” with a given
value of i,j

ECE669 L23: Parallel Compilation April 29, 2004

° Partitioning: How to “tile” iteration for MIMD M/Cs
data spaces?

Notion of Iteration space, data space

E.g.

Forall i
Forall j
 A i , j[] = A i + 2 , j + 1[] + A i , j + 1[]

A Matrix

j

i

Data space

Iteration space

Represents a “thread” with a given
value of i,j

This thread affects the above
computation

+

ECE669 L23: Parallel Compilation April 29, 2004

Loop partitioning for caches

° Machine model

• Assume all data is in memory
• Minimize first-time cache fetches
• Ignore secondary effects such as invalidations due to writes

Memory

Network

Cache Cache Cache

P PP

A

ECE669 L23: Parallel Compilation April 29, 2004

Summary

° Parallel compilation often targets block based and
loop based parallelism

° Compilation steps address identification of
parallelism and representations

• Graphs often useful to represent program dependencies

° For static scheduling both computation and
communication can be represented

° Data positioning is an important for computation

