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Parallel Compilation

° Two approaches to compilation
• Parallelize a program manually                                  
• Sequential code converted to parallel code

° Develop a parallel compiler
• Intermediate form
• Partitioning

- Block based or loop based
• Placement
• Routing
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Compilation technologies for parallel machines

Assumptions:

Input: Parallel program

Output: “Coarse” parallel program
& directives for:

• Which threads run in 1 task
• Where tasks are placed
• Where data is placed
• Which data elements go in each data chunk

Limitation: No special optimizations
for synchronization --
synchro mem refs treated 
as any other comm. 
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Toy example

° Loop parallelization
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Example

° Matrix multiply

° Typically, 

° Looking to find parallelism...

    

FORALL i
           FORALL j
                      FOR k

                            C i, j[ ]= C i , j[ ]+ A i , k[ ]∗B k , j[ ]
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Choosing a program representation...

° Dataflow graph

• No notion of storage                                    problem
• Data values flow along arcs
• Nodes represent operations

+
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Compiler representation

° For certain kinds of structured programs

° Unstructured programs

A

Data
X

Task 
A

Task 
B

LOOP
LOOP nest

Data array

Index expressions

Communication weight

Array

    A i , j[ ]

    

FORALL i  
          FORALL j  
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Process reference graph

• Nodes represent threads (processes) computation
• Edges represent communication (memory references)
• Can attach weights on edges to represent volume of 

communication
• Extension:  precedence relations edges can be added too
• Can also try to represent multiple loop produced threads as one 

node

    

FORALL i FROM 0 to 5

                C i[ ]= A i[]+ B i[]

P0 P1 P2 P5

Memory Monolithic
memory

or 2 1

......Not very useful
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• Allocate data items to nodes as well
• Nodes:  Threads, data objects
• Edges: Communication
• Key:  Works for both shared-memory, object-oriented, and 

dataflow systems!  (Msg. passing)

Process communication graph
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PCG for Jacobi relaxation

Fine PCG

Coarse PCG
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Compilation with PCGs

Fine process communication 
graph

Partitioning

Coarse process communication 
graph
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Compilation with PCGs

Fine process communication 
graph

Coarse process communication 
graph

Placement

... other phases, scheduling.  
Dynamic?

MP:

Partitioning

Coarse process communication 
graph
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Parallel Compilation

° Consider loop partitioning

° Create small local compilation

° Consider static routing between tiles

° Short neighbor-to-neighbor communication

° Compiler orchestrated
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Flow Compilation

° Modulo unrolling

° Partitioning

° Scheduling
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Modulo Unrolling – Smart Memory

° Loop unrolling relies on 
dependencies

° Allow maximum parallelism

° Minimize communication
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Array Partitioning – Smart Memory

° Assign each line to separate 
memory

° Consider exchange of data

° Approach is scalable
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Communication Scheduling – Smart Memory

° Determine where data should be sent

° Determine when data should be sent
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Speedup for Jacobi – Smart Memory

° Virtual wires 
indicates scheduled 
paths

° Hard wires are 
dedicated paths

° Hard wires require 
more wiring 
resources

° RAW is a parallel 
processor from MIT
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Partitioning

• Use heuristic for unstructured programs
• For structured programs...

...start from:

Arrays

List of 
arrays

A B C

L0 L1 L2

Loop Nests

List of 
loops
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Notion of Iteration space, data space

E.g. 

    

Forall i
Forall j
          A i , j[ ] = A i + 2 , j + 1[ ] + A i , j + 1[ ]

A Matrix

j

i

Data space

Iteration space

Represents a “thread” with a given 
value of i,j
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° Partitioning: How to “tile” iteration for MIMD M/Cs 
data spaces?

Notion of Iteration space, data space

E.g. 

    

Forall i
Forall j
          A i , j[ ] = A i + 2 , j + 1[ ] + A i , j + 1[ ]

A Matrix

j

i

Data space

Iteration space

Represents a “thread” with a given 
value of i,j

This thread affects the above 
computation

+
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Loop partitioning for caches

° Machine model

• Assume all data is in memory
• Minimize first-time cache fetches
• Ignore secondary effects such as invalidations due to writes

Memory

Network

Cache Cache Cache

P PP

A
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Summary

° Parallel compilation often targets block based and 
loop based parallelism

° Compilation steps address identification of 
parallelism and representations

• Graphs often useful to represent program dependencies

° For static scheduling both computation and 
communication can be represented

° Data positioning is an important for computation


