
ECE669 L21: Routing April 15, 2004

ECE 669

Parallel Computer Architecture

Lecture 21

Routing

ECE669 L21: Routing April 15, 2004

Outline

° Routing

° Switch Design

° Flow Control

° Case Studies

ECE669 L21: Routing April 15, 2004

Routing

° Routing algorithm determines
• which of the possible paths are used as routes
• how the route is determined

° Issues:
• Routing mechanism

- arithmetic
- source-based port select
- table driven
- general computation

• Properties of the routes
• Deadlock free

ECE669 L21: Routing April 15, 2004

Routing Mechanism

° need to select output port for each input packet
• in a few cycles

° Simple arithmetic in regular topologies
• ex: ∆x, ∆y routing in a grid

- west (-x) ∆x < 0
- east (+x) ∆x > 0
- south (-y) ∆x = 0, ∆y < 0
- north (+y) ∆x = 0, ∆y > 0
- processor ∆x = 0, ∆y = 0

° Reduce relative address of each dimension in
order

• Dimension-order routing in k-ary n-cubes
• Routing in hypercubes

ECE669 L21: Routing April 15, 2004

Routing Mechanism

° Source-based
• message header carries series of port selects
• used and stripped en route
• CRC? Packet Format?
• CS-2, Myrinet, MIT Artic

° Table-driven
• message header carried index for next port at next switch

- o = R[i]
• table also gives index for following hop

- o, I’ = R[i]
• ATM, HPPI

P0P1P2P3

ECE669 L21: Routing April 15, 2004

Properties of Routing Algorithms

° Deterministic
• route determined by (source, dest), not intermediate state (i.e.

traffic)

° Adaptive
• route influenced by traffic along the way

° Minimal
• only selects shortest paths

° Deadlock free
• no traffic pattern can lead to a situation where no packets move

forward

ECE669 L21: Routing April 15, 2004

Deadlock Freedom

° How can it arise?
• necessary conditions:

- shared resource
- incrementally allocated
- non-preemptible

• think of a channel as a shared
resource that is acquired incrementally
- source buffer then dest. buffer
- channels along a route

° How do you avoid it?
• constrain how channel resources are allocated
• ex: dimension order

° How do you prove that a routing algorithm is
deadlock free

ECE669 L21: Routing April 15, 2004

Proof Technique

° resources are logically associated with channels

° messages introduce dependences between
resources as they move forward

° need to articulate the possible dependences that
can arise between channels

° show that there are no cycles in Channel
Dependence Graph

• find a numbering of channel resources such that every legal
route follows a monotonic sequence

° => no traffic pattern can lead to deadlock

° network need not be acyclic, on channel
dependence graph

ECE669 L21: Routing April 15, 2004

Example: k-ary 2D array

° Thm: x,y routing is deadlock free

° Numbering
• +x channel (i,y) -> (i+1,y) gets i
• similarly for -x with 0 as most positive edge
• +y channel (x,j) -> (x,j+1) gets N+j
• similary for -y channels

° any routing sequence: x direction, turn, y
direction is increasing

1 2 3

012
00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

17

18

1916

17

18

ECE669 L21: Routing April 15, 2004

More examples:

° Consider other topologies
• butterfly?
• tree?
• fat tree?

° Any assumptions about routing mechanism?
amount of buffering?

° What about wormhole routing on a ring?

012

3

4
5

6

7

ECE669 L21: Routing April 15, 2004

Deadlock free wormhole networks?

° Basic dimension order routing techniques don’t
work for k-ary n-cubes
• only for k-ary n-arrays (bi-directional)

° Idea: add channels!
• provide multiple “virtual channels” to break the dependence

cycle
• good for BW too!

• Do not need to add links, or xbar, only buffer resources

Output
Ports

Input
Ports

Cross-Bar

ECE669 L21: Routing April 15, 2004

Breaking deadlock with virtual channels

Packet switches
from lo to hi channel

ECE669 L21: Routing April 15, 2004

Up*-Down* routing

° Given any bidirectional network

° Construct a spanning tree

° Number of the nodes increasing from leaves to
roots

° UP increase node numbers

° Any Source -> Dest by UP*-DOWN* route
• up edges, single turn, down edges

° Performance?
• Some numberings and routes much better than others
• interacts with topology in strange ways

ECE669 L21: Routing April 15, 2004

Turn Restrictions in X,Y

° XY routing forbids 4 of 8 turns and leaves no
room for adaptive routing

° Can you allow more turns and still be deadlock
free

+Y

-Y

+X-X

ECE669 L21: Routing April 15, 2004

Minimal turn restrictions in 2D

West-first

north-last negative first

-x +x

+y

-y

ECE669 L21: Routing April 15, 2004

Example legal west-first routes

° Can route around failures or congestion

° Can combine turn restrictions with virtual channels

ECE669 L21: Routing April 15, 2004

Adaptive Routing

° R: C x N x Σ -> C

° Essential for fault tolerance
• at least multipath

° Can improve utilization of the network

° Simple deterministic algorithms easily run into bad
permutations

° fully/partially adaptive, minimal/non-minimal

° can introduce complexity or anomolies

° little adaptation goes a long way!

ECE669 L21: Routing April 15, 2004

Switch Design

Cross-bar

Input
Buffer

Control

Output
Ports

Input
Receiver Transmiter

Ports

Routing, Scheduling

Output
Buffer

ECE669 L21: Routing April 15, 2004

How do you build a crossbar

I
o

I 1

I
2

I
3

Io I 1 I2 I3

O0

Oi

O2

O3

RAM
phase

O0

Oi
O2
O3

DoutDin

Io

I1
I2
I3

addr

ECE669 L21: Routing April 15, 2004

Input buffered swtich

° Independent routing logic per input
• FSM

° Scheduler logic arbitrates each output
• priority, FIFO, random

° Head-of-line blocking problem

Cross-bar

Output
Ports

Input
Ports

 Scheduling

R0

R1

R2

R3

ECE669 L21: Routing April 15, 2004

Output Buffered Switch

° How would you build a shared pool?

Control

Output
Ports

Input
Ports

Output
Ports

Output
Ports

Output
Ports

R0

R1

R2

R3

ECE669 L21: Routing April 15, 2004

Example: IBM SP vulcan switch

° Many gigabit ethernet switches use similar design
without the cut-through

FIFO

CRC
check

Route
control

Flow
Control

8 8

D
es

er
ia

liz
er

64

Input Port

RAM
64x128

In
Arb

Out
Arb

8 x 8
Crossbar

Central
Queue

FIFO

CRC
Gen

Flow
Control

8 8Se
ri

al
iz

er

64

Ouput Port

XBar
Arb

FIFO

CRC
check

Route
control

Flow
Control

8 8

D
es

er
ia

li
ze

rInput Port

°
°
°

64

°
°
°

FIFO

CRC
Gen

Flow
Control

8 8S
er

ia
liz

er

Ouput Port

XBar
Arb

8

°
°
°

8

ECE669 L21: Routing April 15, 2004

Output scheduling

° n independent arbitration problems?
• static priority, random, round-robin

° simplifications due to routing algorithm?

° general case is max bipartite matching

Cross-bar

Output
Ports

R0

R1

R2

R3

O0

O1

O2

Input
Buffers

ECE669 L21: Routing April 15, 2004

Stacked Dimension Switches

° Dimension order on
3D cube?

° Cube connected
cycles?

Host Out

Host In

Xin

Yin

Zin

Xout

Yout

Zout

2x2

2x2

2x2

ECE669 L21: Routing April 15, 2004

Flow Control

° What do you do when push comes to shove?
• ethernet: collision detection and retry after delay
• FDDI, token ring: arbitration token
• TCP/WAN: buffer, drop, adjust rate
• any solution must adjust to output rate

° Link-level flow control

Data

Ready

ECE669 L21: Routing April 15, 2004

Examples

° Short Links

° long links
• several flits on the wire

So
ur

ce

D
es

tin
at

io
n

Data

Req

Ready/AckF/E F/E

ECE669 L21: Routing April 15, 2004

Smoothing the flow

° How much slack do you need to maximize
bandwidth?

Low
Mark

High
Mark

Empty

Full

Stop

Go

Incoming Phits

Outgoing Phits

Flow-control Symbols

ECE669 L21: Routing April 15, 2004

Example: T3D

° 3D bidirectional torus, dimension order (NIC selected),
virtual cut-through, packet sw.

° 16 bit x 150 MHz, short, wide, synch.

° rotating priority per output

° logically separate request/response

° 3 independent, stacked switches

° 8 16-bit flits on each of 4 VC in each directions

Route Tag
Dest PE
Command

Route Tag
Dest PE
Command

Route Tag
Dest PE
Command

Route Tag
Dest PE
Command

Route Tag
Dest PE
Command

Route Tag
Dest PE
Command

Route Tag
Dest PE
Command

Read Req
 - no cache
 - cache
 - prefetch
 - fetch&inc

Addr 0
Addr 1
Src PE

Read Resp Read Resp
 - cached

Word 0 Word 0

Word 1
Word 2
Word 3

Write Req
 - Proc
 - BLT 1
 - fetch&inc

Addr 0

Addr 1
Src PE
Word 0

Addr 0

Addr 1
Src PE
Word 0
Word 1
Word 2
Word 3

Write Req
 - proc 4
 - BLT 4

Write Resp

Addr 0

Addr 1
Src PE
Addr 0
Addr 1

BLT Read Req

Packet Type req/resp coomand

3 1 8

ECE669 L21: Routing April 15, 2004

Example: SP

° 8-port switch, 40 MB/s per link, 8-bit phit, 16-bit flit, single 40
MHz clock

° packet sw, cut-through, no virtual channel, source-based
routing

° variable packet <= 255 bytes, 31 byte fifo per input, 7 bytes
per output, 16 phit links

° 128 8-byte ‘chunks’ in central queue, LRU per output

° run in shadow mode

P0P1P2P3 P15

E0E1E2E3 E15

Intra-Rack Host Ports

Inter-Rack External Switch Ports

16-node Rack

Switch
Board

Multi-rack Configuration

ECE669 L21: Routing April 15, 2004

Summary
° Routing Algorithms restrict the set of routes within

the topology
• simple mechanism selects turn at each hop
• arithmetic, selection, lookup

° Deadlock-free if channel dependence graph is
acyclic

• limit turns to eliminate dependences
• add separate channel resources to break dependences
• combination of topology, algorithm, and switch design

° Deterministic vs adaptive routing

° Switch design issues
• input/output/pooled buffering, routing logic, selection logic

° Flow control

° Real networks are a ‘package’ of design choices

