ECE 669

Parallel Computer Architecture

Lecture 21

Routing

74

UMASS

ECE669 L21: Routing April 15, 2004

Outline

o

Routing

o

Switch Design
° Flow Control

° Case Studies

ECE669 L21: Routing April 15, 2004

Routing

° Routing algorithm determines
« which of the possible paths are used as routes
 how the route is determined

° Issues:
 Routing mechanism
- arithmetic
- source-based port select
- table driven
- general computation
 Properties of the routes
 Deadlock free

ECE669 L21: Routing April 15, 2004

Routing Mechanism

° need to select output port for each input packet

 in afew cycles

° Simple arithmetic in regular topologies
« ex: Dx, Dy routing in a grid

west (-X)
east (+x)
south (-y)
north (+y)
processor

Dx <0
Dx >0
Dx=0,Dy<0
Dx =0,Dy >0
Dx=0,Dy=0

° Reduce relative address of each dimension In

order

 Dimension-order routing in k-ary n-cubes

 Routing in hypercubes

ECE669 L21: Routing

April 15, 2004

Routing Mechanism

Py | P, | P | Po

° Source-based
« message header carries series of port selects
e used and stripped en route
« CRC? Packet Format?
e CS-2, Myrinet, MIT Artic

° Table-driven
» message header carried index for next port at next switch

- 0 = RJ[i]
« table also gives index for following hop
- 0, =R][i]

« ATM, HPPI

ECE669 L21: Routing April 15, 2004

Properties of Routing Algorithms

° Deterministic

* route determined by (source, dest), not intermediate state (i.e.
traffic)

° Adaptive

* route influenced by traffic along the way

o

Minimal
« only selects shortest paths

o

Deadlock free

* no traffic pattern can lead to a situation where no packets move
forward

ECE669 L21: Routing April 15, 2004

Deadlock Freedom

° How can it arise?

* necessary conditions: : :I:-w_ HH':'W-
- shared resource ZZI]! 0 - — - —zﬁ? i

=] =

- incrementally allocated i | |

. I

- non-preemptible 4; ll':Ir:

 think of a channel as a shared ol - ———1 0 Moo
resource that is acquired incrementally Sy —7—| [
=1 = H
- source buffer then dest. buffer Y i

- channels along a route

° How do you avoid it?
e constrain how channel resources are allocated
e ex: dimension order

° How do you prove that a routing algorithm is
deadlock free

ECE669 L21: Routing April 15, 2004

Proof Technique

° resources are logically associated with channels

° messages introduce dependences between
resources as they move forward

° need to articulate the possible dependences that
can arise between channels

° show that there are no cycles in Channel
Dependence Graph

« find a numbering of channel resources such that every legal
route follows a monotonic sequence

° =>no traffic pattern can lead to deadlock

° network need not be acyclic, on channel
dependence graph

ECE669 L21: Routing April 15, 2004

Example: k-ary 2D array

° Thm: x,y routing is deadlock free

° Numbering
e +x channel (i,y) -> (i+1,y) gets |
« similarly for -x with 0 as most positive edge

e +y channel (x,j) -> (X,j+1) gets N+j
e similary for -y channels

° any routing sequence: x direction, turn, y
direction is increasing

01

L A
ofy

02

18*%1
10

N

N

Iy

12 4

K

o
i“&

[

(o]
\| 2 B,
1Y

L
N

32 |

ECE669 L21: Routing April 15, 2004

More examples:

° Consider other topologies
* butterfly?
e tree?
o fat tree?

° Any assumptions about routing mechanism?
amount of buffering?

° What about wormhole routing on aring?

2

¢ o

ECE669 L21: Routing April 15, 2004

Deadlock free wormhole networks?

° Basic dimension order routing techniques don’t

work for k-ary n-cubes
e only for k-ary n-arrays (bi-directional)

° |dea: add channels!

e provide multiple “virtual channels” to break the dependence

cycle

« good for BW too! Ports _>_(+E|]]+)_,
e

o
(D
>

Cross-Bar

>_
>_

>_

Do not need to add links, or xbar, only buffer resources

ECE669 L21: Routing April 15, 2004

Output
Ports

Breaking deadlock with virtual channels

HH==

Packet switches
from o to hi channel

==

April 15, 2004

ECE669 L21: Routing

Up*-Down* routing

° Given any bidirectional network
° Construct a spanning tree

Number of the nodes increasing from leaves to
roots

° UP increase node numbers
° Any Source -> Dest by UP*-DOWN* route

* up edges, single turn, down edges

° Performance?
« Some numberings and routes much better than others
* interacts with topology in strange ways

ECE669 L21: Routing April 15, 2004

Turn Restrictions in X,Y

+Y

-Y

° XY routing forbids 4 of 8 turns and leaves no
room for adaptive routing

°]gian you allow more turns and still be deadlock
ree

ECE669 L21: Routing April 15, 2004

Minimal turn restrictions in 2D

ty

4

+X

o Frd
S O I O

north-last i negative first

ECE669 L21: Routing April 15, 2004

Example legal west-first routes

—m

H
O O
;D
O O
O O

O
0 oo o ol
—[— ¥

etk
-

1
[

O O O O O o
O 0O 0O

§F

° Can route around failures or congestion

° Can combine turn restrictions with virtual channels

ECE669 L21: Routing April 15, 2004

Adaptive Routing

° RRCxNxS->C

Essential for fault tolerance
o at least multipath

o

° Can improve utilization of the network

° Simple deterministic algorithms easily run into bad
permutations

O T
EII:IEID[%D O E—EI—EI[I
O OO0 0 0 Ol

o O0Oo0b O 8

| =]

1l

il
i
M
O]

° fully/partially adaptive, minimal/non-minimal
° can introduce complexity or anomolies

° little adaptation goes a long way!

ECE669 L21: Routing April 15, 2004

Switch Design

: Input Output ,
ot Receiver gjtfer Buffer Transmiter
/
> ’ j— —
Cross-bar :
— * f— \
- >
T D>
y v YV YY VY'Y L
Control
Routing, Scheduling
ECE669 L21: Routing April 15, 2004

Output
Ports

How do you build a crossbar

ECE669 L21: Routing

1 2 3
v v = v] =y > O,
i 7 1 M
el .
o
RAM
phase —-addr
Din Dout
A
|, —>t —)OO

,—>f 0
) — —0,
5 —> —>O3

April 15, 2004

Input buffered swtich

I nput

Ports. ——| > = - i
— > = d >
DT oo [
D = -

il \
Schecting

° Independent routing logic per input
« FSM

° Scheduler logic arbitrates each output
e priority, FIFO, random

° Head-of-line blocking problem

ECE669 L21: Routing April 15, 2004

Output Buffered Switch

I nput
Ports

—1>H
(RO
—>H
T
—>[H
&

L1

—D>>[H

L

LTl
1

7
255

T}

QQ'

Control

Output
> Ports

Output
Ports

Output
> Ports

Output
Ports

° How would you build a shared pool?

ECE669 L21: Routing

April 15, 2004

Example: IBM SP vulcan switch

/Flow InputPort [Central (Ouput Port W_
< Control N Queue o Control
FIFO |5 S =y 5 (P FIF
8] b FIFO B B4 ;:: 8’| © 1
(]
CRC || Route o In Out XBar CRC
check || control Arb||Arb Arb Gen
K 4 \ J
o RAM N— 5
=P 64x128 T o
\ k_j
/ Flow | InputPort [. / Ouput Port WP_
< Control N ° 8x8 tlr\sl Control
; P FIFO |- .| Crossbar —s M FIFO
5] 5[s Py (e -
CRC |[Route a P xBa CRC
check || control Arb Gen
\L — \ —)
N

° Many gigabit ethernet switches use similar design
without the cut-through

ECE669 L21: Routing April 15, 2004

Output scheduling

Output
Ports

o1

L
| nput >4
Buffers RL
S
R3

o2

° nindependent arbitration problems?

« static priority, random, round-robin

° simplifications due to routing algorithm?

° general case is max bipartite matching

ECE669 L21: Routing

April 15, 2004

Stacked Dimension Switches

° Dimension order on
3D cube?

° Cube connected
cycles?

ECE669 L21: Routing

Host In

2X2

) Zout

2X2

____» Yout

2x2

) Xout

Host Out

April 15, 2004

Flow Control

° What do you do when push comes to shove?
» ethernet: collision detection and retry after delay
« FDDI, token ring: arbitration token
« TCP/WAN: buffer, drop, adjust rate
e any solution must adjust to output rate

° Link-level flow control

ECE669 L21: Routing April 15, 2004

Examples

° Short Links

TrE—RWAK e
Req >

5

S =

> <

3 g

a)

Data
° long links
 several flits on the wire
+—0O0—0O0—C0—0
00 0

ECE669 L21: Routing April 15, 2004

Smoothing the flow

Incoming Phits

Flow-control Symbols«
\ Full

Stop . - — — —| - High
Mark

~\AIAVA\
GO - b — — — Low
~ Mark

Empty k
Outgoing Phits

° How much slack do you need to maximize
bandwidth?

ECE669 L21: Routing April 15, 2004

Example: T3D

Read Req Read Resp Read Resp Write Req Write Req Write Resp BLT Read Req

-no cache - cached - Proc - proc 4
- cache -BLT1 -BLT 4
- prefetch - fetch&inc
- fetch&inc
Route Tag Route Tag Route Tag| |Route Tag Route Tag Route Tag Route Tag
Dest PE Dest PE Dest PE Dest PE Dest PE Dest PE Dest PE
Command Command Command Command Command Command Command
o o \ Word 0 Worg 0 Adar 0 AQdr 0 Addr 0
Addr 1 Word 1 Addr 1 Addr 1 Addr 1
Sre PE Word 2 Src PE Src PE Src PE
Word 3 Word 0 Word 0 Addr O
Word 1 Addr 1
Word 2
|Packet Type |req/resp Icoomand | Word 3

3 1 8

° 3D bidirectional torus, dimension order (NIC selected),
virtual cut-through, packet sw.

° 16 bit x 150 MHz, short, wide, synch.

° rotating priority per output

° logically separate request/response

° 3independent, stacked switches

° 8 16-bit flits on each of 4 VC in each directions

ECE669 L21: Routing April 15, 2004

Example: SP

16-node Rack

Multi-rack Configuration

L Inter-Rack Externa Switch Ports

- EFEE, s

N
N
N

Eggﬂl}g V*V* V'J"¢ 44"4

Intra-Rack Host Ports

° S-Elort switch, 40 MB/s per link, 8-bit phit, 16-bit flit, single 40
MHz clock

° packet sw, cut-through, no virtual channel, source-based
routing

° variable packet <= 255 bytes, 31 byte fifo per input, 7 bytes
per output, 16 phit links

° 128 8-byte ‘chunks’ in central queue, LRU per output

° run in shadow mode

ECE669 L21: Routing April 15, 2004

Summary

° Routing Algorithms restrict the set of routes within

the topology
 simple mechanism selects turn at each hop
« arithmetic, selection, lookup

° Deadlock-free if channel dependence graph is
acyclic
* limit turns to eliminate dependences
» add separate channel resources to break dependences

« combination of topology, algorithm, and switch design
° Deterministic vs adaptive routing

° Switch design issues
e input/output/pooled buffering, routing logic, selection logic

° Flow control

° Real networks are a ‘package’ of design choices

ECE669 L21: Routing April 15, 2004

