
ECE669 L19: Processor Design April 8, 2004

ECE 669

Parallel Computer Architecture

Lecture 19

Processor Design

ECE669 L19: Processor Design April 8, 2004

Overview

° Special features in microprocessors provide
support for parallel processing

• Already discussed bus snooping

° Memory latency becoming worse so multi-process
support important

° Provide for rapid context switches inside the
processor

° Support for prefetching
• Directly affects processor utilization

ECE669 L19: Processor Design April 8, 2004

Why are traditional RISCs ill-suited for multiprocessing?

• Cannot handle asynchrony well
- Traps
- Context switches

• Cannot deal with pipelined memories - (multiple outstanding
requests)

• Inadequate support for synchronization
(Eg. R2000 No synchro instruction)
(SGI Had to memory map synchronization)

ECE669 L19: Processor Design April 8, 2004

Three major topics

• Pipeline processor-memory-network
- Fast context switching
- Prefetching
(Pipelining: Multithreading)

• Synchronization
• Messages

ECE669 L19: Processor Design April 8, 2004

Pipelining – Multithreading Resource Usage

° Mem. Bus

° ALU

° Overlap memory/ALU usage
• More effective use of resources
• Prefetch
• Cache
• Pipeline (general)

Fetch
(Inst. or operand)

Execute

ECE669 L19: Processor Design April 8, 2004

RISC Issues
° 1 Inst/cycle

• Huge memory
• bandwidth requirements

- Caches: 1 Data Cache
or

- Separate I&D caches
• Lots of registers, state

° Pipeline Hazards
• Compiler
• Reservation bits
• Bypass Paths

• More state!

° Other “stuff” - register windows
• Even more state!

Interlocks

ECE669 L19: Processor Design April 8, 2004

Fundamental conflict

° Better single-thread performance (sequential)
• More on-chip state

° More on-chip state
• Harder to handle asynchronous events

- Traps
- Context switches
- Synchronization faults
- Message arrivals

But, why is this a problem in MPs?
Makes pipelining proc-mem-net harder.
Consider...

ECE669 L19: Processor Design April 8, 2004

Ignore communication system latency (T=0)

° Then, max bandwidth per node limits max
processor speed

° Above
• Processor-network matched i.e. proc request

rate=net bandwidth
• If processor has higher request rate, it will suffer idle time

Proc.

Net.

t

BKd

Processor requests

Network
response

Network
request

Cache miss interval
BKd

1

ECE669 L19: Processor Design April 8, 2004

Now, include network latency

° Each request suffers T cycles of latency

° Processor utilization =
Processor utilization
Network bandwidth also wasted because of lost issue

opportunities!
FIX?

Proc.

Net.

t

BKd

Processor idle

Latency T

t

t + T
=

1
1 + mT

t =

1
m



 




ECE669 L19: Processor Design April 8, 2004

One solution

° Overlap communication with computation.

• “Multithread” the processor
- Need rapid context switch. See HEP, Sparcle.

• And/or allow multiple outstanding requests -- non-
blocking memory

Net.

T
BKd

Processor utilization =
pt

t + T if pt < (t + T)

ECE669 L19: Processor Design April 8, 2004

One solution

Overlap communication with computation.

• “Multithread” the processor

– Need rapid context switch. See HEP, Sparcle.

• And/or allow multiple outstanding requests -- non-blocking
memory

Net.

T
BKd

Processor utilization

or
=

t
t + Z

 otherwise

Context switch interval Z

=
pt

t + T if pt < (t + T)

ECE669 L19: Processor Design April 8, 2004

Caveat!

° Of course, previous analysis assumed network
bandwidth was not a limitation.

° Consider:

° Computation speed (proc. util.) limited by
network bandwidth.

° Lessons: Multithreading allows full utilization
of network bandwidth. Processor util. will
reach 1 only if net BW is not a limitation.

Net. BK

Z t

Proc.

Must wait till next (issue opportunity)

ECE669 L19: Processor Design April 8, 2004

Same applies to synchronization delays as well

° If no multithreading

Fault

Wasted processor cycles

Satisfied

Process
1

Process
2

Process
3

Synchronization
fault 1

Synchronization
fault 1 satisfied

ECE669 L19: Processor Design April 8, 2004

Requirements for latency tolerance (comm or synch)

• Processors must switch contexts fast
• Memory system must allow multiple outstanding requests
• Processors must handle traps fast (esp synchronization)
• Can also allow multiple memory requests

° But, caution:
Latency tolerant processors are no excuse for not exploiting

locality and trying to minimize latency

° Consider...

ECE669 L19: Processor Design April 8, 2004

Fine multithreading versus block multithreading

° Block multithreading

1. Switch on cache miss or synchro fault
2. Long runs between switches because of caches
3. Fewer request in network

° Fine multithreading

1. Switch on each mem. request
2. Short runs need very fast context switch - minimal processor

state - poor single-thread performance
3. Need huge amount of network bandwidth; need lots of threads

ECE669 L19: Processor Design April 8, 2004

° Switch by putting new value into PC

° Minimize processor state

° Very poor single-thread performance

How to implement fast context switches?

Memory

Processor

Instructions

PC

Data

ECE669 L19: Processor Design April 8, 2004

How to implement fast context switches?

Memory

Processor

° Dedicate memory to hold state & high bandwidth
path to state memory

° Is this best use of expensive off-chip bandwidth?

Registers

PC

High BW transfer

Process i regs

Process j regs

Special state
memory

ECE669 L19: Processor Design April 8, 2004

How to implement fast context switches?

• Include few (say 4) register frames for each process
context.

• Switch by bumping FP (frame pointer)

• Switches between 4 processes fast, otherwise invoke
software loader/unloader - Sparcle uses SPARC windows

Memory

Processor

Proc i regs
FP

PC

Proc j regs

ECE669 L19: Processor Design April 8, 2004

How to implement fast context switches?

Memory

Processor

• Block register files

• Fast transfer of registers to on-chip data cache via
wide path

PC

Registers

ECE669 L19: Processor Design April 8, 2004

How to implement fast context switches?

Fast traps also needed.

• Also need dedicated synchronous trap lines ---
synchronization, cache miss...

• Need trap vector spreading to inline common trap code

Memory

Processor
PC

Registers

Trap frame

ECE669 L19: Processor Design April 8, 2004

Pipelining processor - memory - network

° Prefetching

0 2 3 A1 6 854 7 B 109

LD
LD

A

3 0 18 2 4

B
7 965 8 10

LDLD

ECE669 L19: Processor Design April 8, 2004

Synchronization

° Key issue
• What hardware support
• What to do in software

° Consider atomic update of the “bound” variable in
traveling salesman

ECE669 L19: Processor Design April 8, 2004

° Need mechanism to lock out other request to L

Mem
bound

P P P

L

While (LOCK(L)==1); Loop
read bound
incr bound
store bound
unlock(L)

Lock(L)
read L
if (L==1) return 1;
else L=1
store L
return o;

Atomic

test

set

Synchronization

ECE669 L19: Processor Design April 8, 2004

In uniprocessors

• Raise interrupt level to max, to gain uninterrupted access

° In multiprocessors
• Need instruction to prevent access to L.

° Methods
• Keep synchro vars in memory, do not release bus
• Keep synchro vars in cache, prevent outside invalidations

° Usually, can memory map some data fetches such
that cache controller locks out other requests

ECE669 L19: Processor Design April 8, 2004

Data-parallel synchronization

Can also allow controller to do update of L.

Eg. Sparcle (in Alewife machine)

Controller Cache

Full/
Empty
Bit
(as in HEP)

L

Processor

Mem word

ldent

load, trap if full,
set emptyldet

trap
if f/e
bit=1

ECE669 L19: Processor Design April 8, 2004

Given primitive atomic operation can synthesize in
software higher forms

Eg.

1. Producer-consumer

Producer lde D stf D Consumer

Store if
f/e=0
set f/e=1

trap
otherwise...retry

Load if
f/e=1
set f/e=0

trap
otherwise...retry

D

ECE669 L19: Processor Design April 8, 2004

Some provide massive HW support for
synchronization -- eg. Ultracomputer, RP3

° Combining networks.

° Say, each processor wants a unique i

• Switches become processors -- slow, expensive
• Software combining -- implement combining tree in software

using a tree data structure

L=5

F&A(L,1) F&A(L,1) F&A(L,2)

7
25

5

5

45

2

2

2

7

7

6

6

1

1 1

1

9

mem requests

variable in software

ECE669 L19: Processor Design April 8, 2004

Summary

° Processor support for parallel processing growing

° Latency tolerance supports by fast context
switching

• Also more advanced software systems

° Maintaining processor utilization is a key
• Ties to network performance

° Important to maintain RISC performance

° Even uniprocessors can benefit from context
switches

• Register windows

