ECE 669

Parallel Computer Architecture

Lecture 19

Processor Design

74

UMASS

ECE669 L19: Processor Design April 8, 2004

Overview

° Special features in microprocessors provide
support for parallel processing

» Already discussed bus snooping

° Memory latency becoming worse so multi-process
support important

° Provide for rapid context switches inside the
processor

°> Support for prefetching

« Directly affects processor utilization

ECE669 L19: Processor Design April 8, 2004

Why are traditional RISCs ill-suited for multiprocessing?

e Cannot handle asynchrony well
- Traps
- Context switches
« Cannot deal with pipelined memories - (multiple outstanding

requests)
* Inadequate support for synchronization
(Eg. R2000 —No synchro instruction)
(SGI Had to memory map synchronization)

ECE669 L19: Processor Design April 8, 2004

Three major topics

* Pipeline processor-memory-network
- Fast context switching
- Prefetching
(Pipelining: Multithreading)

e Synchronization

» Messages

ECE669 L19: Processor Design April 8, 2004

Pipelining — Multithreading Resource Usage

° Mem.Bus @ assessasas
o ALU - J
— —
Fetch Execute

(Inst. or operand)

\
_—
— —

° Overlap memory/ALU usage
More effective use of resources
Prefetch

Cache

Pipeline (general)

ECE669 L19: Processor Design April 8, 2004

RISC Issues

° 1Inst/cycle
e Huge memory
 bandwidth requirements
- Caches: 1 Data Cache
or
- Separate 1&D caches
« Lots of registers, state

° Pipeline Hazards
« Compiler

» Reservation bits } ; 2

 Bypass Paths
Interlocks

e More state!

° Other “stuff” - register windows
e Even more state!

ECE669 L19: Processor Design April 8, 2004

Fundamental conflict

° Better single-thread performance (sequential)
 More on-chip state

° More on-chip state
 Harder to handle asynchronous events
- Traps
- Context switches
- Synchronization faults
- Message arrivals

But, why is this a problem in MPs?

Makes pipelining proc-mem-net harder.
Consider...

ECE669 L19: Processor Design April 8, 2004

lgnore communication system latency (T=0)

° Then, max bandwidth per node limits max
processor speed

Network
« BK4 ; < request
Net. ‘
Network
response
[/_’_ ______ I?rocessor requests

Proc.
1
\-» Cache miss interval S
\ BKd
° Above
 Processor-network matched |.e. proc request

rate=net bandwidth
» |f processor has higher request rate, it will suffer idle time

ECE669 L19: Processor Design April 8, 2004

Now, include network latenc

° Each request suffers T cycles of latency
Latency T

<

>

<

BKq4
N N N |
b Processor idle \ 5
Proc. , :

t _ 1
t+ T 1+ mT
° Processor utilization = gt _ mi;

Processor utilization ‘

Network bandwidth also wasted because of lost issue
opportunities!

FIX?

ECE669 L19: Processor Design April 8, 2004

One solution

° Overlap communication with computation.

G

T >

Net.
< ,’J <
!
‘l
] \\» _I
o “Multithread” the processor

- Need rapid context switch. See HEP, Sparcle.

pt
Processor utilization = {4+ T if pt<(+T)

« And/or allow multiple outstanding requests -- non-
blocking memory

ECE669 L19: Processor Design April 8, 2004

One solution

Overlap communication with computation.

< o

‘\BKd—__'

o
¢ ¢ g

Context switch interval Z

o “Multithread” the processor

— Need rapid context switch. See HEP, Sparcle.

pt
Processor utilization = . T if pt<(t+T)
or = +t > otherwise
» And/or allow multiple outstanding requests -- non-blocking

memory

ECE669 L19: Processor Design April 8, 2004

Caveat!

° Of course, previous analysis assumed network
bandwidth was not a limitation.
° Consider:

Net.

Proc. ' —_— —'
— ,7\
Z t

Must wait till next (issue opportunity)

° Computation speed (proc. util.) limited b
netwlca)rk bandwedth. (P) y

° Lessons: Multithreading allows full utilization

of network bandwidth. Processor util. will
reach 1 only if net BW is not a limitation.

ECE669 L19: Processor Design April 8, 2004

Same applies to synchronization delays as well

Process Process Process
1 2 3
Synchronization Synchronization
fault 1 fault 1 satisfied

If no multithreading

Wasted processor cycles '

Fault Satisfied

ECE669 L19: Processor Design April 8, 2004

Requirements for latency tolerance (comm or synch)

Processors must switch contexts fast

Memory system must allow multiple outstanding requests
Processors must handle traps fast (esp synchronization)
Can also allow multiple memory requests

° But, caution:

Latency tolerant processors are no excuse for not exploiting
locality and trying to minimize latency

° Consider...

ECE669 L19: Processor Design April 8, 2004

Fine multithreading versus block multithreading

° Block multithreading

1. Switch on cache miss or synchro fault
2. Long runs between switches because of caches

3. Fewer request in network

° Fine multithreading

f—

‘ — ‘ | mammaE=d L "I L _/

1. Switch on each mem. request

2. Short runs need very fast context switch - minimal processor
state - poor single-thread performance

3. Need huge amount of network bandwidth; need lots of threads

ECE669 L19: Processor Design April 8, 2004

How to implement fast context switches?

Instructions

: A
) / Memory

Yol |

Processor

° Switch by putting new value into PC
° Minimize processor state

° Very poor single-thread performance

ECE669 L19: Processor Design April 8, 2004

How to implement fast context switches?

Memory

Process i regs

Process j regs
_K/—;@BW transfer > :
egisiers :

PC : Processor

Special state
memory

° Dedicate memory to hold state & high bandwidth
path to state memory

° Is this best use of expensive off-chip bandwidth?

ECE669 L19: Processor Design April 8, 2004

—How to implement fast context switches?

Memory

Prociregs

L_FP | Proc jregs

Processor

 Include few (say 4) register frames for each process
context.

e Switch by bumping FP (frame pointer)

« Switches between 4 processes fast, otherwise invoke
software loader/unloader - Sparcle uses SPARC windows

ECE669 L19: Processor Design April 8, 2004

_Howto implement fast context switches?

Memory

~_—

| PC | Processor

Registers

* Block register files

o Fast transfer of registers to on-chip data cache via
wide path

ECE669 L19: Processor Design April 8, 2004

_Howto implement fast context switches?

Memory

Registers

Processor
[CecC |

Trap frame

Fast traps also needed.

» Also need dedicated synchronous trap lines ---
synchronization, cache miss...

* Need trap vector spreading to inline common trap code

ECE669 L19: Processor Design April 8, 2004

Pipelining processor - memory - network

° Prefetching

| I | I] | I | I | |
0 1 2 3 A 4 5 6 7 8 B 9
L D
3 8/ O/1 2 4 | I | I | |
1

ECE669 L19: Processor Design April 8, 2004

Synchronization

° Key issue
 What hardware support
 What to do in software

° Consider atomic update of the “bound” variable in
traveling salesman

ECE669 L19: Processor Design April 8, 2004

Svnchronization

Ol

Atomic

While (LOCK(L)==1); __ Loop
read bound
i ncr bound
store bound
unl ock(L)

__Lock(L)

read L
if (L==1) return 1; j} test

el se L=1

store L }> set

return o;

° Need mechanism to lock out other request to L

ECE669 L19: Processor Design

April 8, 2004

In uniprocessors

« Raise interrupt level to max, to gain uninterrupted access

° In multiprocessors
* Need instruction to prevent access to L.

° Methods

 Keep synchro vars in memory, do not release bus
 Keep synchro vars in cache, prevent outside invalidations

° Usually, can memory map some data fetches such
that cache controller locks out other requests

ECE669 L19: Processor Design April 8, 2004

Data-parallel synchronization

Can also allow controller to do update of L.

Eg. Sparcle (in Alewife machine)

Mem word
Full/
Empty
Bit
(as in HEP)
Controller Cache
L
/IZI L 1
Id (/ load, trap if full,
et
Ident set empty

trap

if fle .

bit=1 rocessor

ECE669 L19: Processor Design April 8, 2004

Given primitive atomic operation can synthesize in
software higher forms

Eg.

1. Producer-consumer

/_\A

Producer stf D lde D
L D
Store if Load if
fle=0 fle=1
set f/e=1 set f/e=0
trap trap
otherwi se...retry otherwise...retry

ECE669 L19: Processor Design April 8, 2004

Some provide massive HW support 1or
synchronization -- eg. Ultracomputer, RP3

° Combining networks.
° Say, each processor wants a unique |

L=5 9
| . V12t
5,/
| |1 e
4/5
| | |
1 |5 1 e P
FRA(L,1) FRA(L,1) F&A(L,2)

» Switches become processors -- slow, expensive

o Software combining -- implement combining tree in software
using atree data structure

em requests
c>/ \CL—' variable in software
-~ N NN TN

ECE669 L19: Processor Design April 8, 2004

Summary

° Processor support for parallel processing growing

° Latency tolerance supports by fast context
switching

 Also more advanced software systems

° Maintaining processor utilization is a key
* Ties to network performance

° Important to maintain RISC performance

° Even uniprocessors can benefit from context
switches

* Register windows

ECE669 L19: Processor Design April 8, 2004

