

Parallel Computer Architecture

Lecture 19

Processor Design

ECE669 L19: Processor Design

- Special features in microprocessors provide support for parallel processing
 - Already discussed bus snooping
- Memory latency becoming worse so multi-process support important
- Provide for rapid context switches inside the processor
- ° Support for prefetching
 - Directly affects processor utilization

Why are traditional RISCs ill-suited for multiprocessing?

- Cannot handle asynchrony well
 - Traps
 - Context switches
- Cannot deal with pipelined memories (multiple outstanding requests)
- Inadequate support for synchronization

(Eg. R2000 — No synchro instruction)

(SGI — Had to memory map synchronization)

Three major topics

- Pipeline processor-memory-network
 - Fast context switching
 - Prefetching

(Pipelining: Multithreading)

- Synchronization
- Messages

Pipelining – Multithreading Resource Usage

Overlap memory/ALU usage

- More effective use of resources
- Prefetch
- Cache
- <u>Pipeline</u> (general)

RISC Issues

° 1 Inst/cycle

- Huge memory
- bandwidth requirements
 - Caches: 1 Data Cache

or

- Separate I&D caches
- Lots of registers, state
- [°] Pipeline Hazards
 - Compiler
 - Reservation bits
 - Bypass Paths

- More state!
- ° Other "stuff" register windows
 - Even more state!

Fundamental conflict

Better single-thread performance (sequential)

• More on-chip state

[°] More on-chip state

- Harder to handle asynchronous events
 - Traps
 - Context switches
 - Synchronization faults
 - Message arrivals
- But, why is this a problem in MPs?
 Makes pipelining proc-mem-net harder.
 Consider...

Ignore communication system latency (T=0)

 Then, max bandwidth per node limits max processor speed

° Above

 Processor-network matched rate=net bandwidth

i.e. proc request

• If processor has higher request rate, it will suffer idle time

Now, include network latency

One solution

[°] Overlap communication with computation.

• "Multithread" the processor

- Need rapid context switch. See HEP, Sparcle.

Processor utilization
$$= \frac{\rho t}{t + T}$$
 if $\rho t < (t + T)$

 And/or allow multiple outstanding requests -- nonblocking memory

Overlap communication with computation.

Caveat!

Of course, previous analysis assumed network bandwidth was not a limitation. Consider:

- Computation speed (proc. util.) limited by network bandwidth.
- Lessons: Multithreading allows full utilization of network bandwidth. Processor util. will reach 1 only if net BW is not a limitation.

Same applies to synchronization delays as well

° If no multithreading

Requirements for latency tolerance (comm or synch)

- Processors must switch contexts fast
- Memory system must allow multiple outstanding requests
- Processors must handle traps fast (esp synchronization)
- Can also allow multiple memory requests

[°] But, caution:

Latency tolerant processors are no excuse for not exploiting locality and trying to minimize latency

° Consider...

Fine multithreading versus block multithreading

- Switch by putting new value into PC
- Minimize processor state
- Very poor single-thread performance

- Dedicate memory to hold state & high bandwidth path to state memory
- [°] Is this best use of expensive off-chip bandwidth?

- Include few (say 4) register frames for each process context.
- Switch by bumping FP (frame pointer)
- Switches between 4 processes fast, otherwise invoke software loader/unloader Sparcle uses SPARC windows

- Block register files
- Fast transfer of registers to on-chip data cache via wide path

Fast traps also needed.

- Also need dedicated synchronous trap lines ---- synchronization, cache miss...
- Need trap vector spreading to inline common trap code

° <u>Prefetching</u>

° Key issue

- What hardware support
- What to do in software
- Consider atomic update of the "bound" variable in traveling salesman

Need mechanism to lock out other request to L

In uniprocessors

• Raise interrupt level to max, to gain uninterrupted access

In multiprocessors

• Need instruction to prevent access to L.

° Methods

- Keep synchro vars in memory, do not release bus
- Keep synchro vars in cache, prevent outside invalidations
- Usually, can memory map some data fetches such that cache controller locks out other requests

Can also allow controller to do update of L.

Eg. Sparcle (in Alewife machine)

Given primitive atomic operation can synthesize in software higher forms

Eg.

1. Producer-consumer

Some provide massive HW support for synchronization -- eg. Ultracomputer, RP3

- [°] Combining networks.
- [°] Say, each processor wants a unique *i*

- Switches become processors -- slow, expensive
- Software combining -- implement combining tree in software using a tree data structure

- Processor support for parallel processing growing
- Latency tolerance supports by fast context switching
 - Also more advanced software systems
- Maintaining processor utilization is a key
 - Ties to network performance
- ^o Important to maintain RISC performance
- Even uniprocessors can benefit from context switches
 - Register windows