
ECE669 L18: Scalable Parallel Caches April 6, 2004

ECE 669

Parallel Computer Architecture

Lecture 18

Scalable Parallel Caches

ECE669 L18: Scalable Parallel Caches April 6, 2004

Overview

° Most cache protocols are more complicated than
two state

° Snooping not effective for network-based systems
• Consider three alternate cache coherence approaches
• Full-map, limited directory, chain

° Caching will affect network performance

° Limitless protocol
• Gives appearance of full-map

° Practical issues of processor – memory system
interaction

ECE669 L18: Scalable Parallel Caches April 6, 2004

Context for Scalable Cache Coherence

° ° °

Scalable network

CA

P

$

Switch

M

Switch Switch

Realizing Pgm Models
through net transaction
protocols
- efficient node-to-net interface
- interprets transactions

Caches naturally replicate
data
- coherence through bus

snooping protocols
- consistency

Scalable Networks
- many simultaneous

transactions

Scalable
distributed
memory

Need cache coherence protocols that scale!
- no broadcast or single point of order

ECE669 L18: Scalable Parallel Caches April 6, 2004

Generic Solution: Directories

° Maintain state vector explicitly
• associate with memory block
• records state of block in each cache

° On miss, communicate with directory
• determine location of cached copies
• determine action to take
• conduct protocol to maintain coherence

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory

ECE669 L18: Scalable Parallel Caches April 6, 2004

A Cache Coherent System Must:

° Provide set of states, state transition diagram, and
actions

° Manage coherence protocol
• (0) Determine when to invoke coherence protocol
• (a) Find info about state of block in other caches to determine

action
- whether need to communicate with other cached copies

• (b) Locate the other copies
• (c) Communicate with those copies (inval/update)

° (0) is done the same way on all systems
• state of the line is maintained in the cache
• protocol is invoked if an “access fault” occurs on the line

° Different approaches distinguished by (a) to (c)

ECE669 L18: Scalable Parallel Caches April 6, 2004

Coherence in small machines: Snooping Caches

• Broadcast address on shared write
• Everyone listens (snoops) on bus to see if any of their own

addresses match
• How do you know when to broadcast, invalidate...

- State associated with each cache line

cache cache
directory

cache
directory cache

snoop

Dual
ported

M

a

a

a

a

Broadcast

write

ProcessorProcessor

Purge 1

2

3

4
Match a

5

ECE669 L18: Scalable Parallel Caches April 6, 2004

State diagram for ownership protocols

• For each shared data cache block

Ownership

• In ownership protocol: writer owns exclusive copy

invalid

write-dirtyread-clean

Local
Read Remote

Write
(Replace) Remote

Write
(Replace)

Remote
Read

Local
Write

Local
Write Broadcast a

Broadcast a

ECE669 L18: Scalable Parallel Caches April 6, 2004

Maintaining coherence in large machines

• Software
• Hardware - directories

° Software coherence
Typically yields weak coherence
i.e. Coherence at sync points (or fence pts)

° E.g.: When using critical sections for shared ops...

° Code

° How do you make this work?

foo1
foo2
foo3
foo4

GET_FOO_LOCK
/* MUNGE WITH FOOs */

Foo1 =
X = Foo2
Foo3 =

RELEASE_FOO_LOCK

.

.

.

ECE669 L18: Scalable Parallel Caches April 6, 2004

Situation

° Flush foo* from cache, wait till done

° Issues
• Lock ?
• Must be conservative

- Lose some locality
• But, can exploit appl. characteristics

e.g. TSP, Chaotic
Allow some inconsistency

• Need special processor instructions

flush

 a 1 ,
r

1
ra ... a 1

r
w , ... a 2

w

unlock

foo1
foo2
foo3
foo4

P P

cache cache MEM

foo home

flush
wait

ECE669 L18: Scalable Parallel Caches April 6, 2004

Scalable Approach: Directories

° Every memory block has associated directory
information

• keeps track of copies of cached blocks and their states
• on a miss, find directory entry, look it up, and communicate only

with the nodes that have copies if necessary
• in scalable networks, communication with directory and copies

is through network transactions

° Many alternatives for organizing directory
information

ECE669 L18: Scalable Parallel Caches April 6, 2004

Basic Operation of Directory

• k processors.

• With each cache-block in memory: k
presence-bits, 1 dirty-bit

• With each cache-block in cache: 1
valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }

ECE669 L18: Scalable Parallel Caches April 6, 2004

Scalable dynamic schemes

• Limited directories
• Chained directories
• Limitless schemes

Use software

Other approach: Full Map (not scalable)

ECE669 L18: Scalable Parallel Caches April 6, 2004

General directories:
• On write, check directory

if shared, send inv msg

• Distribute directories with MEMs

Directory bandwidth scales in proportion to memory bandwidth

• Most directory accesses during memory access -- so not too many extra
network requests (except, write to read VAR)

Scalable hardware schemes

Limited directories

Chained directories

LimitLESS directories

MEM

PP

C

P

CC

M

DIR

D
I
R

M
E
M

...
M

ECE669 L18: Scalable Parallel Caches April 6, 2004

Memory controller - (directory) state diagram for
memory block

uncached

1 or more
read copies

1 write
copy i

read
write

write/invs req

replace update

read i/update req

pointers pointer

ECE669 L18: Scalable Parallel Caches April 6, 2004

Network

M MM

C C C

P P P
. . .

ECE669 L18: Scalable Parallel Caches April 6, 2004

Network

Limited directories: Exploit worker set behavior
• Invalidate 1 if 5th processor comes along (sometimes

can set a broadcast invalidate bit)
• Rarely more than 2 processors share
• Insight: The set of 4 pointers can be managed like a

fully-associative 4 entry cache on the virtual space of all
pointers

• But what do you do about widely shared data?

ECE669 L18: Scalable Parallel Caches April 6, 2004

Network

° LimitLESS directories:
Limited directories Locally Extended through Software Support
• Trap processor when 5th request comes
• Processor extends directory into local memory

M MM

C C C

P P P . . .

5th req

Trap

2
3

1

ECE669 L18: Scalable Parallel Caches April 6, 2004

Zero pointer LimitLESS: All software coherence

mem

cache

proc

comm

directory

trap always

mem

cache

proc

comm

remote mem

cache

proc

comm

local

ECE669 L18: Scalable Parallel Caches April 6, 2004

Network

° Chained directories: Simply different data
structure for directory

• Link all cache entries
• But longer latencies
• Also more complex hardware
• Must handle replacements of elements in chain due to

misses!

M MM

C C C

P P P
. . .

inv inv
inv

wrt

ECE669 L18: Scalable Parallel Caches April 6, 2004

Doubly linked chains

Network

Of course, can do these data structures though software +
msgs as in LimitLESS

M MM

C C C

P P P . . .

ECE669 L18: Scalable Parallel Caches April 6, 2004

Network

M MM

C C C

P P P
. . .

...

DIR

ECE669 L18: Scalable Parallel Caches April 6, 2004

Network

Full map: Problem
• Does not scale -- need N pointers
• Directories distributed, so not a bottleneck

M MM

C C C

P P P . . .

12

3 4

inv

ack write permission granted

write

...

DIR

ECE669 L18: Scalable Parallel Caches April 6, 2004

° Hierarchical - E.g. KSR (actually has rings...)

cache

P P P P P P P

disks?
MEMORY

ECE669 L18: Scalable Parallel Caches April 6, 2004

Hierarchical - E.g. KSR (actually has rings...)

cache

P P P P P P P

disks?
MEMORY

RD A

A

A

A

A

ECE669 L18: Scalable Parallel Caches April 6, 2004

Hierarchical - E.g. KSR (actually has rings...)

cache

P P P P P P P

disks?
MEMORY

RD A

A

A

A

A

A

A?

ECE669 L18: Scalable Parallel Caches April 6, 2004

Widely shared data

° 1. Synchronization variables

° 2. Read only objects

° 3. But, biggest problem:

Instructions
Read-only data

Can mark these and bypass coherence protocol

Frequently read, but rarely written data which does not fall into
known patterns like synchronization variables

flag
wrt

spin

wrt

Software combining tree

ECE669 L18: Scalable Parallel Caches April 6, 2004

All software coherence

All software

LimitLESS1

All hardware

LimitLESS2

LimitLESS4

0.00 0.40 0.80 1.20 1.60

Execution Time (Mcycles)

ECE669 L18: Scalable Parallel Caches April 6, 2004

All software coherence

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4x4 8x8 32x32 64x64 128x12816x16

Cycle Performance for Block Matrix Multiplication, 16 processors

Matrix size

E
xe

cu
ti

o
n

 t
im

e
(m

eg
ac

yc
le

s)
LimitLESS4 Protocol

LimitLESS0 : All software

ECE669 L18: Scalable Parallel Caches April 6, 2004

All software coherence

Performance for Single Global Barrier (first INVR to last RDATA)

0.0

1.0

2.0

3.0

4.0

5.0

2 nodes 4 nodes 32 nodes 64 nodes16 nodes

E
xe

cu
ti

o
n

 ti
m

e
(1

00
00

 c
yc

le
s)

LimitLESS4 Protocol

LimitLESS0 : All software

ECE669 L18: Scalable Parallel Caches April 6, 2004

Summary

° Tradeoffs in caching an important issue

° Limitless protocol provides software extension to
hardware caching

° Goal: maintain coherence but minimize network
traffic

° Full map not scalable and too costly

° Distributed memory makes caching more of a
challenge

