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Memory Characteristics

° Caching performance important for system 
performance

° Caching tightly integrated with networking

° Physcial properties
• Consider topology and distribution of memory

° Develop an effective coherency strategy

° Limitless approach to caching
• Allow scalable caching
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Perspectives

° Programming model and caching.
or: the meaning of shared memory

Sequential consistency: Final state (of memory) is as if all RDs and 
WRTs were executed in some given serial order (per processor 
order maintained)

[This notion borrows from similar notions of sequential consistency 
in transaction processing systems.]

Memory

w1
r1
r1

r3
r3
w3
w3

w2
w3
r2

r1 r2 r1 w2 w2 w3 ....

-Lamport



ECE669  L17: Memory Systems April 1, 2004 

Coherent Cache Implementation

° Twist:
• On write to shared location

- Invalidation sent in background
- Processor proceeds
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Does caching violate this model?
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Does caching violate this model? 

If b = = 0 at the end, sequential consistency is violated
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If b = = 0 at the end, sequential consistency is violated
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Does caching violate this model? 

LOOP: If (x= = 0) GOTO LOOP;
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Does caching violate this model? 

° Not if we are careful.
Ensure that at time instant t, no two processors see different values 

of a given variable.
On a write:

- Lock datum
- Invalidate all copies of datum
- Update central copy of datum
- Release lock on datum

Do not proceed till write completes (ack got)
How do we implement an update protocol?
Hard!

- Lock central copy of datum
- Mark all copies as unreadable
- Update all copies --- release read lock on each copy after 

each update
- Unlock central copy
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Writes are looooong -- latency ops.
° Solutions -

1.  Build latency tolerant processors - Alewife
2. Change shared-memory semantics [solve a different 

problem!]
3.  Notion of weaker memory semantics

Basic idea - Guarantee completion of write only on 
“fence” operations

Typical fence is synchronization point
(or programmer puts fences in)

Use:   
• Modify shared data only within critical sections
• Propagate changes at end of critical section, before 

releasing lock
Higher level locking protocols must guarantee that others do 

not try to read/write an object that has been modified and 
read by someone else.

For most parallel programs -- no problem

see
later
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Memory Systems

• Memory storage
• Communication
• Processing

° Programmer’s view

° Physically,
. . .
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Addressing

° I.  Like uniprocessors

Could include a translation phase for virtual memory systems

° II.  Object-oriented models

Address

LocID

Object-ID, Address
Table
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Issues in virtual memory (also naming)

° Goals:
• Illusion of a lot more memory than physically exists.
• Protection - allows multiprogramming
• Mobility of data: indirection allows ease of migration

° Premise:
• Want a large, virtualized, single address space
• But, physically distributed, local
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Memory Performance Parameters

• Size (per node)
• Bandwidth (accesses per second)
• Latency (access time)

° Size:
• Issue of cost.
• Uniprocessors 1 MByte per MIPS
• Multiprossors? Raging debate
Eg. Alewife 1/8 MByte memory per MIPS

Firefly 2 MByte per MIPS
What affects memory size decision?
Key issues Communication bandwidth     

memory size tradeoffs
Balanced design  --- All components roughly equally utilized
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No VM

PM . . .

. . .PP P

Relatively small address space

Address:

VA = PA

Processor # Offset
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Virtual Memory

PM . . .

. . .PP P

• Large address space
• Straightforward extension from uniprocessors
• Xlate in software, in cache, or TLBs

At source translation

. . .
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VM – At Destination Translation

PM . . .

. . .PP P

° On page fault at destination
• Fetch page/obj from a local disk
• Send msg to appropriate disk node

VA

xlate

(or miss)
PA

node # memory 
address
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Next, bandwidth and latency

° In the interests of keeping the memory system as 
simple as possible, and because distributed 
memory provides high peak bandwidth, we will not 
consider interleaved memories as in vector 
processors

° Instead, look at
• Reducing bandwidth demand of processors
• Reducing latency of memory 
Exploit locality
Property of reuse

° Caches



ECE669  L17: Memory Systems April 1, 2004 

M M M
C

C C

PP
P

Caching Techniques for multiprocessors

• How are caches different from local memory?
- Fine-grain relocation of blocks
- HW support for management, esp. for coherence
- Smaller, faster, integrable

• Otherwise have similiar properties as local memory 

Network
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Caching Techniques for multiprocessors

• How are caches different from local memory?

– Fine-grain relocation of blocks

– HW support for managment, esp. for coherence

– Smaller, faster, integrable

• Otherwise have similiar properties as local memory 

Network

Say, no caching

rdrd
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Caching Techniques for multiprocessors

• How are caches different from local memory?
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– HW support for managment, esp. for coherence

– Smaller, faster, integrable
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Caching Techniques for multiprocessors

• How are caches different from local memory?

– Fine-grain relocation of blocks

– HW support for managment, esp. for coherence

– Smaller, faster, integrable

• Otherwise have similiar properties as local memory 

Network

wrt

?

Network req on:  
- wrt to clean
- read of
remote dirty

Coherence
problem
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Summary

° Understand how delay affects cache performance

° Maintain sequential consistency

° Physcial properties
• Consider topology and distribution of memory

° Develop an effective coherency strategy

° Simplicity and software maintenance are keys


