
ECE669 L17: Memory Systems April 1, 2004

ECE 669

Parallel Computer Architecture

Lecture 17

Memory Systems

ECE669 L17: Memory Systems April 1, 2004

Memory Characteristics

° Caching performance important for system
performance

° Caching tightly integrated with networking

° Physcial properties
• Consider topology and distribution of memory

° Develop an effective coherency strategy

° Limitless approach to caching
• Allow scalable caching

ECE669 L17: Memory Systems April 1, 2004

Perspectives

° Programming model and caching.
or: the meaning of shared memory

Sequential consistency: Final state (of memory) is as if all RDs and
WRTs were executed in some given serial order (per processor
order maintained)

[This notion borrows from similar notions of sequential consistency
in transaction processing systems.]

Memory

w1
r1
r1

r3
r3
w3
w3

w2
w3
r2

r1 r2 r1 w2 w2 w3

-Lamport

ECE669 L17: Memory Systems April 1, 2004

Coherent Cache Implementation

° Twist:
• On write to shared location

- Invalidation sent in background
- Processor proceeds

M
A = O

C
A = 0

P

A = 1

1

A = 1
Proceed

ECE669 L17: Memory Systems April 1, 2004

Does caching violate this model?

C

P1 P2

M
A=0

M
x=0

C A=0
x=0

A=0
x=0

ECE669 L17: Memory Systems April 1, 2004

Does caching violate this model?

If b = = 0 at the end, sequential consistency is violated

A=1
x=1 LOOP: If (x= = 0) GOTO LOOP;

b=A

C

P1 P2

M
A=0

M
x=0

C A=0
x=0

A=0
x=0

ECE669 L17: Memory Systems April 1, 2004

1
1

A=1
x=1

1
1

LOOP: If (x= = 0) GOTO LOOP;
b=A

C

P1 P2

M
A=0

M
x=0

C A=0
x=0

A=0
x=0

Does caching violate this model?

If b = = 0 at the end, sequential consistency is violated

ECE669 L17: Memory Systems April 1, 2004

If b = = 0 at the end, sequential consistency is violated

A=1
x=1

1
1

A=1
x=1

1

1
2

2x=1

x=1

b=0! VIOLATION!

5

3
inv x

4
x delay

LOOP: If (x= = 0) GOTO LOOP;
b=A

C

P1 P2

M
A=0

M
x=0

C A=0
x=0

A=0
x=0

Does caching violate this model?

ECE669 L17: Memory Systems April 1, 2004

Does caching violate this model?

LOOP: If (x= = 0) GOTO LOOP;
b=A

b=1 !
o.k.

C

P1 P2

M
A=0

M
x=0

C A=0
x=0

A=0
x=0

x=1

3

delay...
A=1

ACK

A=1

A=1
x=1

A=1

A=1
x=1

0

7

fence

1

2

7

4
6

5
inv x3

ECE669 L17: Memory Systems April 1, 2004

Does caching violate this model?

° Not if we are careful.
Ensure that at time instant t, no two processors see different values

of a given variable.
On a write:

- Lock datum
- Invalidate all copies of datum
- Update central copy of datum
- Release lock on datum

Do not proceed till write completes (ack got)
How do we implement an update protocol?
Hard!

- Lock central copy of datum
- Mark all copies as unreadable
- Update all copies --- release read lock on each copy after

each update
- Unlock central copy

ECE669 L17: Memory Systems April 1, 2004

Writes are looooong -- latency ops.
° Solutions -

1. Build latency tolerant processors - Alewife
2. Change shared-memory semantics [solve a different

problem!]
3. Notion of weaker memory semantics

Basic idea - Guarantee completion of write only on
“fence” operations

Typical fence is synchronization point
(or programmer puts fences in)

Use:
• Modify shared data only within critical sections
• Propagate changes at end of critical section, before

releasing lock
Higher level locking protocols must guarantee that others do

not try to read/write an object that has been modified and
read by someone else.

For most parallel programs -- no problem

see
later

ECE669 L17: Memory Systems April 1, 2004

Memory Systems

• Memory storage
• Communication
• Processing

° Programmer’s view

° Physically,
. . .

Memory
wrt read

P
P P

P

M M
M

Memory

Network NetworkNetwork

M MM
M

Monolithic
Distributed

Distributed -
local

P

P

P P

P
P P

PPP
P

.

ECE669 L17: Memory Systems April 1, 2004

Addressing

° I. Like uniprocessors

Could include a translation phase for virtual memory systems

° II. Object-oriented models

Address

LocID

Object-ID, Address
Table

Node ID

Address

Offset

MM M . . .

ECE669 L17: Memory Systems April 1, 2004

Issues in virtual memory (also naming)

° Goals:
• Illusion of a lot more memory than physically exists.
• Protection - allows multiprogramming
• Mobility of data: indirection allows ease of migration

° Premise:
• Want a large, virtualized, single address space
• But, physically distributed, local

ECE669 L17: Memory Systems April 1, 2004

Memory Performance Parameters

• Size (per node)
• Bandwidth (accesses per second)
• Latency (access time)

° Size:
• Issue of cost.
• Uniprocessors 1 MByte per MIPS
• Multiprossors? Raging debate
Eg. Alewife 1/8 MByte memory per MIPS

Firefly 2 MByte per MIPS
What affects memory size decision?
Key issues Communication bandwidth

memory size tradeoffs
Balanced design --- All components roughly equally utilized

ECE669 L17: Memory Systems April 1, 2004

No VM

PM . . .

. . .PP P

Relatively small address space

Address:

VA = PA

Processor # Offset

ECE669 L17: Memory Systems April 1, 2004

Virtual Memory

PM . . .

. . .PP P

• Large address space
• Straightforward extension from uniprocessors
• Xlate in software, in cache, or TLBs

At source translation

. . .
VA

VA

xlate

PA

PA

ECE669 L17: Memory Systems April 1, 2004

VM – At Destination Translation

PM . . .

. . .PP P

° On page fault at destination
• Fetch page/obj from a local disk
• Send msg to appropriate disk node

VA

xlate

(or miss)
PA

node # memory
address

ECE669 L17: Memory Systems April 1, 2004

Next, bandwidth and latency

° In the interests of keeping the memory system as
simple as possible, and because distributed
memory provides high peak bandwidth, we will not
consider interleaved memories as in vector
processors

° Instead, look at
• Reducing bandwidth demand of processors
• Reducing latency of memory
Exploit locality
Property of reuse

° Caches

ECE669 L17: Memory Systems April 1, 2004

M M M
C

C C

PP
P

Caching Techniques for multiprocessors

• How are caches different from local memory?
- Fine-grain relocation of blocks
- HW support for management, esp. for coherence
- Smaller, faster, integrable

• Otherwise have similiar properties as local memory

Network

ECE669 L17: Memory Systems April 1, 2004

M M M
C

C C

PP
P

Caching Techniques for multiprocessors

• How are caches different from local memory?

– Fine-grain relocation of blocks

– HW support for managment, esp. for coherence

– Smaller, faster, integrable

• Otherwise have similiar properties as local memory

Network

Say, no caching

rdrd

ECE669 L17: Memory Systems April 1, 2004

M M M
C

C C

PP
P

Caching Techniques for multiprocessors

• How are caches different from local memory?

– Fine-grain relocation of blocks

– HW support for managment, esp. for coherence

– Smaller, faster, integrable

• Otherwise have similiar properties as local memory

Network

with
caches

ECE669 L17: Memory Systems April 1, 2004

M M M
C

C C

PP
P

Caching Techniques for multiprocessors

• How are caches different from local memory?

– Fine-grain relocation of blocks

– HW support for managment, esp. for coherence

– Smaller, faster, integrable

• Otherwise have similiar properties as local memory

Network

wrt

?

Network req on:
- wrt to clean
- read of
remote dirty

Coherence
problem

ECE669 L17: Memory Systems April 1, 2004

Summary

° Understand how delay affects cache performance

° Maintain sequential consistency

° Physcial properties
• Consider topology and distribution of memory

° Develop an effective coherency strategy

° Simplicity and software maintenance are keys

