

Parallel Computer Architecture

Lecture 16

Interconnection Topology

ECE669 L16: Interconnection Topology

- Class networks scaling with N
- [°] Logical Properties:
 - distance, degree
- Physical properties
 - length, width
- Fully connected network
 - diameter = 1
 - degree = N
 - cost?
 - bus => O(N), but BW is O(1) actually worse
 - crossbar => $O(N^2)$ for BW O(N)
- ° VLSI technology determines switch degree

Linear Arrays and Rings

Linear Array

Torus

Torus arranged to use short wires

° Linear Array

- Diameter?
- Average Distance?
- Bisection bandwidth?
- Route A -> B given by relative address R = B-A
- ° Torus?

° Examples: FDDI, SCI, KSR1

Multidimensional Meshes and Tori

2D Grid

3D Cube

° *n*-dimensional *k*-ary mesh: $N = k^n$

- **k** = ⁿ**Ö**N
- described by *n*-vector of radix k coordinate
- on-dimensional k-ary torus (or k-ary n-cube)?

Real World 2D mesh

° 1824 node Paragon: 16 x 114 array

Diameter and ave distance logarithmic

- k-ary tree, height d = log_k N
- address specified d-vector of radix k coordinates describing path down from root
- Fixed degree
- ° H-tree space is O(N) with O(ÖN) long wires
- ° Bisection BW?

 Fatter links (really more of them) as you go up, so bisection BW scales with N

16 node butterfly

- ° Tree with lots of roots!
- ° N log N (actually N/2 x logN)
- Exactly one route from any source to any dest
- Bisection N/2

- Back-to-back butterfly can route all permutations
 - off line

16-node Benes Network (Unidirectional)

16-node 2-ary Fat-Tree (Bidirectional)

Hypercubes

- ° Also called binary n-cubes. # of nodes = $N = 2^{n}$.
- ° O(logN) Hops
- Good bisection BW
- ° Complexity
 - Out degree is n = logN

correct dimensions in order

• with random comm. 2 ports per processor

5-D !

Relationship: ButterFlies to Hypercubes

- Wiring is isomorphic
- [°] Except that Butterfly always takes log n steps

Topology	Degree	Diameter	Ave Dist	Bisection	D (D av	e) @ P=1024
1D Array	2	N-1	N / 3	1	huge	
1D Ring	2	N/2	N/4	2		
2D Mesh	4	2 (N ^{1/2} - 1)	2/3 N ^{1/2}	N ^{1/2}	63 (21)	
2D Torus	4	N ^{1/2}	1/2 N ^{1/2}	2N ^{1/2}	32 (16)	
k-ary n-cube	2n	nk/2	nk/4	nk/4	15 (7.5)	@n=3
Hypercube	n =log N		n	n/2	N/2	10 (5)

° All have some "bad permutations"

- many popular permutations are very bad for meshs (transpose)
- ramdomness in wiring or routing makes it hard to find a bad one!

Machine	Topology	Cycle Time (ns)	Channel Width (bits)	Routing Delay (cycles)	Flit (data bits)
nCUBE/2	Hypercube	25	sahts l ar ist	40	32
TMC CM-5	Fat-Tree	25	4	10	4
IBM SP-2	Banyan	25	8	5	16
Intel Paragon	2D Mesh	11.5	16	2	16
Meiko CS-2	Fat-Tree	20	Roch 8 group	7	8
CRAY T3D	3D Torus	6.67	16	2	16
DASH	Torus	30	16	2	16
J-Machine	3D Mesh	31	8.000	2	8
Monsoon	Butterfly	20	16	2	16
SGI Origin	Hypercube	2.5	20	16	160
Myricom	Arbitrary	6.25	16	50	16

° Wide links, smaller routing delay

° Tremendous variation

ECE669 L16: Interconnection Topology