
ECE669 L15: Mid-term Review March 25, 2004

ECE 669

Parallel Computer Architecture

Lecture 15

Mid-term Review

ECE669 L15: Mid-term Review March 25, 2004

Is Parallel Computing Inevitable?

° Application demands: Our insatiable need for
computing cycles

° Technology Trends

° Architecture Trends

° Economics

° Current trends:
• Today’s microprocessors have multiprocessor support
• Servers and workstations becoming MP: Sun, SGI, DEC, HP!...
• Tomorrow’s microprocessors are multiprocessors

ECE669 L15: Mid-term Review March 25, 2004

Application Trends

° Application demand for performance fuels
advances in hardware, which enables new appl’ns,
which...

• Cycle drives exponential increase in microprocessor performance
• Drives parallel architecture harder

- most demanding applications

° Range of performance demands
• Need range of system performance with progressively increasing

cost

New Applications
More Performance

ECE669 L15: Mid-term Review March 25, 2004

Architectural Trends

° Architecture translates technology’s gifts into
performance and capability

° Resolves the tradeoff between parallelism and
locality

• Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip
connect

• Tradeoffs may change with scale and technology advances

° Understanding microprocessor architectural
trends

=> Helps build intuition about design issues or parallel
machines

=> Shows fundamental role of parallelism even in “sequential”
computers

ECE669 L15: Mid-term Review March 25, 2004

Tr
an

si
st

or
s

uuuuuuu

uu

u

uu

u

u

u uu
u

u

u

u

uu

uuu u

u
u

u

u

u u

u

u

u

u

u

uu

u u

uu
u
uuu u

uu uu u

u

uuu u

uuu

u
u uuu

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008
i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

Phases in “VLSI” Generation

ECE669 L15: Mid-term Review March 25, 2004

Programming Model

° Look at major programming models
• Where did they come from?
• What do they provide?
• How have they converged?

° Extract general structure and fundamental issues

° Reexamine traditional camps from new perspective

SIMD

Message Passing

Shared MemoryDataflow

Systolic
Arrays Generic

Architecture

ECE669 L15: Mid-term Review March 25, 2004

Programming Model

° Conceptualization of the machine that programmer
uses in coding applications

• How parts cooperate and coordinate their activities
• Specifies communication and synchronization operations

° Multiprogramming
• no communication or synch. at program level

° Shared address space
• like bulletin board

° Message passing
• like letters or phone calls, explicit point to point

° Data parallel:
• more regimented, global actions on data
• Implemented with shared address space or message passing

ECE669 L15: Mid-term Review March 25, 2004

Shared Physical Memory

° Any processor can directly reference any memory
location

° Any I/O controller - any memory

° Operating system can run on any processor, or all.
• OS uses shared memory to coordinate

° Communication occurs implicitly as result of loads
and stores

° What about application processes?

ECE669 L15: Mid-term Review March 25, 2004

Message Passing Architectures

° Complete computer as building block, including I/O
• Communication via explicit I/O operations

° Programming model
• direct access only to private address space (local memory),
• communication via explicit messages (send/receive)

° High-level block diagram
• Communication integration?

- Mem, I/O, LAN, Cluster
• Easier to build and scale than SAS

° Programming model more removed from basic
hardware operations

• Library or OS intervention

M ° ° °M M

Network

P

$

P

$

P

$

ECE669 L15: Mid-term Review March 25, 2004

Message-Passing Abstraction

• Send specifies buffer to be transmitted and receiving process
• Recv specifies sending process and application storage to receive into
• Memory to memory copy, but need to name processes
• Optional tag on send and matching rule on receive
• User process names local data and entities in process/tag space too
• In simplest form, the send/recv match achieves pairwise synch event

- Other variants too
• Many overheads: copying, buffer management, protection

ProcessP Process Q

AddressY

AddressX

Send X, Q, t

Receive Y, P, tMatch

Local process
address space

Local process
address space

ECE669 L15: Mid-term Review March 25, 2004

Simulating Ocean Currents

° Model as two-dimensional grids
• Discretize in space and time
• finer spatial and temporal resolution => greater accuracy

° Many different computations per time step
- set up and solve equations

• Concurrency across and within grid computations
° Static and regular

(a) Cross sections (b) Spatial discretization of a cross section

ECE669 L15: Mid-term Review March 25, 2004

4 Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

° Decomposition of computation in tasks

° Assignment of tasks to processes

° Orchestration of data access, comm, synch.

° Mapping processes to processors

ECE669 L15: Mid-term Review March 25, 2004

Discretize

° Time
• Where

° Space

° 1st
• Where

° 2nd

• Can use other discretizations
- Backward
- Leap frog

Forward
difference

∂ A
∂ x

=
A i + 1 − A i

∆ x

∂ A
∂ T

=
A n + 1 − A n

∆ t

∆ t =

1
T steps

A12A11

Space

Boundary
conditions

n-2
n-1

n

Time

∂
∂ x

∂ A
∂ x



 


 =

A i + 1 − A i() − A i − A i − 1()
∆ x 2

∂ 2 A
∂ x 2 =

A i + 1 − 2 A i + A i − 1

∆ x 2

∆ x =
1

X grid points

ECE669 L15: Mid-term Review March 25, 2004

1D Case

° Or

∂ A
∂ T

=
∂ 2 A
∂ x 2

+ B

A i

n + 1 =
∆ t

∆ x 2 A i + 1
n − 2 A i

n + A i −1
n[]+ B i ∆ t + A i

n

A x
n + 1

A i
n + 1

A 2
n + 1

A i
n + 1



















=
∆ t

∆ x 2

− 2 ∆ t

∆ x 2
+ 1

∆ t

∆ x 2





















A x
n

A i

A 2
n

A i
n



















+ B

















 0

0

A i
n + 1 − A i

n

∆ t
=

1

∆ x 2 A i + 1
n − 2 A i

n + Ai-1
n[] + Bi

ECE669 L15: Mid-term Review March 25, 2004

°

Multigrid

Basic idea ---> Solve on coarse grid
---> then on fine grid

8, 1

1, 1

8, 8

1, 8

X k+1

ECE669 L15: Mid-term Review March 25, 2004

8, 1

1, 1

8, 8

1, 8

Basic idea ---> Solve on coarse grid
---> then on fine grid

8, 1

1, 1

8, 8

1, 8

°

Multigrid

X k+1
i, j

ECE669 L15: Mid-term Review March 25, 2004

Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
•Depends on n,p: decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

Domain Decomposition

° Works well for scientific, engineering, graphics, ...
applications

° Exploits local-biased nature of physical problems
• Information requirements often short-range
• Or long-range but fall off with distance

° Simple example: nearest-neighbor grid
computation

ECE669 L15: Mid-term Review March 25, 2004

Domain Decomposition

° Comm to comp: for block, for strip

° Application dependent: strip may be better in other cases

4*p0.5

n
2*p
n

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition:

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p

n

p

ECE669 L15: Mid-term Review March 25, 2004

Exploiting Temporal Locality

• Structure algorithm so working sets map well to hierarchy
- often techniques to reduce inherent communication do well here
- schedule tasks for data reuse once assigned

• Solver example: blocking

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4

ECE669 L15: Mid-term Review March 25, 2004

1-D Array of nodes for Jacobi

N
P ops

Comm

N
P

 Comm
N
P

{

1 32 1…

T =

N
P

+ P

Model: 1 op, 1cycle
1comm/hop, 1cycle

ECE669 L15: Mid-term Review March 25, 2004

Scalability

°

° Ideal speedup on any number of procs.

° Find best P

° So,

° So, 1-D array is scalable for Jacobi

24

S I N() = N

S R N() = ?

T par = N
P

+ P

δ T
δ P

= 0

P = N
2
3 ...

T par = θ N
1
3











T seg = N

S R N() = N
2
3 =

N

N
1
3

ψ N() =
N

2
3

N
=

S R N()

S I N() = N −
1
3

1

N
1
3

ECE669 L15: Mid-term Review March 25, 2004

Detailed Example

p = 10 × 10 6

c = 0 .1 × 10 6

m = 0 .1 × 10 6

P = 10

p
c = N

P

or 10 × 10 6

0 .1 × 10 6 =
N

10

or N = 1000 for balance

also R M = m
N
P = m

1000
10

= 100 = m

Memory size of m = 100 yields a balanced machine.

ECE669 L15: Mid-term Review March 25, 2004

Better Algorithm, but basically Branch and Bound

° Little et al.

° Basic Ideas:

•

•

•

••

•

1

1

2

3

4

2 3 4

4 9 6

2 6

1 2 4

2 2

Cost matrix

1

4

3

2

6

2

4
1

9

2
4

62 2

ECE669 L15: Mid-term Review March 25, 2004

Better Algorithm, but basically Branch and Bound

Little et al.

Notion of reduction:

• Subtract same value from each row or column
•

•

•

•

1

2

3

4

4

9

6

To

At least 4

4

•

•

•

••

•

1

1

2

3

4

2 3 4

4 9 6

2 6

1 2 4

2 2

0 5 2
1

4

3

2

6

2

4
1

9

2
4

62 2

ECE669 L15: Mid-term Review March 25, 2004

Better Algorithm, but basically Branch and Bound

Little et al.

•

•

•

•

1

2

3

4

4

9

6

To

At least 4

4

•

•

•

••

•

1

1

2

3

4

2 3 4

4 9 6

2 6

1 2 4

2 2

0 5 2

1

4

3

2

6

2

4
1

9

2
4

62 2

2

3

4

2

2

1

At least 1

From

1

0

1

1

ECE669 L15: Mid-term Review March 25, 2004

Communication Finite State Machine

• Each node has a
processing part and a
communications part

• Interface to local
processor is a FIFO

• Communication to near-
neighbors is pipelined

ECE669 L15: Mid-term Review March 25, 2004

Statically Programmed Communication

• Data transferred one
node in one cycle

• Inter-processor path may
require multiple cycles

• Heavy arrows represent
local transfers

• Grey arrows represent
non-local transfers

