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Is Parallel Computing Inevitable?

° Application demands: Our insatiable need for
computing cycles

° Technology Trends
° Architecture Trends
° Economics

° Current trends:

« Today’s microprocessors have multiprocessor support
« Servers and workstations becoming MP: Sun, SGI, DEC, HP!...
« Tomorrow’s microprocessors are multiprocessors

ECE669 L15: Mid-term Review March 25, 2004



Application Trends

° Application demand for performance fuels
adh\(arr]]ces In hardware, which enables new appl'ns,
which...

« Cycle drives exponential increase in microprocessor performance
» Drives parallel architecture harder
- most demanding applications

New Applications

° Range of performance demands

* Need range of system performance with progressively increasing
cost
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Architectural Trends

° Architecture translates technology’s gifts into
performance and capability

° Resolves the tradeoff between parallelism and
locality

 Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip
connect

 Tradeoffs may change with scale and technology advances

° Understanding microprocessor architectural
trends

=> Helps build intuition about design issues or parallel
machines

=> Shows fundamental role of parallelism even in “sequential”
computers
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Phases in “VLSI” Generation
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Programming Model

° Look at major programming models
« Where did they come from?
« What do they provide?
« How have they converged?

° Extract general structure and fundamental issues

° Reexamine traditional camps from new perspective

\> Generic //

Architecture =
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Programming Model

« How parts cooperate and coordinate their activities
» Specifies communication and synchronization operations

(o)

Multiprogramming
* no communication or synch. at program level

o

Shared address space
* like bulletin board

o

Message passing
* like letters or phone calls, explicit point to point

o

Data parallel:
* more regimented, global actions on data
 Implemented with shared address space or message passing
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Shared Physical Memory

Any processor can directly reference any memory
location

° Any I/O controller - any memory

Operating system can run on any processor, or all.
« OS uses shared memory to coordinate

Communication occurs implicitly as result of loads
and stores

° What about application processes?
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Message Passing Architectures

° Complete computer as building block, including I/O
« Communication via explicit I/O operations

Programming model

« direct access only to private address space (local memory),
¢ communication via explicit messages (send/receive)

° High-level block diagram
« Communication integration?

 Easier to build and scale than SAS

Programming model more removed from basic
hardware operations

 Library or OS intervention
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Message-Passing Abstraction

Match ReceiveY, P, t

AddressY

SendX, Q, t

AddressX

Local process

Local process
P address space

address space

ProcessP Process Q

« Send specifies buffer to be transmitted and receiving process

* Recv specifies sending process and application storage to receive into
« Memory to memory copy, but need to name processes

 Optional tag on send and matching rule on receive

» User process names local data and entities in process/tag space too

* In simplest form, the send/recv match achieves pairwise synch event

- Other variants too
« Many overheads: copying, buffer management, protection
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Simulating Ocean Currents
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(a) Cross sections

(b) Spatia discretizationof a cross section

° Model as two-dimensional grids

» Discretize in space and time

» finer spatial and temporal resolution => greater accuracy
° Many different computations per time step

- set up and solve equations
 Concurrency across and within grid computations

° Static and regular
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4 Steps in Creating a Parallel Program

Partitioning
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of computation in tasks
of tasks to processes
of data access, comm, synch.

processes to processors
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Discretize
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« Can use other discretizations
- Backward
- Leap frog

ECE669 L15: Mid-term Review March 25, 2004



1D Case
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Multigrid

o

Basic idea ---> Solve on coarse grid
--->then on fine grid

8, 8

x k+1

1,1 1,8
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Multigrid

o

Basic idea ---> Solve on coarse grid
--->then on fine grid
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Domain Decomposition

° Works well for scientific, engineering, graphics, ...
applications

° Exploits local-biased nature of physical problems
* Information requirements often short-range
 Or long-range but fall off with distance

° Simple example: nearest-neighbor grid
computation
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Domain Decomposition

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition:
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°Comm to comp: Lﬁos for block, 2;p for strip

°> Application dependent: strip may be better in other cases
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Exploiting Temporal Locality

« Structure algorithm so working sets map well to hierarchy
- often techniques to reduce inherent communication do well here
- schedule tasks for data reuse once assigned

« Solver example: blocking
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(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4
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1-D Array of nodes for Jacobi
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Scalabilit

. S,(N)=N
Sg(N )=~
° Ideal speedup on any number of procs.
: - N P
° Find best P Tpar = p7 " VF
T _
dpP 2
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e 1o
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° So, 1-D array is ——1 scalable for Jacobi
N 3
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Detailed Example

p =10 ~ 10 °©
c =0.1"10°
m =0.1" 10 °
P =10
p - N
c P
o 0 °10° N
0.1 10°% " 10

or N = 1000 for balance

also Ry = m

N _
P_m
1000 _ 100 = m

10

Memory size of m = 100 yields a balanced machine.
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Better Algorithm, but basically Branch and Bound

° Little et al.
° Basic ldeas:

Cost matrix
1 2 3 4 !
1| o 4 9 6
2 2 . 6 .
31 1 2 . 4
4 2 o 2 .
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Better Algorithm, but basically Branch and Bound

Little et al.
1 2 3 4 4
0 5 g
1 e A | | 1
2 2 ° 6 °
3| 1 2 . 4
4 2 ° 2 o

Notion of reduction:
4
* Subtract same value from each row or column o ;
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Better Algorithm, but basically Branch and Bound
Little et al.
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Communication Finite State Machine

« Each node has a
processing part and a
communications part

 Interface to local
processor is a FIFO

e Communication to near-
neighbors is pipelined
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Internal Interface
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Statically Programmed Communication

e Data transferred one
node in one cycle

 Inter-processor path may
require multiple cycles

 Heavy arrows represent
local transfers

« Grey arrows represent
non-local transfers
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