ECE 669

Parallel Computer Architecture

ECE669 L15: Mid-term Review

Lecture 15

Mid-term Review

7A

UMASS

March 25, 2004

Is Parallel Computing Inevitable?

° Application demands: Our insatiable need for
computing cycles

° Technology Trends
° Architecture Trends
° Economics

° Current trends:

« Today’s microprocessors have multiprocessor support
« Servers and workstations becoming MP: Sun, SGI, DEC, HP!...
« Tomorrow’s microprocessors are multiprocessors

ECE669 L15: Mid-term Review March 25, 2004

Application Trends

° Application demand for performance fuels
adh\(arr]]ces In hardware, which enables new appl'ns,
which...

« Cycle drives exponential increase in microprocessor performance
» Drives parallel architecture harder
- most demanding applications

New Applications

° Range of performance demands

* Need range of system performance with progressively increasing
cost

ECE669 L15: Mid-term Review March 25, 2004

Architectural Trends

° Architecture translates technology’s gifts into
performance and capability

° Resolves the tradeoff between parallelism and
locality

 Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip
connect

 Tradeoffs may change with scale and technology advances

° Understanding microprocessor architectural
trends

=> Helps build intuition about design issues or parallel
machines

=> Shows fundamental role of parallelism even in “sequential”
computers

ECE669 L15: Mid-term Review March 25, 2004

Phases in “VLSI” Generation

Bit-level parallelism Instruction-level Thread-level (?)
100,000,000 =
10,000,000 =
1,000,000 =
Q :
S B # 50386
2 |
8
= 100,000 M
— & R2000
10,000 =
1.000 /]]]]]]
1970 1975 1980 1985 1990 1995 2000

ECE669 L15: Mid-term Review

March 25, 2004

2005

Programming Model

° Look at major programming models
« Where did they come from?
« What do they provide?
« How have they converged?

° Extract general structure and fundamental issues

° Reexamine traditional camps from new perspective

\> Generic //

Architecture =

ECE669 L15: Mid-term Review March 25, 2004

———

Programming Model

« How parts cooperate and coordinate their activities
» Specifies communication and synchronization operations

(o)

Multiprogramming
* no communication or synch. at program level

o

Shared address space
* like bulletin board

o

Message passing
* like letters or phone calls, explicit point to point

o

Data parallel:
* more regimented, global actions on data
 Implemented with shared address space or message passing

ECE669 L15: Mid-term Review March 25, 2004

Shared Physical Memory

Any processor can directly reference any memory
location

° Any I/O controller - any memory

Operating system can run on any processor, or all.
« OS uses shared memory to coordinate

Communication occurs implicitly as result of loads
and stores

° What about application processes?

ECE669 L15: Mid-term Review March 25, 2004

Message Passing Architectures

° Complete computer as building block, including I/O
« Communication via explicit I/O operations

Programming model

« direct access only to private address space (local memory),
¢ communication via explicit messages (send/receive)

° High-level block diagram
« Communication integration?

 Easier to build and scale than SAS

Programming model more removed from basic
hardware operations

 Library or OS intervention

ECE669 L15: Mid-term Review March 25, 2004

Message-Passing Abstraction

Match ReceiveY, P, t

AddressY

SendX, Q, t

AddressX

Local process

Local process
P address space

address space

ProcessP Process Q

« Send specifies buffer to be transmitted and receiving process

* Recv specifies sending process and application storage to receive into
« Memory to memory copy, but need to name processes

 Optional tag on send and matching rule on receive

» User process names local data and entities in process/tag space too

* In simplest form, the send/recv match achieves pairwise synch event

- Other variants too
« Many overheads: copying, buffer management, protection

ECE669 L15: Mid-term Review March 25, 2004

Simulating Ocean Currents

OCcCO0OO0CD QOO0
CO0ODOOO0COC 000
oOoCcoD0OCOOCO0OO0O0O
OCDOCOOCOQO0C0
OLCDOLOCOOC OO
OO0 CODQCaQOoOCQ
oOo0oDnDoOo000CaQ0C0
o oODODOCOO0O0O
OCcDDOCOCOCQOO0CO0
Q00000 0C0O00C0

\

(a) Cross sections

(b) Spatia discretizationof a cross section

° Model as two-dimensional grids

» Discretize in space and time

» finer spatial and temporal resolution => greater accuracy
° Many different computations per time step

- set up and solve equations
 Concurrency across and within grid computations

° Static and regular

ECE669 L15: Mid-term Review March 25, 2004

4 Steps in Creating a Parallel Program

Partitioning

|
D A O M
e QC) s r a
c s ﬁ p
o Lo e i
p O n S n PO B Pl
o} OQ m t g
— g — O — e —P — I | — >
i n e
t OO t t P, —| P3
3 i
o DO 0
O n
Sequential Tasks Processes Parallel Processors
computation program

of computation in tasks
of tasks to processes
of data access, comm, synch.

processes to processors

ECE669 L15: Mid-term Review March 25, 2004

Discretize

E An+1_ An

° Time = Forward
Wh 1T Dt difference
° ere 1 n-2 Time
Dt =] n']\
o T steps L n
Space t |
° 1st TA - A - A Boundary
9 x D x rSpace 1 2 conditions
L Whel‘e 1 l——* All A12
DX = : :
X grid points

oond Logmae (A A)- (A AL
1x ex o Dx 2

1°A _ A - 2A + A,

Mx 2 Dx 2

« Can use other discretizations
- Backward
- Leap frog

ECE669 L15: Mid-term Review March 25, 2004

1D Case

2
1A = 1-A + B
1T Tx 2
n+1 n
- A, 1
al — - —[ar.-2A0 + AL] 4B
Dt DX
Dt
° Or A|n+1 = [Ain+1 2A|n + Aln-l]+ BIDt + Aln
Dx °
éA n+1u é O ué
én §+1u é\ \ \ Ua
a | _ é Dt -2Dbt _, Dt Ua
& .0 € pDx? \Dx? Dx2 e
A 2 10 éo \ x Ua
A M0 8 Hé

ECE669 L15: Mid-term Review

March 25, 2004

b TN e N e N e e e’

+

®: OB D

®&—D~

G e e

G G e

Multigrid

o

Basic idea ---> Solve on coarse grid
--->then on fine grid

8, 8

x k+1

1,1 1,8

ECE669 L15: Mid-term Review March 25, 2004

Multigrid

o

Basic idea ---> Solve on coarse grid
--->then on fine grid

8, 8

k+1
X i

1,8

ECE669 L15: Mid-term Review March 25, 2004

Domain Decomposition

° Works well for scientific, engineering, graphics, ...
applications

° Exploits local-biased nature of physical problems
* Information requirements often short-range
 Or long-range but fall off with distance

° Simple example: nearest-neighbor grid
computation

.
|

R P P P
P, P Ps }
l B | R | Po| P
Perimeter to Area comm-to-comp ratio (areato volumein 3-
-Depends on n,p: decreases with n, increases with p

=]

9000000040
08080880
00080880
08080880
00080880
08080880
00008088 Q
R T NN NNN R
000000 0Q
-4— | —>

(@R
—

ECE669 L15: Mid-term Review March 25, 2004

Domain Decomposition

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition:

“/;) - n —

A

I n

“/;) Pg P Po | Pu1

°Comm to comp: Lﬁos for block, 2;p for strip

°> Application dependent: strip may be better in other cases

ECE669 L15: Mid-term Review March 25, 2004

Exploiting Temporal Locality

« Structure algorithm so working sets map well to hierarchy
- often techniques to reduce inherent communication do well here
- schedule tasks for data reuse once assigned

« Solver example: blocking

0O0C O 0000 CO0OO0OO0000 oo 000000000000
oC © 000 0¢C00C0Oo0ae Q0 0 0 Q0 Q0 Q0O Qo Qda
00| e eeee |00 0 0) (7 v, > 0|00
0o | For—0— 000000 =010 0 Qo é_//// 00
o0 %oo oo / o0
0 0 | HT——o—o—o—0— soloo 0o| EE e 00
00 ————o oo oo 9o o0
o0 Qa0 0o a0
00 aaQ 0o Qo0
o0 00 g0 00
oo 00 aa o0
00 ada QQ o0
OO0 0000 O0COO0OCGCO OO0 OO0 0O OO O0OOCOO0C 00000
OO0 o o0 00000000 OO0 0 0O 0O 00 00 0 C GCo0OUd
(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4

ECE669 L15: Mid-term Review March 25, 2004

1-D Array of nodes for Jacobi

NOS
p OPs

O O O O O \ & O @)
1 2 3 1
N_
p 1
l Comm
)
N
Model: 1 op, 1cycle Comm ~ —
lcomm/hop, 1cycle P
T = '; v P

ECE669 L15: Mid-term Review March 25, 2004

Scalabilit

. S,(N)=N
Sg(N)=~
° Ideal speedup on any number of procs.
: - N P
° Find best P Tpar = p7 " VF
T _
dpP 2
P = N 3..
e 1o
Tpar = CI%N 3;
Tseg = N,
spiN) = N3 = N—l
N'3
2 Sk (N) 1
N 3 R (N =
° So, v (N = 3 s Ny SN
° So, 1-D array is ——1 scalable for Jacobi
N 3

ECE669 L15: Mid-term Review 24 March 25, 2004

Detailed Example

p =10 ~ 10 °©
c =0.1"10°
m =0.1" 10 °
P =10
p - N
c P
o 0 °10° N
0.1 10°% " 10

or N = 1000 for balance

also Ry = m

N _
P_m
1000 _ 100 = m

10

Memory size of m = 100 yields a balanced machine.

ECE669 L15: Mid-term Review March 25, 2004

Better Algorithm, but basically Branch and Bound

° Little et al.
° Basic ldeas:

Cost matrix
1 2 3 4 !
1| o 4 9 6
2 2 . 6 .
31 1 2 . 4
4 2 o 2 .

ECE669 L15: Mid-term Review March 25, 2004

Better Algorithm, but basically Branch and Bound

Little et al.
1 2 3 4 4
0 5 g
1 e A | | 1
2 2 ° 6 °
3| 1 2 . 4
4 2 ° 2 o

Notion of reduction:
4
* Subtract same value from each row or column o ;

ECE669 L15: Mid-term Review March 25, 2004

Better Algorithm, but basically Branch and Bound
Little et al.

ECE669 L15: Mid-term Review March 25, 2004

Communication Finite State Machine

« Each node has a
processing part and a
communications part

 Interface to local
processor is a FIFO

e Communication to near-
neighbors is pipelined

L.ocal Processor

Internal Interface

S
-

S
.

To -
Neighboring

Nodes g

\

\\\\;%ﬁ»@-
z

== T o
Neighboring

ag——p N Odes

ECE669 L15: Mid-term Review March 25, 2004

Statically Programmed Communication

e Data transferred one
node in one cycle

 Inter-processor path may
require multiple cycles

 Heavy arrows represent
local transfers

« Grey arrows represent
non-local transfers

ECE669 L15: Mid-term Review

-

March 25, 2004

