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Is Parallel Computing Inevitable?

° Application demands:  Our insatiable need for 
computing cycles

° Technology Trends

° Architecture Trends

° Economics

° Current trends:
• Today’s microprocessors have multiprocessor support
• Servers and workstations becoming MP: Sun, SGI, DEC, HP!...
• Tomorrow’s microprocessors are multiprocessors
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Application Trends

° Application demand for performance fuels 
advances in hardware, which enables new appl’ns, 
which...

• Cycle drives exponential increase in microprocessor performance
• Drives parallel architecture harder

- most demanding applications

° Range of performance demands
• Need range of system performance with progressively increasing 

cost

New Applications
More Performance
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Architectural Trends

° Architecture translates technology’s gifts into 
performance and capability

° Resolves the tradeoff between parallelism and 
locality

• Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip 
connect

• Tradeoffs may change with scale and technology advances

° Understanding microprocessor architectural 
trends 

=> Helps build intuition about design issues or parallel 
machines

=> Shows fundamental role of parallelism even in “sequential” 
computers
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Programming Model

° Look at major programming models
• Where did they come from?
• What do they provide?
• How have they converged?

° Extract general structure and fundamental issues

° Reexamine traditional camps from new perspective

SIMD

Message Passing

Shared MemoryDataflow

Systolic
Arrays Generic

Architecture
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Programming Model

° Conceptualization of the machine that programmer 
uses in coding applications

• How parts cooperate and coordinate their activities
• Specifies communication and synchronization operations

° Multiprogramming
• no communication or synch. at program level

° Shared address space
• like bulletin board

° Message passing
• like letters or phone calls, explicit point to point

° Data parallel: 
• more regimented, global actions on data
• Implemented with shared address space or message passing
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Shared Physical Memory

° Any processor can directly reference any memory 
location

° Any I/O controller - any memory

° Operating system can run on any processor, or all.
• OS uses shared memory to coordinate

° Communication occurs implicitly as result of loads 
and stores

° What about application processes?
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Message Passing Architectures 

° Complete computer as building block, including I/O
• Communication via explicit I/O operations

° Programming model
• direct access only to private address space (local memory), 
• communication via explicit messages (send/receive)

° High-level block diagram 
• Communication integration?

- Mem, I/O, LAN, Cluster
• Easier to build and scale than SAS

° Programming model more removed from basic 
hardware operations

• Library or OS intervention

M ° ° °M M

Network

P

$

P
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Message-Passing Abstraction

• Send specifies buffer to be transmitted and receiving process
• Recv specifies sending process and application storage to receive into
• Memory to memory copy, but need to name processes
• Optional tag on send and matching rule on receive
• User process names local data and entities in process/tag space too
• In simplest form, the send/recv match achieves pairwise synch event

- Other variants too
• Many overheads: copying, buffer management, protection

ProcessP Process Q

AddressY

AddressX

Send X, Q, t

Receive Y, P, tMatch

Local process
address space

Local process
address space
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Simulating Ocean Currents

° Model as two-dimensional grids
• Discretize in space and time
• finer spatial and temporal resolution => greater accuracy

° Many different computations per time step
- set up and solve equations

• Concurrency across and within grid computations
° Static and regular

(a) Cross sections (b) Spatial discretization of a cross section
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4 Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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° Decomposition of computation in tasks

° Assignment of tasks to processes

° Orchestration of data access, comm, synch.

° Mapping processes to processors
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Discretize

° Time
• Where

° Space

° 1st
• Where

° 2nd

• Can use other discretizations
- Backward
- Leap frog

Forward 
difference
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1D Case

° Or
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°

Multigrid

Basic idea ---> Solve on coarse grid                          
---> then on fine grid

8, 1

1, 1

8, 8

1, 8

X k+1
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8, 1

1, 1

8, 8

1, 8

Basic idea ---> Solve on coarse grid                          
---> then on fine grid

8, 1
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8, 8

1, 8

°

Multigrid

X k+1
i, j
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Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
•Depends on n,p:  decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

Domain Decomposition

° Works well for scientific, engineering, graphics, ... 
applications

° Exploits local-biased nature of physical problems
• Information requirements often short-range
• Or long-range but fall off with distance

° Simple example:  nearest-neighbor grid 
computation
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Domain Decomposition

° Comm to comp:           for block,  for strip

° Application dependent: strip may be better in other cases

4*p0.5

n
2*p
n

Best domain decomposition depends on information requirements
Nearest neighbor example:  block versus strip decomposition:

P0 P1 P2 P3
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Exploiting Temporal Locality

• Structure algorithm so working sets map well to hierarchy
- often techniques to reduce inherent communication do well here
- schedule tasks for data reuse once assigned

• Solver example: blocking

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4
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1-D Array of nodes for Jacobi

N
P ops

  
Comm

N
P

  Comm  
N
P

{

1 32 1…

  
T =

N
P

+ P

Model:  1 op, 1cycle
1comm/hop, 1cycle
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Scalability

°

° Ideal speedup on any number of procs.

° Find best P

° So,

° So, 1-D array is       scalable for Jacobi
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Detailed Example

p = 10 × 10 6

c = 0 .1 × 10 6

m = 0 .1 × 10 6

P = 10

p
c = N

P

or  10 × 10 6

0 .1 × 10 6 =
N

10

or  N = 1000 for balance

also  R M = m
N
P = m

1000
10

= 100 = m

Memory size of m = 100 yields a balanced machine.
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Better Algorithm, but basically Branch and Bound

° Little et al.

° Basic Ideas:

•

•

•

••

•
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Better Algorithm, but basically Branch and Bound

Little et al.

Notion of reduction:

• Subtract same value from each row or column
•

•

•

•
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Better Algorithm, but basically Branch and Bound

Little et al.
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Communication Finite State Machine

• Each node has a 
processing part and a 
communications part

• Interface to local 
processor is a FIFO

• Communication to near-
neighbors is pipelined
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Statically Programmed Communication

• Data transferred one 
node in one cycle

• Inter-processor path may 
require multiple cycles

• Heavy arrows represent 
local transfers

• Grey arrows represent 
non-local transfers


