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Outline

° Shared memory is fundamental

° Most straightforward programming model

• Requires hardware mechanisms

° Cache coherency

° Synchronization

° Grain size
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Recap: Performance Trade-offs

° Programmer’s View of Performance

° Different goals often have conflicting demands
• Load Balance

- fine-grain tasks, random or dynamic assignment
• Communication

- coarse grain tasks, decompose to obtain locality
• Extra Work

- coarse grain tasks, simple assignment
• Communication Cost:

- big transfers: amortize overhead and latency
- small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup   <
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Recap

° Architecture View
• cannot solve load imbalance or eliminate inherent 

communication

° But can:
• reduce incentive for creating ill-behaved programs 

- efficient naming, communication and synchronization
• reduce artifactual communication
• provide efficient naming for flexible assignment
• allow effective overlapping of communication 



ECE669  L13: Shared Memory Multiprocessors March 11, 2004 

P

T i
me

(s
)

100

75

50

25

Uniprocessor View

° Performance depends heavily on memory 
hierarchy

° Managed by hardware

° Time spent by a program
• Timeprog(1) = Busy(1) + Data Access(1)
• Divide by cycles to get CPI equation

° Data access time can be reduced by:
• Optimizing machine

- bigger caches, lower latency...
• Optimizing program

- temporal and spatial locality

Busy-useful

Data-local
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Same Processor-Centric Perspective

P 0 P 1 P 2 P 3

Busy-overhead Busy-useful
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(a) Sequential essors(b) Parallel with four proc
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What is a Multiprocessor?

° A collection of communicating processors
• Goals: balance load, reduce inherent communication and extra 

work

° A multi-cache, multi-memory system
• Role of these components essential regardless of  programming 

model
• Prog. model  and comm. abstr. affect specific performance 

tradeoffs

P P P

P P P

...

...
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Relationship between Perspectives

Synch wait

Data-r emote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and 
synchr onization

Inher ent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structur e

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <



ECE669  L13: Shared Memory Multiprocessors March 11, 2004 

Artifactual Communication

° Accesses not satisfied in local portion of memory 
hierachy cause “communication”

• Inherent communication,  implicit or explicit, causes transfers
- determined by program

• Artifactual communication
- determined by program implementation and arch. 

interactions
- poor allocation of data across distributed memories
- unnecessary data in a transfer
- unnecessary transfers due to system granularities
- redundant communication of data
- finite replication capacity (in cache or main memory)

• Inherent communication is what occurs with unlimited capacity, 
small transfers, and perfect knowledge of what is needed.  
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Back to Basics

° Parallel Architecture = Computer Architecture + 
Communication Architecture

° Small-scale shared memory
• extend the memory system to support multiple processors

• good for multiprogramming throughput and parallel computing

• allows fine-grain sharing of resources

° Naming & synchronization
• communication is implicit in store/load of shared address

• synchronization is performed by operations on shared addresses

° Latency & Bandwidth
• utilize the normal migration within the storage to avoid long latency 

operations and to reduce bandwidth

• economical medium with fundamental BW limit

=> focus on eliminating unnecessary traffic
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Layer Perspective

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

Mem

P1
Pn

Conceptual 
Picture
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Natural Extensions of Memory System

P1
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Main memory

Pn
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Bus-Based Symmetric Shared Memory

° Dominate the server market
• Building blocks for larger systems; arriving to desktop

° Attractive as throughput servers and for parallel programs
• Fine-grain resource sharing

• Uniform access via loads/stores

• Automatic  data movement and coherent replication in caches

• Cheap and powerful extension

° Normal uniprocessor mechanisms to access data
• Key is extension of memory hierarchy to support multiple processors

I/O devicesMem

P1

$ $

Pn

Bus
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Caches are Critical for Performance

° Reduce average latency
• automatic replication closer to 

processor

° Reduce average bandwidth

° Data is logically transferred 
from producer to consumer 
to memory

• store reg --> mem
• load  reg <-- mem

P P P

• What happens when store & load are executed  
on different processors?

• Many processor can 
shared data efficiently
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Example Cache Coherence Problem

• Processors see different values for u after event 3
• With write back caches, value written back to memory depends on 

happenstance of which cache flushes or writes back value when
- Processes accessing main memory may see very stale value

• Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7
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Caches and Cache Coherence

° Caches play key role in all cases
• Reduce average data access time
• Reduce bandwidth demands placed on shared interconnect

° private processor caches create a problem
• Copies of a variable can be present in multiple caches 
• A write by one processor may not become visible to others

- They’ll keep accessing stale value in their caches
=> Cache coherence problem

° What do we do about it?
• Organize the mem hierarchy to make it go away 
• Detect and take actions to eliminate the problem
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Shared Cache: Examples

° Alliant FX-8
• early 80’s
• eight 68020s with x-bar to 

512 KB interleaved cache

° Encore & Sequent
• first 32-bit micros 

(N32032)
• two to a board with a 

shared cache
i80286

i80486

Pentium

i80386

i8086

i4004
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Advantages

° Cache placement identical to single cache
• only one copy of any cached block

° Fine-grain sharing
• communication latency determined level in the storage hierarchy 

where the access paths meet
- 2-10 cycles
- Cray Xmp has shared registers!

° Potential for positive interference
• one proc prefetches data for another

° Smaller total storage
• only one copy of code/data used by both proc.

° Can share data within a line without “ping-pong”
• long lines without false sharing

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory
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Disadvantages

° Fundamental BW limitation

° Increases latency of all accesses
• X-bar
• Larger cache
• L1 hit time determines proc. cycle time !!!

° Potential for negative interference
• one proc flushes data needed by another

° Many L2 caches are shared today

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory
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Snoopy Cache-Coherence Protocols

° Bus is a broadcast medium & Caches know what 
they have

° Cache Controller “snoops” all transactions on 
the shared bus

• relevant transaction if for a block it contains
• take action to ensure coherence

- invalidate, update, or supply value
• depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Example: Write-thru Invalidate

I/O devices

Memory
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Architectural Building Blocks

° Bus Transactions
• fundamental system design abstraction
• single set of wires connect several devices
• bus protocol: arbitration, command/addr, data
=> Every device observes every transaction

° Cache block state transition diagram
• FSM specifying how disposition of block changes

- invalid, valid, dirty
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Design Choices

° Controller updates state 
of blocks in response to 
processor and snoop 
events and generates 
bus transactions

° Snoopy protocol
• set of states
• state-transition diagram
• actions

° Basic Choices
• Write-through vs Write-back
• Invalidate vs. Update

Snoop

State  Tag   Data

° ° °

Cache Controller

Processor
Ld/St
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Write-through Invalidate Protocol

° Two states per block in each 
cache
• as in uniprocessor
• state of a block is a p-vector of states
• Hardware state bits associated with 

blocks that are in the cache 
• other blocks can be seen as being in 

invalid (not-present) state in that cache
° Writes invalidate all other 

caches
• can have multiple simultaneous 

readers of block,but write invalidates 
them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State  Tag   Data

I/O devicesMem

P1

$ $

Pn

Bus

State  Tag   Data
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Write-through vs. Write-back

° Write-through protocol is simple
• every write is observable

° Every write goes on the bus
=> Only one write can take place at a time in any processor

° Uses a lot of bandwidth!

Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes

=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4 
processors without saturating
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Invalidate vs. Update

° Basic question of program behavior:
• Is a block written by one processor later read by others before it 

is overwritten?

° Invalidate.  
• yes: readers will take a miss
• no: multiple writes without addition traffic

- also clears out copies that will never be used again

° Update.  
• yes: avoids misses on later references
• no: multiple useless updates

- even to pack rats

=> Need to look at program reference patterns and 
hardware complexity

but first - correctness
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Coherence?

° Caches are supposed to be transparent

° What would happen if there were no caches

° Every memory operation would go “to the memory 
location”

• may have multiple memory banks
• all operations on a particular location would be serialized

- all would see THE order

° Interleaving among accesses from different 
processors

• within individual processor => program order
• across processors => only constrained by explicit 

synchronization

° Processor only observes state of memory system 
by issuing memory operations!
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Definitions

° Memory operation
• load, store, read-modify-write

° Issues
• leaves processor’s internal environment and is presented to the 

memory subsystem (caches, buffers, busses,dram, etc)

° Performed with respect to a processor
• write: subsequent reads return the value
• read: subsequent writes cannot affect the value

° Coherent Memory System
• there exists a serial order of mem operations on each location s. 

t.
- operations issued by a process appear in order issued
- value returned by each read is that written by previous write 

in the serial order
=> write propagation + write serialization
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Is 2-state Protocol Coherent?

° Assume bus transactions and memory operations are atomic, 
one-level cache

• all phases of one bus transaction complete before next one starts

• processor waits for memory operation to complete before issuing next

• with one-level cache, assume invalidations applied during bus xaction

° All writes go to bus + atomicity
• Writes serialized by order in which they appear on bus (bus order)

=> invalidations applied to caches in bus order

° How to insert reads in this order?
• Important since processors see writes through reads, so determines 

whether write serialization is satisfied

• But read hits may happen independently and do not appear on bus or 
enter directly in bus order
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Ordering Reads

° Read misses
• appear on bus, and will “see” last write in bus order

° Read hits: do not appear on bus
• But value read was placed in cache by either

- most recent write by this processor, or
- most recent read miss by this processor

• Both these transactions appeared on the bus
• So reads hits also see values as produced bus order
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Ordering

° Writes establish a partial order
° Doesn’t constrain ordering of reads, though bus will 

order read misses too
– any order among reads between writes is fine, as long as in program 

order
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Write-Through vs Write-Back

° Write-thru requires high bandwidth

° Write-back caches absorb most writes as cache 
hits

=> Write hits don’t go on bus
• But now how do we ensure write propagation and serialization?
• Need more sophisticated protocols: large design space

° But first, let’s understand other ordering issues
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Setup for Mem. Consistency

° Cohrence => Writes to  a location become visible 
to all in the same order

° But when does a write become visible?

° How do we establish orders between a write and 
a read by different procs?

– use event synchronization
– typically  use more than one location!
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Example

° Intuition not guaranteed by coherence

° expect memory to respect order between accesses 
to different locations issued by a given process

• to preserve orders among accesses to same location by different 
processes

° Coherence is not enough!
• pertains only to single location

P1 P2

/*Assume initial value of A and  flag is 0*/
A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Mem

P1
Pn

Conceptual 
Picture
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Another Example of Ordering?

• What’s the intuition?
• Whatever it is, we need an ordering model for clear semantics

- across different locations as well
- so programmers can reason about what results are possible

• This is the memory consistency model

P1 P2

/*Assume initial values of A and B are0*/
(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;
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Memory Consistency Model

° Specifies constraints on the order in which 
memory operations (from any process) can appear 
to execute with respect to one another

• What orders are preserved?
• Given a load, constrains the possible values returned by it

° Without it, can’t tell much about an SAS program’s 
execution

° Implications for both programmer and system 
designer

• Programmer uses to reason about correctness and possible 
results

• System designer can use to constrain how much accesses can 
be reordered by compiler or hardware

° Contract between programmer and system
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What Really is Program Order?

° Intuitively, order in which operations appear in 
source code

• Straightforward translation of source code to assembly
• At most one memory operation per instruction

° But not the same as order presented to hardware 
by compiler

° So which is program order?

° Depends on which layer, and who’s doing the 
reasoning

° We assume order as seen by programmer
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SC Example

° What matters is order in which operations appear to execute, not the 
chronilogical order of events

° Possible outcomes for (A,B): (0,0), (1,0), (1,2)

° What about (0,2) ?
• program order => 1a->1b and 2a->2b

• A = 0 implies 2b->1a, which implies 2a->1b

• B = 2 implies 1b->2a, which leads to a contradiction

° What is actual execution 1b->1a->2b->2a ?
• appears just like 1a->1b->2a->2b as visible from results

• actual execution 1b->2a->2b->1a is not

P1 P2

/*Assume initial values of A and B are0*/
(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

A=0
B=2
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Implementing SC

° Two kinds of requirements
• Program order

- memory operations issued by a process must appear to 
execute (become visible to others and itself) in program 
order

• Atomicity
- in the overall hypothetical total order, one memory 

operation should appear to complete with respect to all 
processes before the next one is issued

- guarantees that total order is consistent across processes 
• tricky part is making writes atomic


