ECE 669

Parallel Computer Architecture

Lecture 13

Shared Memory Multiprocessors

7A

UMASS

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Outline

° Shared memory is fundamental

° Most straightforward programming model

* Requires hardware mechanisms

o

Cache coherency

o

Synchronization

° Grailn size

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Recap: Performance Trade-offs

° Programmer’s View of Performance

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

° Different goals often have conflicting demands
 Load Balance
- fine-grain tasks, random or dynamic assignment
« Communication
- coarse grain tasks, decompose to obtain locality
o Extra Work
- coarse grain tasks, simple assignment
« Communication Cost:
- big transfers: amortize overhead and latency
- small transfers: reduce contention

Speedup <

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Recap

° Architecture View
« cannot solve load imbalance or eliminate inherent
communication
° But can:
e reduce incentive for creating ill-nehaved programs
- efficient naming, communication and synchronization
e reduce artifactual communication
* provide efficient naming for flexible assignment
« allow effective overlapping of communication

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Uniprocessor View

o

hierarchy

o

Managed by hardware

° Time spent by a program

 Timeprog(l) = Busy(1) + Data Access(1)

» Divide by cycles to get CPI equation

o

« Optimizing machine

- bigger caches, lower latency...
 Optimizing program

- temporal and spatial locality

ECE669 L13: Shared Memory Multiprocessors

100

75

Tine (S)

50

25

Performance depends heavily on memory

Data access time can be reduced by:

Dat a- | ocal

[] Busy-useful

March 11, 2004

Same Processor-Centric Perspective

100 [— 100
75 75
»)
% 50 % 50
= =
25 25

- Synchr oni zati on

Dat a- renot e Dat a- | ocal

D Busy- over head |:| Busy- usef ul

7

7
7.
7.

(a) Sequenti al

ECE669 L13: Shared Memory Multiprocessors

Po P1 P2 P3

(b) Parallel with four processors

March 11, 2004

What is a Multiprocessor?

° A collection of communicating processors
» Goals: balance load, reduce inherent communication and extra

=

P||P P

° A multi-cache, multi-memory system
* Role of these components essential regardless of programming
model
 Prog. model and comm. abstr. affect specific performance
tradeoffs

|;| |;| [;

P P P

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Relationship between Perspectives

Parallelization step(s)

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/

assignment

Orchestration

Or chestration/
mapping

Speedup <

Performance issue Processor time component

Load imbalance and 5 Synch wait
synchr onization

Extra work 5 Busy-overhead
Inher ent - Data-r emote
communication

volume

Artifactual > Data-local

communication
and data locality

Communication
structur e

Busy(1) + Data(1)

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Artifactual Communication

° Accesses not satisfied in local portion of memory
hierachy cause “communication”

* Inherent communication, implicit or explicit, causes transfers
- determined by program
« Artifactual communication

- determined by program implementation and arch.
Interactions

- poor allocation of data across distributed memories
- unnecessary data in a transfer

- unnecessary transfers due to system granularities

- redundant communication of data

- finite replication capacity (in cache or main memory)

* Inherent communication is what occurs with unlimited capacity,
small transfers, and perfect knowledge of what is needed.

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Back to Basics

o

Parallel Architecture = Computer Architecture +
Communication Architecture

o

Small-scale shared memory
» extend the memory system to support multiple processors
 good for multiprogramming throughput and parallel computing
« allows fine-grain sharing of resources

o

Naming & synchronization
e communication is implicit in store/load of shared address
* synchronization is performed by operations on shared addresses

Latency & Bandwidth

« utilize the normal migration within the storage to avoid long latency
operations and to reduce bandwidth

o

e economical medium with fundamental BW limit
=> focus on eliminating unnecessary traffic

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Layer Perspective

CAD Database Scientific modeling Parallel applications
Multiprogramming Shared Message Data Programming models
address passing parallel
Compilation — :
or library Communication abstraction

: User/system boundary
‘Operatlng systems support

Hardware/software boundary

Communication hadware

Physical/,communication medium

Conceptual
Picture

Mem

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Natural Extensions of Memory System

SO

(Interleaved
First-level

(Interleaved)

Main memory

ECE669 L13: Shared Memory Multiprocessors

Scale
$ s & @ $
| |
Interconnection network
| |
Mem Mem
Mem $ > & @

Mem

Interconnection network

March 11, 2004

Bus-Based Symmetric Shared Memory

O,

$

O,

$

| Bus |

Mem

o

Dominate the server market

I/O devices

* Building blocks for larger systems; arriving to desktop

o

* Fine-grain resource sharing
e Uniform access via loads/stores
« Automatic data movement and coherent replication in caches

 Cheap and powerful extension

o

Attractive as throughput servers and for parallel programs

Normal uniprocessor mechanisms to access data

 Key is extension of memory hierarchy to support multiple processors

ECE669 L13: Shared Memory Multiprocessors

March 11, 2004

Caches are Critical for Performance

° Reduce average latency

« automatic replication closer to
processor

° Reduce average bandwidth ==

° Datais logically transferred //K

from proaucer to consumer

to memory | |
e storereg --> mem
 load reg <-- mem 5 5

 Many processor can
shared data efficiently

« What happenswhen store & |load are executed
on different processors?

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Example Cache Coherence Problem

O\

Memory

(2)

I/0O devices

e Processors see different values for u after event 3

* With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when

- Processes accessing main memory may see very stale value

 Unacceptable to programs, and frequent!

ECE669 L13: Shared Memory Multiprocessors

March 11, 2004

Caches and Cache Coherence

° Caches play key role in all cases
 Reduce average data access time
 Reduce bandwidth demands placed on shared interconnect

° private processor caches create a problem
 Copies of a variable can be present in multiple caches
A write by one processor may not become visible to others
- They’ll keep accessing stale value in their caches

° What do we do about it?

 Organize the mem hierarchy to make it go away
» Detect and take actions to eliminate the problem

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Shared Cache: Examples

° Alliant FX-8
» early 80’s

* eight 68020s with x-bar to
512 KB interleaved cache

° Encore & Sequent

e first 32-bit micros
(N32032)

e two to a board with a
shared cache

L 2R R
Switch

(Inter ed) ;
Cache

| |
" (nteribaved) !
| Main emory |
| | |
| |

ECE669 L13: Shared Memory Multiprocessors

Transistors

100000000
10000000
s R10000
‘entium
//////E R4400
1000000 B0
100000 —
18086 w3 MiPS —a— 8086
10000 —8— M68K
/4{/ —a— MIPS
14004
1000

1965 1970 1975 1980 1985 1990 1995 2000

Year

March 11, 2004

2005

Advantages

° Cache placement identical to single cache

 only one copy of any cached block

o

Fine-grain sharing

« communication latency determined level in the storage hierarchy

where the access paths meet
- 2-10 cycles
- Cray Xmp has shared registers!

o

 one proc prefetches data for another

o

Smaller total storage

Potential for positive interference

* only one copy of code/data used by both proc.

o

* long lines without false sharing

ECE669 L13: Shared Memory Multiprocessors

March 11, 2004

L 2R R
Switch

=

T

(Inter ed) '

| (Interibaved)

Main Memory

Can share data within a line without “ping-pong”

Disadvantages

o

Fundamental BW limitation

L 2R AR
Increases latency of all accesses SD Suitch Gg
o X-bar

| (Inter ed) ;

o

 Larger cache
e L1 hit time determines proc. cycle time !l i i i

(Interleaved)
| Main Mernory |

o

Potential for negative interference
 one proc flushes data needed by another

° Many L2 caches are shared today

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Snoopy Cache-Coherence Protocols

State o . °
Address o Snoop
L T] Data |
$ \ e e @ $.
I\

/- Cache-memory

f /O devices transaction

Mem

° Bus is a broadcast medium & Caches know what
they have

° Cache Controller “snoops” all transactions on

the shared bus
e relevant transaction if for a block it contains

e take action to ensure coherence

- invalidate, update, or supply value
» depends on state of the block and the protocol

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Example: Write-thru Invalidate

P P,
©

$ 5))
A
\ |

]

@ I/0 devices
N s @)
Memory

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Architectural Building Blocks

° Bus Transactions
 fundamental system design abstraction
» single set of wires connect several devices
* bus protocol: arbitration, command/addr, data
=> Every device observes every transaction

° Cache block state transition diagram
 FSM specifying how disposition of block changes
- invalid, valid, dirty

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

_Design Choices

° Controller updates state Processor

of blocks in response to XLd/St

processor and snoop (oo ~

events and generates Acne L OmToTer

bus transactions State| Tag_Data

° Snoopy protocol

« set of states Snoop L)
e State-transition diagram /
e actions

° Basic Choices
* Write-through vs Write-back
* Invalidate vs. Update

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Write-through Invalidate Protocol

° Two states per block in each m PrRd/ -
cache Prwr / BuswWr

e as in uniprocessor
» state of a block is a p-vector of states

» Hardware state bhits associated with
blocks that are in the cache PrRd / BusRd

« other blocks can be seen as being in
invalid (not-present) state in that cache

° Writes invalidate all other

PrWr / BusWr

caches
« can have multiple simultaneous
readers of block,but write invalidates State [Tag | Data State [Tag [Data
them
$ > 84 9 $
Mem I/O devices

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Write-through vs. Write-back

° Write-through protocol is simple
e every write is observable

° Every write goes on the bus
=> Only one write can take place at a time in any processor

° Uses a lot of bandwidth!

Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes
=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4
processors without saturating

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Invalidate vs. Update

° Basic question of program behavior:

* Is a block written by one processor later read by others before it
IS overwritten?

° Invalidate.
* yes: readers will take a miss
* no: multiple writes without addition traffic
- also clears out copies that will never be used again

° Update.

* yes: avoids misses on later references
* no: multiple useless updates
- even to pack rats

=> Need to look at program reference patterns and
hardware complexity

but first - correctness

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Coherence?

° Caches are supposed to be transparent
° What would happen if there were no caches

° Every memory operation would go “to the memory
location”

 may have multiple memory banks
« all operations on a particular location would be serialized
- all would see THE order

° Interleaving among accesses from different
Processors

o within individual processor => program order

e across processors =>only constrained by explicit
synchronization

° Processor only observes state of memory system
by issuing memory operations!

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Definitions

o

Memory operation
* load, store, read-modify-write

° Issues

« |leaves processor’s internal environment and is presented to the
memory subsystem (caches, buffers, busses,dram, etc)

o

Performed with respect to a processor
* write: subsequent reads return the value
* read: subsequent writes cannot affect the value

(o)

Coherent Memory System

» there exists a serial order of mem operations on each location s.
t.

- operations issued by a process appear in order issued

- value returned by each read is that written by previous write
in the serial order

=> write propagation + write serialization

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

s 2-state Protocol Coherent?

° Assume bus transactions and memory operations are atomic,
one-level cache

» all phases of one bus transaction complete before next one starts
e processor waits for memory operation to complete before issuing next
* with one-level cache, assume invalidations applied during bus xaction

° All writes go to bus + atomicity
» Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

° How to insert reads in this order?

* Important since processors see writes through reads, so determines
whether write serialization is satisfied

* But read hits may happen independently and do not appear on bus or
enter directly in bus order

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Ordering Reads

° Read misses
« appear on bus, and will “see” last write in bus order

° Read hits: do not appear on bus
 But value read was placed in cache by either
- most recent write by this processor, or
- most recent read miss by this processor
 Both these transactions appeared on the bus
* So reads hits also see values as produced bus order

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Ordering

Po: — (R R*[R—* W ®\ [
P: M ®—>®—>®—> W

treo—rd | Vgrod | \-

> Writes establish a partial order

° Doesn’t constrain ordering of reads, though bus will
order read misses too

-~ any order among reads between writes is fine, as long as in program
order

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Write-Through vs Write-Back

° Write-thru requires high bandwidth

° Write-back caches absorb most writes as cache
hits
=> Write hits don’t go on bus
« But now how do we ensure write propagation and serialization?
 Need more sophisticated protocols: large design space

° But first, let’s understand other ordering issues

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Setup for Mem. Consistency

° Cohrence => Writes to a location become visible
to all in the same order

° But when does a write become visible?

° How do we establish orders between a write and
a read by different procs?
— use event synchronization

— typically use more than one location!

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Example

P P>
[*Assume initial value of A and flag is 0*/
A =1, while (flag == 0); /*spinidly*/
flag = 1, print A

° Intuition not guaranteed by coherence

© expect memory t_O res_pect order be_tween acCcesses
to different locations issued by a given process
* to preserve orders among accesses to same location by different

processes
° Coherence is not enough! CFP

» pertains only to single location

Conceptual
Picture

March 11, 2004

Mem

ECE669 L13: Shared Memory Multiprocessors

Another Example of Ordering?

P; P>
[*Assume initial values of A and B are(Q*/
(la) A = 1; (2a) print B;
(1b) B = 2; (2b) print A

e What's the intuition?

 Whatever it is, we need an ordering model for clear semantics
- across different locations as well
- SO programmers can reason about what results are possible

« This is the memory consistency model

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Memory Consistency Model

° Specifies constraints on the order in which
memory operations (from any process) can appear
to execute with respect to one another

« What orders are preserved?
 Given aload, constrains the possible values returned by it

° Without it, can’t tell much about an SAS program’s
execution

Implications for both programmer and system
designer

 Programmer uses to reason about correctness and possible
results

« System designer can use to constrain how much accesses can
be reordered by compiler or hardware

Contract between programmer and system

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

What Really is Program Order?

° Intuitively, order in which operations appear in
source code

o Straightforward translation of source code to assembly
« At most one memory operation per instruction

° But not the same as order presented to hardware
by compiler

° So which is program order?

° Depends on which layer, and who’s doing the
reasoning

° We assume order as seen by programmer

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

SC Example

P1)

[*Assume initial values of A and B are 0*/
(la) A = 1; (2a) print B;
(1b) B = 2; (2b) print A

=0
B=2

What matters is order in which operations appear to execute, not the
chronilogical order of events

Possible outcomes for (A,B): (0,0), (1,0), (1,2)
What about (0,2) ?

e program order => 1la->1b and 2a->2b
« A=0implies 2b->1a, which implies 2a->1b
e B =2implies 1b->2a, which leads to a contradiction

What is actual execution 1b->1a->2b->2a ?

o appears just like 1la->1b->2a->2b as visible from results
e actual execution 1b->2a->2b->1ais not

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Implementing SC

° Two kinds of requirements
 Program order

- memory operations issued by a process must appear to
execute (become visible to others and itself) in program
order

o Atomicity

- in the overall hypothetical total order, one memory
operation should appear to complete with respect to all
processes before the next one is issued

- guarantees that total order is consistent across processes
* tricky part is making writes atomic

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

