
ECE669 L13: Shared Memory Multiprocessors March 11, 2004

ECE 669

Parallel Computer Architecture

Lecture 13

Shared Memory Multiprocessors

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Outline

° Shared memory is fundamental

° Most straightforward programming model

• Requires hardware mechanisms

° Cache coherency

° Synchronization

° Grain size

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Recap: Performance Trade-offs

° Programmer’s View of Performance

° Different goals often have conflicting demands
• Load Balance

- fine-grain tasks, random or dynamic assignment
• Communication

- coarse grain tasks, decompose to obtain locality
• Extra Work

- coarse grain tasks, simple assignment
• Communication Cost:

- big transfers: amortize overhead and latency
- small transfers: reduce contention

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Recap

° Architecture View
• cannot solve load imbalance or eliminate inherent

communication

° But can:
• reduce incentive for creating ill-behaved programs

- efficient naming, communication and synchronization
• reduce artifactual communication
• provide efficient naming for flexible assignment
• allow effective overlapping of communication

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

P

T i
me

(s
)

100

75

50

25

Uniprocessor View

° Performance depends heavily on memory
hierarchy

° Managed by hardware

° Time spent by a program
• Timeprog(1) = Busy(1) + Data Access(1)
• Divide by cycles to get CPI equation

° Data access time can be reduced by:
• Optimizing machine

- bigger caches, lower latency...
• Optimizing program

- temporal and spatial locality

Busy-useful

Data-local

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Same Processor-Centric Perspective

P 0 P 1 P 2 P 3

Busy-overhead Busy-useful

Data-local

Synchronization

Data-remote

T i
m e

(s
)

Ti
m e

(s
)

100

75

50

25

100

75

50

25

(a) Sequential essors(b) Parallel with four proc

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

What is a Multiprocessor?

° A collection of communicating processors
• Goals: balance load, reduce inherent communication and extra

work

° A multi-cache, multi-memory system
• Role of these components essential regardless of programming

model
• Prog. model and comm. abstr. affect specific performance

tradeoffs

P P P

P P P

...

...

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Relationship between Perspectives

Synch wait

Data-r emote

Data-localOrchestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Orchestration/
mapping

Load imbalance and
synchr onization

Inher ent
communication
volume

Artifactual
communication
and data locality

Communication
structur e

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Artifactual Communication

° Accesses not satisfied in local portion of memory
hierachy cause “communication”

• Inherent communication, implicit or explicit, causes transfers
- determined by program

• Artifactual communication
- determined by program implementation and arch.

interactions
- poor allocation of data across distributed memories
- unnecessary data in a transfer
- unnecessary transfers due to system granularities
- redundant communication of data
- finite replication capacity (in cache or main memory)

• Inherent communication is what occurs with unlimited capacity,
small transfers, and perfect knowledge of what is needed.

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Back to Basics

° Parallel Architecture = Computer Architecture +
Communication Architecture

° Small-scale shared memory
• extend the memory system to support multiple processors

• good for multiprogramming throughput and parallel computing

• allows fine-grain sharing of resources

° Naming & synchronization
• communication is implicit in store/load of shared address

• synchronization is performed by operations on shared addresses

° Latency & Bandwidth
• utilize the normal migration within the storage to avoid long latency

operations and to reduce bandwidth

• economical medium with fundamental BW limit

=> focus on eliminating unnecessary traffic

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Layer Perspective

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

Mem

P1
Pn

Conceptual
Picture

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Natural Extensions of Memory System

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem MemShared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Bus-Based Symmetric Shared Memory

° Dominate the server market
• Building blocks for larger systems; arriving to desktop

° Attractive as throughput servers and for parallel programs
• Fine-grain resource sharing

• Uniform access via loads/stores

• Automatic data movement and coherent replication in caches

• Cheap and powerful extension

° Normal uniprocessor mechanisms to access data
• Key is extension of memory hierarchy to support multiple processors

I/O devicesMem

P1

$ $

Pn

Bus

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Caches are Critical for Performance

° Reduce average latency
• automatic replication closer to

processor

° Reduce average bandwidth

° Data is logically transferred
from producer to consumer
to memory

• store reg --> mem
• load reg <-- mem

P P P

• What happens when store & load are executed
on different processors?

• Many processor can
shared data efficiently

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Example Cache Coherence Problem

• Processors see different values for u after event 3
• With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
- Processes accessing main memory may see very stale value

• Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Caches and Cache Coherence

° Caches play key role in all cases
• Reduce average data access time
• Reduce bandwidth demands placed on shared interconnect

° private processor caches create a problem
• Copies of a variable can be present in multiple caches
• A write by one processor may not become visible to others

- They’ll keep accessing stale value in their caches
=> Cache coherence problem

° What do we do about it?
• Organize the mem hierarchy to make it go away
• Detect and take actions to eliminate the problem

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Shared Cache: Examples

° Alliant FX-8
• early 80’s
• eight 68020s with x-bar to

512 KB interleaved cache

° Encore & Sequent
• first 32-bit micros

(N32032)
• two to a board with a

shared cache
i80286

i80486

Pentium

i80386

i8086

i4004

R10000

R4400

R3010

SU MIPS

1000

10000

100000

1000000

10000000

100000000

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

Tr
an

si
st

or
s

i80x86

M68K

MIPS

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Advantages

° Cache placement identical to single cache
• only one copy of any cached block

° Fine-grain sharing
• communication latency determined level in the storage hierarchy

where the access paths meet
- 2-10 cycles
- Cray Xmp has shared registers!

° Potential for positive interference
• one proc prefetches data for another

° Smaller total storage
• only one copy of code/data used by both proc.

° Can share data within a line without “ping-pong”
• long lines without false sharing

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Disadvantages

° Fundamental BW limitation

° Increases latency of all accesses
• X-bar
• Larger cache
• L1 hit time determines proc. cycle time !!!

° Potential for negative interference
• one proc flushes data needed by another

° Many L2 caches are shared today

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Snoopy Cache-Coherence Protocols

° Bus is a broadcast medium & Caches know what
they have

° Cache Controller “snoops” all transactions on
the shared bus

• relevant transaction if for a block it contains
• take action to ensure coherence

- invalidate, update, or supply value
• depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Example: Write-thru Invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Architectural Building Blocks

° Bus Transactions
• fundamental system design abstraction
• single set of wires connect several devices
• bus protocol: arbitration, command/addr, data
=> Every device observes every transaction

° Cache block state transition diagram
• FSM specifying how disposition of block changes

- invalid, valid, dirty

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Design Choices

° Controller updates state
of blocks in response to
processor and snoop
events and generates
bus transactions

° Snoopy protocol
• set of states
• state-transition diagram
• actions

° Basic Choices
• Write-through vs Write-back
• Invalidate vs. Update

Snoop

State Tag Data

° ° °

Cache Controller

Processor
Ld/St

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Write-through Invalidate Protocol

° Two states per block in each
cache
• as in uniprocessor
• state of a block is a p-vector of states
• Hardware state bits associated with

blocks that are in the cache
• other blocks can be seen as being in

invalid (not-present) state in that cache
° Writes invalidate all other

caches
• can have multiple simultaneous

readers of block,but write invalidates
them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Write-through vs. Write-back

° Write-through protocol is simple
• every write is observable

° Every write goes on the bus
=> Only one write can take place at a time in any processor

° Uses a lot of bandwidth!

Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes

=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4
processors without saturating

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Invalidate vs. Update

° Basic question of program behavior:
• Is a block written by one processor later read by others before it

is overwritten?

° Invalidate.
• yes: readers will take a miss
• no: multiple writes without addition traffic

- also clears out copies that will never be used again

° Update.
• yes: avoids misses on later references
• no: multiple useless updates

- even to pack rats

=> Need to look at program reference patterns and
hardware complexity

but first - correctness

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Coherence?

° Caches are supposed to be transparent

° What would happen if there were no caches

° Every memory operation would go “to the memory
location”

• may have multiple memory banks
• all operations on a particular location would be serialized

- all would see THE order

° Interleaving among accesses from different
processors

• within individual processor => program order
• across processors => only constrained by explicit

synchronization

° Processor only observes state of memory system
by issuing memory operations!

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Definitions

° Memory operation
• load, store, read-modify-write

° Issues
• leaves processor’s internal environment and is presented to the

memory subsystem (caches, buffers, busses,dram, etc)

° Performed with respect to a processor
• write: subsequent reads return the value
• read: subsequent writes cannot affect the value

° Coherent Memory System
• there exists a serial order of mem operations on each location s.

t.
- operations issued by a process appear in order issued
- value returned by each read is that written by previous write

in the serial order
=> write propagation + write serialization

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Is 2-state Protocol Coherent?

° Assume bus transactions and memory operations are atomic,
one-level cache

• all phases of one bus transaction complete before next one starts

• processor waits for memory operation to complete before issuing next

• with one-level cache, assume invalidations applied during bus xaction

° All writes go to bus + atomicity
• Writes serialized by order in which they appear on bus (bus order)

=> invalidations applied to caches in bus order

° How to insert reads in this order?
• Important since processors see writes through reads, so determines

whether write serialization is satisfied

• But read hits may happen independently and do not appear on bus or
enter directly in bus order

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Ordering Reads

° Read misses
• appear on bus, and will “see” last write in bus order

° Read hits: do not appear on bus
• But value read was placed in cache by either

- most recent write by this processor, or
- most recent read miss by this processor

• Both these transactions appeared on the bus
• So reads hits also see values as produced bus order

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Ordering

° Writes establish a partial order
° Doesn’t constrain ordering of reads, though bus will

order read misses too
– any order among reads between writes is fine, as long as in program

order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Write-Through vs Write-Back

° Write-thru requires high bandwidth

° Write-back caches absorb most writes as cache
hits

=> Write hits don’t go on bus
• But now how do we ensure write propagation and serialization?
• Need more sophisticated protocols: large design space

° But first, let’s understand other ordering issues

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Setup for Mem. Consistency

° Cohrence => Writes to a location become visible
to all in the same order

° But when does a write become visible?

° How do we establish orders between a write and
a read by different procs?

– use event synchronization
– typically use more than one location!

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Example

° Intuition not guaranteed by coherence

° expect memory to respect order between accesses
to different locations issued by a given process

• to preserve orders among accesses to same location by different
processes

° Coherence is not enough!
• pertains only to single location

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Another Example of Ordering?

• What’s the intuition?
• Whatever it is, we need an ordering model for clear semantics

- across different locations as well
- so programmers can reason about what results are possible

• This is the memory consistency model

P1 P2

/*Assume initial values of A and B are0*/
(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Memory Consistency Model

° Specifies constraints on the order in which
memory operations (from any process) can appear
to execute with respect to one another

• What orders are preserved?
• Given a load, constrains the possible values returned by it

° Without it, can’t tell much about an SAS program’s
execution

° Implications for both programmer and system
designer

• Programmer uses to reason about correctness and possible
results

• System designer can use to constrain how much accesses can
be reordered by compiler or hardware

° Contract between programmer and system

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

What Really is Program Order?

° Intuitively, order in which operations appear in
source code

• Straightforward translation of source code to assembly
• At most one memory operation per instruction

° But not the same as order presented to hardware
by compiler

° So which is program order?

° Depends on which layer, and who’s doing the
reasoning

° We assume order as seen by programmer

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

SC Example

° What matters is order in which operations appear to execute, not the
chronilogical order of events

° Possible outcomes for (A,B): (0,0), (1,0), (1,2)

° What about (0,2) ?
• program order => 1a->1b and 2a->2b

• A = 0 implies 2b->1a, which implies 2a->1b

• B = 2 implies 1b->2a, which leads to a contradiction

° What is actual execution 1b->1a->2b->2a ?
• appears just like 1a->1b->2a->2b as visible from results

• actual execution 1b->2a->2b->1a is not

P1 P2

/*Assume initial values of A and B are0*/
(1a) A = 1; (2a) print B;
(1b) B = 2; (2b) print A;

A=0
B=2

ECE669 L13: Shared Memory Multiprocessors March 11, 2004

Implementing SC

° Two kinds of requirements
• Program order

- memory operations issued by a process must appear to
execute (become visible to others and itself) in program
order

• Atomicity
- in the overall hypothetical total order, one memory

operation should appear to complete with respect to all
processes before the next one is issued

- guarantees that total order is consistent across processes
• tricky part is making writes atomic

