
ECE669 L11: Static Routing Architectures March 4, 2004

ECE 669

Parallel Computer Architecture

Lecture 11

Static Routing Architectures

ECE669 L11: Static Routing Architectures March 4, 2004

Outline

° Programming Models
• Data Parallel
• Shared Memory
• Message Passing

° Communication requirements
• Examining the network
• Available bandwidth
• Run-time versus compile-time

° Models of communication

ECE669 L11: Static Routing Architectures March 4, 2004

Communication Approaches

• Circuit switched
• Store and Forward

- On-line (dynamic routing)
- Off-line (static routing)

• Special purpose architectures created for static
routing

• Schedule all communication at compile time
• Can lead to faster overall communication (no

headers)
• Can reduce congestion
• Doesn’t handle data dependency well

ECE669 L11: Static Routing Architectures March 4, 2004

Interconnection Topology

• Diamond lattice has
desirable structure

• Each node has four
neighbors

• Space filling – nodes can
be packed close together

• Can embed other
topologies

ECE669 L11: Static Routing Architectures March 4, 2004

Interconnection Topology

• Need to implement in
three dimensions

• Bottom and top of
circuit boards have
connectors

• A node can configure
its neighbors

ECE669 L11: Static Routing Architectures March 4, 2004

Communication Finite State Machine

• Each node has a
processing part and a
communications part

• Interface to local
processor is a FIFO

• Communication to near-
neighbors is pipelined

ECE669 L11: Static Routing Architectures March 4, 2004

Statically Programmed Communication

• Data transferred one
node in one cycle

• Inter-processor path may
require multiple cycles

• Heavy arrows represent
local transfers

• Grey arrows represent
non-local transfers

ECE669 L11: Static Routing Architectures March 4, 2004

Prototype NuMesh Node - CFSM

• Transceivers used to
buffer inter-node data

• FIFOs buffer paths
to/from local processor

• One node per board

ECE669 L11: Static Routing Architectures March 4, 2004

Prototype NuMesh System

• Initial topology was a mesh
• Some nodes in the mesh could be unpopulated
• Special-purpose nodes could be populated

along the system periphery

ECE669 L11: Static Routing Architectures March 4, 2004

NuMesh Parallelization

• System appears like a two dimensional pipeline
• FIFOs allow processor to run at different speeds
• Rational clocking allows clocks to be distributed

ECE669 L11: Static Routing Architectures March 4, 2004

NuMesh Multigrid Results

• Multigrid is hierarchical
• Processor utilization

indicates periodic
reduced activity

• All communication is
scheduled statically

ECE669 L11: Static Routing Architectures March 4, 2004

NuMesh Summary

° Communication determined at compile time

° Fast near-neighbor communication

° Diamond lattice provides routing benefits

° Appropriate for applications like multi-grid

ECE669 L11: Static Routing Architectures March 4, 2004

Key Issues

• Communication
- Broadcast, near neighbor, tree

• Synchronization
- Producer-consumer, barrier, locks

• Partitioning
- Grain-size - Division of work - What to run as thread

– Mapping - Where to run
• Scheduling

- When to run

° Various computing styles differ in how the above
are supported:

• Whether hardware support is provided
• Whether programmer deals with it
• Whether it is ignored

° Key: Previous machines focused heavily on hardware -once
software enters the picture, distinctions become hard to make

ECE669 L11: Static Routing Architectures March 4, 2004

Historically

° Build the machine - (paper wt.?)

° Low level programming --- some use

° Better abstractions --- much better
- All programming
- Low-level performance hacks
- Body of theory

– (Low-level machine style pervades every higher level, even
theory!)

° Low-level machine organization clearly visible
‘exploited’ at higher levels!

° Sometimes machines evolve
application > machine
(or language)

ECE669 L11: Static Routing Architectures March 4, 2004

Another more common evolutionary approach...

° Language Machine

° Fortran, C, ...
Shared memory

- View: a, b “reside” somewhere
- Perform operations and store values back
- Notion of ‘location’
- Specify ops that can go on in parallel

° Algorithmic model PRAM

Variants
– Multiple simultaneous R,W
– Exclusive writes only
– Exclusive R & W

 a i , j[] = b i , j[]

R
W

PRAMS

-CRCW
-CREW
-EREWProcesses

ECE669 L11: Static Routing Architectures March 4, 2004

Object-oriented Programming
Smalltalk, variants of Scheme, C++

° Message-Passing Machines

° Eg: 1.

° Eg: 2.

° Jacobi Relaxation

Bank account A

Balance

Message

Deposit

Withdraw

Balance ?

Object A

Object B

Object C

Send my peripheral

values

ECE669 L11: Static Routing Architectures March 4, 2004

Communication Synchronization
via memory via memory

• Partitioning - User - Coarse-fine

• Scheduling - System - Dynamic

Shared-memory style

Shared memory

Processes -
Parallel control
flow

ECE669 L11: Static Routing Architectures March 4, 2004

Communication Synchronization
via messages via messages

Partioning: User -- coarse

Scheduling: System -- dynamic

Message-passing style

local
memory

local
memory

local
memory

local
memory

Parallel
control
flows

msg

msg

msg

msg

ECE669 L11: Static Routing Architectures March 4, 2004

Data Parallel

Communication

Partitioning: Fine-grain - System

Scheduling: User - Static

Memory

...

•
•
•

•
•
•

•
•
•

•
•
•

Only one
control
thread --
multiple data

Synchronization - every
instruction - like barrier

Control instr.

ECE669 L11: Static Routing Architectures March 4, 2004

° Communication:
• Data values

° Synchronization:
• Completely static (none)
• Pre-compiled

Systolic

M MMMMM

DDD...

DD
D..
.

DDD...

DD...

ECE669 L11: Static Routing Architectures March 4, 2004

Vector

° Similar to data parallel
• Only 1 processor (chaining?)
• But exploits data parallelism

MEMORY

.
D
D
D

OP

.
D
D
D

.
D
D
D

