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Outline

° Many applications can be modeled as graphs

° Graphs require determination of shortest paths, 
adjacency, and other values

° Efficient parallel algorithms exist which break up 
the search

° Used to model many applications

• VLSI CAD

• Mapping

• Sales planning
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Graph

° A graph is a pair (V, E), where

• V is a set of nodes, called vertices

• E is a collection of pairs of vertices, called edges

• Vertices and edges are positions and store elements

° Example:

• A vertex represents an airport and stores the three-letter airport 
code

• An edge represents a flight route between two airports and stores 
the mileage of the route
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Edge Types

° Directed edge

• ordered pair of vertices (u,v)

• first vertex u is the origin

• second vertex v is the 
destination

• e.g., a flight

° Undirected edge

• unordered pair of vertices (u,v)

• e.g., a flight route

° Directed graph

• all the edges are directed

• e.g., route network

° Undirected graph

• all the edges are undirected

• e.g., flight network
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Applications

° Electronic circuits
• Printed circuit board
• Integrated circuit

° Transportation networks
• Highway network
• Flight network

° Computer networks
• Local area network
• Internet
• Web

° Databases
• Entity-relationship diagram
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Terminology

° End vertices (or endpoints) of 
an edge

• U and V are the endpoints 
of a

° Edges incident on a vertex

• a, d, and b are incident on 
V

° Adjacent vertices

• U and V are adjacent

° Degree of a vertex

• X has degree 5 

° Parallel edges

• h and i are parallel edges

° Self-loop

• j is a self-loop
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P1

Terminology

° Path

• sequence of alternating 
vertices and edges 

• begins with a vertex

• ends with a vertex

• each edge is preceded and 
followed by its endpoints

° Simple path

• path such that all its vertices 
and edges are distinct

° Examples

• P1=(V,b,X,h,Z) is a simple 
path

• P2=(U,c,W,e,X,g,Y,f,W,d,V) is 
a path that is not simple
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Terminology

° Cycle
• circular sequence of 

alternating vertices and edges 
• each edge is preceded and 

followed by its endpoints

° Simple cycle
• cycle such that all its vertices 

and edges are distinct

° Examples
• C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle

• C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple
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Edge List Structure

° Vertex object

• element

• reference to position in 
vertex sequence

° Edge object

• element

• origin vertex object

• destination vertex 
object

• reference to position in 
edge sequence

° Vertex sequence

• sequence of vertex 
objects

° Edge sequence

• sequence of edge 
objects
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• Goal is to find the shortest route that starts at one city 
and visit each of a list of other cities exactly once before 
returning to the first city.

• For n cities there are (n-1)! diferent paths starting and 
ending in city 1.

• In practice an exact solution is infeasible except for 
small values of  n.

• Many approximation algorithms are developed.

Traveling Salesman Problem
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Backtracking Algorithm

One sequential solution is to examine all feasible paths.

A path is feasible if it is not longer than the best complete path that 
has been determined so far.

We start with city 1, there are n-1 possible cities to visit next.

From each of these, there are n-2 possible cities to visit and so on.
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Backtracking Algorithm
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The standard method to examine all the paths in a tree 
is to use  depth-first search method (DFS).

There is no need to consider a path that is known to be 
longer than the shortest completed path that has been 
found so far.
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Parallel Solution

• The paths are independent; thus, we could examine all of 
them in parallel.

• The approach is to provide a fixed number of slave 
processes that share a pool of tasks.

• Each task consists of a partial path, the number of cities 
visited on a path, and the path length.

• Each process takes a partial path and extends it with 
every city which has not been considered.

• If the length of the path is longer than the length of the 
shortest complete path, the path is discarded.
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Traveling Salesman

° Example

° Find shortest tour:  E.g. (1 2 5 6 3 4) and then back 
to 1
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Exhaustive Search

° Find lowest c path,

• But                 tours!!!

• Can exploit parallelism though!

2

n − 1( ) !
2

X X
X

X

•

• •

• •

•••

•
•
•
•

1

6
4

3

5
4

2
3

,c=0

,c=6
,c=7

,c=4

,c=3

,c=1

c=3

c=5

1

2 7
6

22

4



ECE669  L10: Graph Applications March 2, 2004 

Branch and Bound Algorithms - Prune!

° Naive

•
•

••
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Naive

• (1, 2 ...) Most promising, follow that lead --
greedy

Branch and Bound Algorithms - Prune!
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Naive

• (1, 2 ...) Most promising, follow that lead --
greedy

• (1, 3 ...) Most promising

Branch and Bound Algorithms - Prune!
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• (1, 2 ...) Most promising, follow that lead --
greedy

• (1, 3 ...) Most promising

• Continue ... till a tour is found

Branch and Bound Algorithms - Prune!
•
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• Continue ... ‘til a tour is found

Branch and Bound Algorithms - Prune!
•
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Representing a graph in an algorithm may be accomplished via 
two different methods: adjacency matrix and linked list.

1. Consider a graph with n vertices that are numbered 1,2,…, n. 
The adjacency matrix of this graph can be defined as n x n 
matrix A with the following properties:

1   if  (v(I), v(j))       E

A(i, j) = 

0   otherwise.

∈ 

Representing Graphs
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Better Algorithm, but basically Branch and Bound

° Little et al.

° Basic Ideas:

•
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Better Algorithm, but basically Branch and Bound

Little et al.

Notion of reduction:

• Subtract same value from each row or column
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Better Algorithm, but basically Branch and Bound

Little et al.
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Better Algorithm, but basically Branch and Bound

Little et al.
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Better Algorithm

•
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In other words, the Traveling Salesman Problem is stated as:

Given a set of vertices and non-negative cost C(I,J) associated 
with each pair of vertices I and J, find a circuit containing 
every vertex in the graph so that the cost of the entire path is
minimized.

The problem can be classified as

• Symmetric Salesman Problem – C(I,J)=C(J,I) for all I,J

• Asymmetric Traveling Salesman Problem - C(I,J)    C(J,I) 
for all I, J.

≠ 

Further Analysis
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Graph Coloring Problem

Let G be undirected graph and let c be an integer.

Assignment of colors to the vertices or edges such that  
no two adjacent vertices are to be similarly colored.

We want to minimize the number of colors used.

The smallest c such that a c-coloring exists  is called the 
graph’s chromatic number and any such c-coloring is an 
optimal coloring.
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Coloring of Graph

1. The graph coloring optimization problem: find the 
minimum number of colors needed to color a graph.

2. The graph coloring decision problem: determine if 
there exists a coloring for a given graph which uses 
at most m colors.

Two colors No solution with 
two colors
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Coloring of Graphs

Practical applications: scheduling, time-tabling, register 
allocation for compilers, coloring of maps.

A simple graph coloring algorithm - choose a color and an 
arbitrary starting vertex and  color all the vertices that can be 
colored with that color. 

Choose next starting vertex and next color and repeat the 
coloring until all the vertices are colored. 

Four colors Three colors are enough
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Summary

° Many applications can be modeled as graphs

° Graphs require determination of shortest paths, 
adjacency, and other values

° Efficient parallel algorithms exist which break up 
the search

° Used to model many applications

• VLSI CAD

• Mapping

• Sales planning


