
ECE669 L9: Workload Evaluation February 26, 2004

ECE 669

Parallel Computer Architecture

Lecture 9

Workload Evaluation

ECE669 L9: Workload Evaluation February 26, 2004

Outline

° Evaluation of applications is important

° Simulation of sample data sets provides important
information

° Working sets indicate grain size

° Preliminary results offer opportunity for tuning

° Understanding communication costs

• Remember: software and communication!

ECE669 L9: Workload Evaluation February 26, 2004

Workload-Driven Evaluation

° Evaluating real machines

° Evaluating an architectural idea or trade-offs

=> need good metrics of performance

=> need to pick good workloads

=> need to pay attention to scaling
• many factors involved

° Today: narrow architectural comparison

° Set in wider context

ECE669 L9: Workload Evaluation February 26, 2004

Evaluation in Uniprocessors

° Decisions made only after quantitative evaluation

° For existing systems: comparison and procurement
evaluation

° For future systems: careful extrapolation from known
quantities

° Wide base of programs leads to standard benchmarks
• Measured on wide range of machines and successive generations

° Measurements and technology assessment lead to
proposed features

° Then simulation
• Simulator developed that can run with and without a feature

• Benchmarks run through the simulator to obtain results

• Together with cost and complexity, decisions made

ECE669 L9: Workload Evaluation February 26, 2004

More Difficult for Multiprocessors

° What is a representative workload?

° Software model has not stabilized

° Many architectural and application degrees of freedom
• Huge design space: no. of processors, other architectural, application

• Impact of these parameters and their interactions can be huge

• High cost of communication

° What are the appropriate metrics?

° Simulation is expensive
• Realistic configurations and sensitivity analysis difficult

• Larger design space, but more difficult to cover

° Understanding of parallel programs as workloads is critical
• Particularly interaction of application and architectural parameters

ECE669 L9: Workload Evaluation February 26, 2004

A Lot Depends on Sizes

° Application parameters and no. of procs affect inherent properties
• Load balance, communication, extra work, temporal and spatial locality

° Interactions with organization parameters of extended memory
hierarchy affect communication and performance

° Effects often dramatic, sometimes small: application-dependent

Understanding size interactions and scaling relationships is key

ll
l l

l ln
n
n

n n

n

s s
s

s

s

s

66
6

6

6

6

1 4 7 10 13 16 19 22 25 28 31
0

5

10

15

20

25

30

Number of processors Number of processors

S
pe

ed
up

S
pe

ed
up

l N = 130
n N = 258
s N = 514
6 N = 1,026

ll
l

l

l

l

l

6
6
6

6

6

6

6

u
u
u

u

u

u

u

s
s
s

s

s

H
H
H

H

H

1 4 7 10 13 16 19 22 25 28 31
0

5

10

15

20

25

30 l Origin—16 K
6 Origin—64 K
u Origin—512 K
s Challenge—16 K
H Challenge—512 K

ocean

Barnes-hut

ECE669 L9: Workload Evaluation February 26, 2004

Scaling: Why Worry?

° Fixed problem size is limited

° Too small a problem:
• May be appropriate for small machine
• Parallelism overheads begin to dominate benefits for larger

machines
- Load imbalance
- Communication to computation ratio

• May even achieve slowdowns
• Doesn’t reflect real usage, and inappropriate for large machines

- Can exaggerate benefits of architectural improvements,
especially when measured as percentage improvement in
performance

° Too large a problem
• Difficult to measure improvement (next)

ECE669 L9: Workload Evaluation February 26, 2004

Too Large a Problem

° Suppose problem realistically large for big
machine

° May not “fit” in small machine
• Can’t run
• Thrashing to disk
• Working set doesn’t fit in cache

° Fits at some p, leading to superlinear speedup

° Real effect, but doesn’t help evaluate effectiveness

° Finally, users want to scale problems as machines
grow

• Can help avoid these problems

ECE669 L9: Workload Evaluation February 26, 2004

Demonstrating Scaling Problems

° Small Ocean and big equation solver problems on SGI
Origin2000

Number of processors Number of processors

S
pe

ed
up

S
pe

ed
up

l
l
l

l

l

l

6
6
6

6
6

6

1 3 5 7 9 11 13 15 17 19 21 23 25 2729 31
0

5

10

15

20

25

30
l Ideal
6 Ocean: 258 x 258

nn
n

n

n

n

n

ll
l

l

l

l

l

1 3 5 7 9 11 13 15 17 19 21 23 25 27 2931
0

5

10

15

20

25

30

35

40

45

50
n Grid solver: 12 K x 12 K
l Ideal

ECE669 L9: Workload Evaluation February 26, 2004

Communication and Replication

° View parallel machine as extended memory
hierarchy

• Local cache, local memory, remote memory
• Classify “misses” in “cache” at any level as for uniprocessors

- compulsory or cold misses (no size effect)
- capacity misses (yes)
- conflict or collision misses (yes)
- communication or coherence misses (no)

° Communication induced by finite capacity is most
fundamental artifact

• Like cache size and miss rate or memory traffic in
uniprocessors

ECE669 L9: Workload Evaluation February 26, 2004

Working Set Perspective

• Hierarchy of working sets
• At first level cache (fully assoc, one-word block), inherent to algorithm

- working set curve for program
• Traffic from any type of miss can be local or nonlocal (communication)

•At a given level of the hierarchy (to the next further one)

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a
tr

af
fic

Other capacity-independent communication

Cold-start (compulsory) traffic

Replication capacity (cache size)

Inherent communication

ECE669 L9: Workload Evaluation February 26, 2004

Workload-Driven Evaluation

° Evaluating real machines

° Evaluating an architectural idea or trade-offs

=> need good metrics of performance

=> need to pick good workloads

=> need to pay attention to scaling
• many factors involved

ECE669 L9: Workload Evaluation February 26, 2004

Questions in Scaling

° Scaling a machine: Can scale power in many ways
• Assume adding identical nodes, each bringing memory

° Problem size: Vector of input parameters, e.g. N =
(n, q, ∆t)

• Determines work done
• Distinct from data set size and memory usage

° Under what constraints to scale the application?
• What are the appropriate metrics for performance improvement?

- work is not fixed any more, so time not enough

° How should the application be scaled?

ECE669 L9: Workload Evaluation February 26, 2004

Under What Constraints to Scale?

° Two types of constraints:
• User-oriented, e.g. particles, rows, transactions, I/Os per processor
• Resource-oriented, e.g. memory, time

° Which is more appropriate depends on application
domain

• User-oriented easier for user to think about and change
• Resource-oriented more general, and often more real

° Resource-oriented scaling models:
• Problem constrained (PC)
• Memory constrained (MC)
• Time constrained (TC)

ECE669 L9: Workload Evaluation February 26, 2004

Problem Constrained Scaling

° User wants to solve same problem, only faster
• Video compression
• Computer graphics
• VLSI routing

° But limited when evaluating larger machines

SpeedupPC(p) =
Time(1)
Time(p)

ECE669 L9: Workload Evaluation February 26, 2004

Time Constrained Scaling

° Execution time is kept fixed as system scales
• User has fixed time to use machine or wait for result

° Performance = Work/Time as usual, and time is
fixed, so

SpeedupTC(p) =

° How to measure work?
• Execution time on a single processor? (thrashing problems)
• Should be easy to measure, ideally analytical and intuitive
• Should scale linearly with sequential complexity

- Or ideal speedup will not be linear in p (e.g. no. of rows in
matrix program)

• If cannot find intuitive application measure, as often true,
measure execution time with ideal memory system on a
uniprocessor

Work(p)
Work(1)

ECE669 L9: Workload Evaluation February 26, 2004

Memory Constrained Scaling

° Scale so memory usage per processor stays fixed

° Scaled Speedup: Time(1) / Time(p) for scaled up
problem
• Hard to measure Time(1), and inappropriate

SpeedupMC(p) =

° Can lead to large increases in execution time
• If work grows faster than linearly in memory usage
• e.g. matrix factorization

- 10,000-by 10,000 matrix takes 800MB and 1 hour on
uniprocessor. With 1,000 processors, can run 320K-by-320K
matrix, but ideal parallel time grows to 32 hours!

- With 10,000 processors, 100 hours ...

Work(p)
Time(p)

x Time(1)
Work(1)

=
Increase in Work
Increase in Time

ECE669 L9: Workload Evaluation February 26, 2004

Scaling Summary

° Under any scaling rule, relative structure of the
problem changes with P

• PC scaling: per-processor portion gets smaller
• MC & TC scaling: total problem get larger

° Need to understand hardware/software
interactions with scale

° For given problem, there is often a natural scaling
rule

• example: equal error scaling

ECE669 L9: Workload Evaluation February 26, 2004

Types of Workloads

• Kernels: matrix factorization, FFT, depth-first tree search
• Complete Applications: ocean simulation, crew scheduling, database
• Multiprogrammed Workloads

° Multiprog. Appls Kernels Microbench.

Realistic
Complex
Higher level interactions
Are what really matters

Easier to understand
Controlled
Repeatable
Basic machine characteristics

Each has its place:

Use kernels and microbenchmarks to gain understanding, but
applications to evaluate effectiveness and performance

ECE669 L9: Workload Evaluation February 26, 2004

Coverage: Stressing Features

° Easy to mislead with workloads
• Choose those with features for which machine is good, avoid

others

° Some features of interest:
• Compute v. memory v. communication v. I/O bound
• Working set size and spatial locality
• Local memory and communication bandwidth needs
• Importance of communication latency
• Fine-grained or coarse-grained

- Data access, communication, task size
• Synchronization patterns and granularity
• Contention
• Communication patterns

° Choose workloads that cover a range of properties

ECE669 L9: Workload Evaluation February 26, 2004

Coverage: Levels of Optimization

° Many ways in which an application can be suboptimal
• Algorithmic, e.g. assignment, blocking

• Data structuring, e.g. 2-d or 4-d arrays for SAS grid problem
• Data layout, distribution and alignment, even if properly structured
• Orchestration

- contention
- long versus short messages
- synchronization frequency and cost, ...

• Also, random problems with “unimportant” data structures

° Optimizing applications takes work
• Many practical applications may not be very well optimized

2n
p

4n
p

ECE669 L9: Workload Evaluation February 26, 2004

Concurrency

° Should have enough to utilize the processors
• If load imbalance dominates, may not be much machine can do
• (Still, useful to know what kinds of workloads/configurations don’t

have enough concurrency)

° Algorithmic speedup: useful measure of
concurrency/imbalance

• Speedup (under scaling model) assuming all memory/communication
operations take zero time

• Ignores memory system, measures imbalance and extra work
• Uses PRAM machine model (Parallel Random Access Machine)

- Unrealistic, but widely used for theoretical algorithm development

° At least, should isolate performance limitations due to
program characteristics that a machine cannot do
much about (concurrency) from those that it can.

ECE669 L9: Workload Evaluation February 26, 2004

Steps in Choosing Problem Sizes

° Variation of characteristics with problem size usually
smooth

• So, for inherent comm. and load balance, pick some sizes along range

° Interactions of locality with architecture often have
thresholds (knees)

• Greatly affect characteristics like local traffic, artifactual comm.
• May require problem sizes to be added

- to ensure both sides of a knee are captured
• But also help prune the design space

ECE669 L9: Workload Evaluation February 26, 2004

Our Cache Sizes (16x1MB, 16x64KB)

M
is

s
ra

te
 (

%
)

M
is

s
ra

te
 (

%
)

Cache size (K)

(a) LU

Cache size (K)

(e) Raytrace

Cache size (K)

(f) Radix

Cache size (K)

(b) Ocean

Cache size (K)

(c) Barnes–Hut

M
is

s
ra

te
 (

%
)

Cache size (K)

(d) Radiosity

l l

l l l l l l lll

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4
0

10

20

30

40

M
is

s
ra

te
 (

%
)

l

l

l l l l

l

l

l
l

l

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0

20

40

60

l
l l l

l

l l l l l l

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0

2

4

6

8

10

M
is

s
ra

te
 (

%
)

M
is

s
ra

te
 (

%
)

l

l

l

l l l lllll

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0

5

10

15

20
l

l

l

l

l

l
l l l l l

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0

5

10

15

20

l
l

l

l

l l l

l
lll

1 2 4 8 16 32 64 12
8

25
6

51
2

1,
02

4

0

10

20

30

40

50

L 1 WS

L
1
 WS

L 1 WS

L1 WS

L 1 WS

L 2 WS

L 0 WS

L 1 WS
L 2 WS

L 2 WS

L 2 WS
L 2 WS

ECE669 L9: Workload Evaluation February 26, 2004

Multiprocessor Simulation

° Simulation runs on a uniprocessor (can be parallelized too)
• Simulated processes are interleaved on the processor

° Two parts to a simulator:
• Reference generator: plays role of simulated processors

- And schedules simulated processes based on simulated time

• Simulator of extended memory hierarchy

- Simulates operations (references, commands) issued by reference
generator

° Coupling or information flow between the two parts varies
• Trace-driven simulation: from generator to simulator

• Execution-driven simulation: in both directions (more accurate)

° Simulator keeps track of simulated time and detailed
statistics

ECE669 L9: Workload Evaluation February 26, 2004

Execution-driven Simulation

° Memory hierarchy simulator returns simulated time
information to reference generator, which is used to
schedule simulated processes

P1

P2

P3

Pp

$1

$2

$3

$p

Mem1

Mem2

Mem3

Memp

Reference generator Memory and interconnect simulator

·
·
·

·
·
·

N
e
t

w
o
r
k

ECE669 L9: Workload Evaluation February 26, 2004

Summary

° Evaluate design tradeoffs
• many underlying design choices
• prove coherence, consistency

° Evaluation must be based on sound understandng
of workloads

• drive the factors you want to study
• representative
• scaling factors

° Use of workload driven evaluation to resolve
architectural questions

