
ECE669 L7: Resource Balancing February 19, 2004

ECE 669

Parallel Computer Architecture

Lecture 7

Resource Balancing

ECE669 L7: Resource Balancing February 19, 2004

Outline

° Last time: qualitative discussion of balance

° Need for analytic approach

° Tradeoffs between computation, communication
and memory

° Generalize from programming model for now

° Evaluate for grid computations

• Jacobi

• Ocean

ECE669 L7: Resource Balancing February 19, 2004

Designing Parallel Computers: An Integrated Approach

THE
SYSTEM

Machine:
hardware
substrate

Functional
Memory
Based

Data-parallel
LANGUAGES: ...Applications...

Obj oriented

Comm

Memory Process.

Hardware primitives, eg:
• Add operation
• Read
• Send
• Synchronize
• HW barrier

ECE669 L7: Resource Balancing February 19, 2004

THE
SYSTEM

Machine:
hardware
substrate

Comm

Memory Process.

Hardware primitives, eg:
• Add operation
• Read
• Send
• Synchronize
• HW barrier

Compiler
system +
runtime
system

Front ends

Compiler

INTERMEDIATE
FORM

(Eg: Sends...)

Designing Parallel Computers: An Integrated Approach

Functional
Memory
Based

Data-parallel
LANGUAGES: ...Applications...

Obj oriented

ECE669 L7: Resource Balancing February 19, 2004

Hardware/Software Interaction

° Hardware architecture
• Principles in the design of processors, memory, communication
• Choosing primitive operations to be supported in HW.

- Function of available technology.

° Computer + Runtime technology
• Hardware-software tradeoffs -- where to draw the line
• Compiler-runtime optimizations for parallel processing

Mechanisms
Technology

Languages

Compiler
If

HW-SW boundary
Machine

ECE669 L7: Resource Balancing February 19, 2004

Lesson from RISCs

High-level
abstraction

High-level Op

Simple hardware supported mechanisms

• Add-Reg-Reg
• Reg-Reg Move
• Load-store
• Branch
• Jump
• Jump & link
• Compare branch
• Unaligned loads
• Reg-Reg shifts

IF

The ubiquitous
POLYF

ECE669 L7: Resource Balancing February 19, 2004

• HW can change -- but must run existing binaries

• Mechanisms are important

vs.
Language-level compatibility

vs.
IF compatibility

• Pick best mechanisms given current technology -- fast!

• Have compiler backend tailored to current
implementation

• Mechansims are not inviolate!

Key: “Compile & Run”

• Compute time must be small -- so have some IF

Binary Compatibility

ECE669 L7: Resource Balancing February 19, 2004

° To some extent ... but it is becoming more
scientific

• Choosing mechanisms: Metrics
- Performance
- Simplicity
- Scalability - match physical constraints
- Universality
- Cost-effectiveness (balance)
- Disciplined use of mechanism
- Because the Dept. of Defense said so!

• For inclusion, a mechanism must be:
- Justified by frequency of use
- Easy to implement
- Implementable using off-the-shelf parts

Choosing hardware mechanisms

ECE669 L7: Resource Balancing February 19, 2004

Hardware Design Issues

• Storage for state information
• Operations on the state
• Communication of information

° Questions:
- How much storage --- comm bandwidth --- processing
- What operations to support (on the state)
- What mechanisms for communication
- What mechanisms for synchronization

° Let’s look at:
³ Apply metrics to make major decisions -- eg. memory ---

comm BW --- processing
³ Quick look at previous designs

Mem Comm

Proc

Mem Comm

Proc

ECE669 L7: Resource Balancing February 19, 2004

Example use of metrics

• Performance
- Support for floating point

– Frequency of use
- Caches speed mem ops.

• Simplicity
- Multiple simple mechanisms -- SW synthesizes complex

forms,
- Eg. barrier from primitive F/E bits and send ops

• Universality
- Must not preclude certain Ops. (preclude -- same as --

heavy performance hit) Eg. without past msg send, remote
process invocation is very expensive

• Discipline
- Avoid proliferation of mechanism. When multiple options

are available, try to stick to one, Eg. software prefetch,
write overlapping through weak ordering, rapid context
switching, all allow latency tolerance.

• Cost effectiveness, scalability...

ECE669 L7: Resource Balancing February 19, 2004

Cost effectiveness and the notion of balance

° Balanced design -> every machine resource is
utilized to fullest during computation

° Otherwise -> apportion $’s on underutilized
resource to more heavily used resource

° Two fundamental issues:
• Balance: Choosing size, speed, etc. of each resource so that

no ideal time results due to mismatch!
• Overlapping: implement so that resource can overlap its

operation completely with the operation of other resources

ECE669 L7: Resource Balancing February 19, 2004

Consider the basic pipeline

• Overlapping
- X, Y, Z must be able to operate concurrently -- that is, when

X is performing OPX on c, Y must be able to perform OPy
on b, and Z must be able to perform OPz on a.

• Balance
- To avoid wastage or idle time in X, Y, or Z, design each so

that:

Resource
X Y Z

+ * 2
OPx OPy OPz... c b a

TIME(OPx) = TIME(OPy) = TIME(OPz)

ECE669 L7: Resource Balancing February 19, 2004

Overlap in multiprocessors

° Processors are able to process other data while
communication network is busy processing
requests issued previously.

Comm

M

P
Add

.

.

.

LD

ECE669 L7: Resource Balancing February 19, 2004

Balance in multiprocessors

° A machine is balanced if each resource is used
fully

• For given problem size
• For given algorithm

° Let’s work out an example...
N-body

∀ Body

Compute force from

N − 1 others

ECE669 L7: Resource Balancing February 19, 2004

Consider a single node

Application

More parameters

Number of
processing OPs

Number of
memory words

Number of
comm. words

All parameters
are a function of

P: Number of nodes

N: Problem size

Ops/sec

Mem size

Words/sec

p:

m:

c:

Function of available budget

Rp

RM

RC

ECE669 L7: Resource Balancing February 19, 2004

Questions

° 1. Given N, P find p, m, c for balance

° 2. Suppose

° For what N do we have balance?

° 3. Suppose p = 2 x 10 x 106, how do we rebalance
by changing N

° 4. Given fixed budget D and size N, find optimal
• Given: Per node cost of p, m, c, P

p = 10 x 106 P = 10
m = 0.1 x 106

c = 0.1 x 106

Memory: Km
Proc: Kp
Comm: Kc

ECE669 L7: Resource Balancing February 19, 2004

Issue of “size efficiency” - SE

° A machine that requires a larger problem size to
achieve balance has a lower SE grain size than a
machine that achieves balance with a smaller
problem size.

Machine A Machine B

Balanced for N=1,000 Balanced for N=10,000

p = 10 x 106

c = 0.1 x 106

m = 100
P = 10
N - body naive

p = 10 x 106

c = 0.01 x 106

m = 1000
P = 10
N - body naive

ECE669 L7: Resource Balancing February 19, 2004

Intuition:

° For typical problems

° So, machines that provide higher ratio of comm--
compute power tend to have higher SE.

° What about memory? Machines with small comm
-- compute ratios tend to provide more mem. per
node.

° We now know why!

° However, the RIGHT SE is:
• Problem dependent
• Relative cost dependent as well.

Goes as N increases (P decreases)

Think of any counter
examples?

Comm. requirements per node
Proc. requirements per node

ECE669 L7: Resource Balancing February 19, 2004

Scalability

° What does it mean to say a system is scalable.

° TRY: A scalable architecture enjoys speedup
proportional to P, the number of nodes:

° If problem size is fixed at N
• T(P) will not decrease beyond some P [assuming some unit of

computation
• For example add, beyond which we do not attempt to

parallelize algorithms].

ψ

ψ =
T 1()

T P() ∝ P for scalable arch.

ECE669 L7: Resource Balancing February 19, 2004

Scalability

° N is problem size

° Asymptotic speedup for machine R

° Intuitively, : Fraction of parallelism inherent in a given
algorithm that can be exploited by any machine of that
architecture, as a function of problem size N.

° Intuitively, SI(N) : Maximum speedup achievable on any
machine of the given architecture.

(Make problems
very large) Computed using as many nodes as necessary to

yield best running time

Minimum

ψ N() = S I N()

SR N()

=
Asymptotic speedup on machine

Asymptotic speedup on EREW PRAM

S R N() =
θ Serial running time()

θ Parallel running time()

ψ(Ν)

ECE669 L7: Resource Balancing February 19, 2004

Intuition

° Maximum speedup achievable on any sized
machine of the given architecture

° Fraction of parallelism inherent in a given
algorithm that can be exploited by any machine
of that architecture as a function of problem size
N.

ψ(Ν)

SR(N)

ECE669 L7: Resource Balancing February 19, 2004

Scalability

° Example: The (by now) famous Jacobi

° 2D Mesh

° i.e. Mesh is 1-scalable for the Jacobi relaxation
step?

= Θ(Ν)
= Θ(Ν)

SI(N)
SR(N)

ψ(Ν) = 1

ECE669 L7: Resource Balancing February 19, 2004

1-D Array of nodes for Jacobi

N
P ops

Comm

N
P

 Comm
N
P

{

1 32 1…

T =

N
P

+ P

Model: 1 op, 1cycle
1comm/hop, 1cycle

ECE669 L7: Resource Balancing February 19, 2004

Scalability

°

° Ideal speedup on any number of procs.

° Find best P

° So,

° So, 1-D array is scalable for Jacobi

24

S I N() = N

S R N() = ?

T par = N
P

+ P

δ T
δ P

= 0

P = N
2
3 ...

T par = θ N
1
3











T seg = N

S R N() = N
2
3 =

N

N
1
3

ψ N() =
N

2
3

N
=

S R N()

S I N() = N −
1
3

1

N
1
3

ECE669 L7: Resource Balancing February 19, 2004

Solutions to Balance Questions

° 1. N / P
 N / P

 N − N / P

for balance:

or:

Yields p/c ratio:

N 2
= N

c or p
c

= N
P

T = R P
p = N 2

Pp

Pp

Tproc = T comm , memory full
RP
p = R C

c , R M = m

R P =
N 2

P
, R M =

N
P

, R C = N

ECE669 L7: Resource Balancing February 19, 2004

Detailed Example

p = 10 × 10 6

c = 0 .1 × 10 6

m = 0 .1 × 10 6

P = 10

p
c = N

P

or 10 × 10 6

0 .1 × 10 6 =
N

10

or N = 1000 for balance

also R M = m
N
P = m

1000
10

= 100 = m

Memory size of m = 100 yields a balanced machine.

ECE669 L7: Resource Balancing February 19, 2004

Twice as fast processor

p

c =
N
P

If p → 2 p , N → 2 N
m → 2 m

Double problem size.

ECE669 L7: Resource Balancing February 19, 2004

Find Optimal Machine

a.Optimize
Subject to:

b. Constraint (cost)

c. At opt, balance constraints satisfied, makes
solution easier to find but not strictly needed.

° (Opt process should discover c. if not supplied.)

T = N 2

Pp

D = K
p

+ K m + K c[] P

D = pK
ps

+ m K
ms

+ K
cs P][c

= N 2

Pp
p
c

N
P

, m =

ECE669 L7: Resource Balancing February 19, 2004

Eliminate unknowns

or

substitute in

T minimized when P=1!

D = pK ps + mK ms + cK cs[] P

D = pK ps + N
P K ms + p P

N K cs P

p = D − NK ms

P K ps + P
N

T = N 2

PP

T =
N 2 K Ps + P

N


 




D − NK ms

][

[]

Kcs

Kcs

ECE669 L7: Resource Balancing February 19, 2004

Summary

° Balance between communication, memory, and
computation

° Different measures of scalability

° Problem often has specific optimal machine
configuration

° Balance can be shown analytically for variety of
machines

° Meshes, cubes, and linear arrays appropriate for
various problems

