ECE 669

Parallel Computer Architecture

Lecture 6

Programming for Performance

7A

UMASS

ECE669 L6: Programming for Performance February 17, 2004

Introduction

°Rich space of techniques and issues
» Trade off and interact with one another

°|ssues can be addressed/helped by software or
hardware

* Algorithmic or programming techniques
» Architectural techniques

°Focus here on performance issues and software
techniques

 Partitioning
e Communication
e Orchestration

ECE669 L6: Programming for Performance February 17, 2004

Partitioning for Performance

° Initially consider how to seqment program without
view of programming mode

°Important factors:
» Balancing workload
 Reducing communication
* Reducing extra work needed for management

° Goals similar for parallel computer and VLSI design
° Algorithms or manual approaches

° Perhaps most important factor for performance

ECE669 L6: Programming for Performance February 17, 2004

Performance Goal => Speedup

° Architect Goal

* observe how program uses machine and improve the design to
enhance performance

° Programmer Goal

* observe how the program uses the machine and improve the
implementation to enhance performance

° What do you observe?

° Who fixes what?
70

—@— Version 12/94
60 (H —i— Version 9/94
—— \Version 8/94

2Q

40 —

Speedup

3a

20 — .

10

0] | l |
50 100 150

Number of procassors
ECE669 L6: Programming for Performance P February 17, 2004

Partitioning for Performance

° Balancing the workload and reducing wait time at
synch points

° Reducing inherent communication

° Reducing extra work

° Even these algorithmic issues trade off:
 Minimize comm. =>run on 1 processor => extreme load imbalance

 Maximize load balance =>random assignment of tiny tasks => no
control over communication

» Good partition may imply extra work to compute or manage it

°Goal is to compromise
* Fortunately, often not difficult in practice

ECE669 L6: Programming for Performance February 17, 2004

Load Balance and Synch Wait Time

°Limit on speedup: Speedup, yen(P) < Sequential Work

_ Max Work on any Processor
» Work includes data access and other costs

* Not just equal work, but must be busy at same time

°Four parts to load balance and reducing synch wait
time:

°1. Identify enough concurrency

°2. Decide how to manage it

°3. Determine the granularity at which to exploit it
°4. Reduce serialization and cost of synchronization

ECE669 L6: Programming for Performance February 17, 2004

Identifying Concurrency

°Techniques seen for equation solver:
» Loop structure, fundamental dependences, new algorithms

° Data Parallelism versus Function Parallelism

° Often see orthogonal levels of parallelism; e.g. VLSI
routing

B e

Wire W, expands to segments

AR

Segment $5 expands to outes

S - R G

ECE669 L6: Programming for Performance February 17, 2004

21 S22
(b) I/. \

Load Balance and Synchronization

Speedup problem(p) < Seqguential Work
— MaxWork on any Processor

P, O = P, [)

P, Jo— > 3 I >F
P, O > P, 2> I—> I—>
= NS ==

° Instantaneous load imbalance revealed as wait

time
e at completion
. at barriers Sequential Work
« at receive Max (Work + Synch Wait Time)

ECE669 L6: Programming for Performance February 17, 2004

Improving Load Balance

° Decompose into more smaller tasks (>>P)

° Distribute uniformly
e variable sized task
 randomize
* bin packing
« dynamic assignment

° Schedule more carefully
e avoid serialization
« estimate work
e use history info.

for_alli=1tondo
for_allj=itondo
All,j]1=A[-1, j] + AL j-1] + ...

ECE669 L6: Programming for Performance

PL

]

COoQ0O|®e® 8|0 @ B|O O O
OO0CQ|e s 0|@ & B|OC DO
DOoOQe @ @l @& @D O O
CO0|¢® #|0 & G|C O O
COoQ0O|®e® ®|0 @ B|O O O
O0CQ|e e 0|@ & B|OC O

DOoOQe @ 0|l @& @D O

CoQ|le® #|0 & 6|00 D

COoQ0O|®e® ®|0 @ B|O O O

OOoQ|e e @l @ 0|00 O

February 17, 2004

Example: Barnes-Hut

()
- |]
. - el o
o ele 1o ® O @
[]
9
. »
. - (D @ (o O O Q
o |%|*|a ®
. .:: sle]
] o% |
»
* . @ O
o |
@
L 4
(&) The spatial domain (b) Quadtr ee repr esentation

° Divide space into roughly equal # particles

° Particles close together in space should be on
same processor

° Nonuniform, dynamically changing

ECE669 L6: Programming for Performance February 17, 2004

Dynamic Scheduling with Task Queues

° Centralized versus distributed queues

° Task stealing with distributed queues
« Can compromise comm and locality, and increase

synchronization

« Whom to steal from, how many tasks to steal, ...
e Termination detection
« Maximum imbalance related to size of task

All processes
insert tasks

T

QQ

All remove tasks

(a) Centralized task queue

ECE669 L6: Programming for Performance

Ry inserts R inserts P, inserts P3 inserts
0 Q Q2 Q3
I I =
Others may
steal
Py removes P; removes B removes P53 removes

(b) Distributed task queues (one per pr ocess)

February 17, 2004

Deciding How to Manage Concurrency

° Static versus Dynamic techniques
° Static:

* Algorithmic assignment based on input; won’t change
e Low runtime overhead
« Computation must be predictable

» Preferable when applicable (except in
multiprogrammed/heterogeneous environment)

> Dynamic:
« Adapt at runtime to balance load
e Can increase communication and reduce locality
e Can increase task management overheads

ECE669 L6: Programming for Performance February 17, 2004

Dynamic Assignment

° Profile-based (semi-static):
» Profile work distribution at runtime, and repartition dynamically
* Applicable in many computations, e.g. Barnes-Hut, some graphics

° Dynamic Tasking:

» Deal with unpredictability in program or environment (e.g.
Raytrace)

- computation, communication, and memory system
interactions

- multiprogramming and heterogeneity
- used by runtime systems and OS too
* Pool of tasks; take and add tasks until done
* E.g. “self-scheduling” of loop iterations (shared loop counter)

ECE669 L6: Programming for Performance February 17, 2004

Impact of Dynamic Assignment

° Barnes-Hut and Ray Tracing on SGI Origin 2000
and Challenge (cache-coherent shared memory)

° Semistatic — periodic run-time re-evaluation of task

assignment
30 — —8— Origin, semistatic 30 — —8— Origin, dynamic
—=— Challenge, semistatic —=— Challenge, dynamic
—&— Origin, static —8— Origin, static
25 —— Challenge, static o5 || —— Challenge, static -
20 20 —
S S
e e
2 15 3 15 3 _—
o o
n n
10 10 —
5 5
AN NN %IIIIIIIIIIIIIIIIIIIIIIIII
@ O (b) O
1 357 91113151719212325272931 1 357 91113151719212325272931
Number of processors Number of processors

ECE669 L6: Programming for Performance February 17, 2004

Determining Task Granularity

° Taskk granularity: amount of work associated with a
tas

° General rule:
e Coarse-grained => often less load balance

* Fine-grained => more overhead, often more communication and
contention

> Communication and contention affected by
assignment, not size

* Overhead an issue, particularly with task queues

ECE669 L6: Programming for Performance February 17, 2004

Reducing Serialization

° Be careful about assignment and orchestration
* including scheduling

° Event synchronization

 Reduce use of conservative synchronization
- Point-to-point instead of global barriers

* Fine-grained synch more difficult to program, more synch ops.

° Mutual exclusion
» Separate locks for separate data

- e.g. locking records in a database: lock per process, record,
or field

- lock per task in task queue, not per queue

- finer grain => less contention, more space, less reuse

« Smaller, less frequent critical sections
- don’t do reading/testing in critical section, only modification

ECE669 L6: Programming for Performance February 17, 2004

Implications of Load Balance

Sequential Work

Speedupproblem(p) < . .
Max (Work + Synch Wait Time)

° Extends speedup limit expression to:
°> Generally, responsibility of software

> Architecture can support task stealing and synch
efficiently

* Fine-grained communication, low-overhead access to queues
- efficient support allows smaller tasks, better load balance
 Naming logically shared data in the presence of task stealing

« Efficient support for point-to-point communication

ECE669 L6: Programming for Performance February 17, 2004

Architectural Implications of Load Balancing

° Naming

» Global position independent naming separates decomposition
from layout

« Allows diverse, even dynamic assignments

° Efficient fine-grained communication & synch
 Requires:
- messages
- locks
e point-to-point synchronization

° Automatic replication of tasks

ECE669 L6: Programming for Performance February 17, 2004

Implications of Comm-to-Comp Ratio

° Architects examine application needs to see where
to spend money

°If denominator is execution time, ratio gives
average BW needs

°If operation count, gives extremes in impact of
latency and bandwidth

» Latency: assume no latency hiding
« Bandwidth: assume all latency hidden
* Reality is somewhere in between

° Actual impact of comm. depends on structure and
cost as well

Speedup < Sequential Work

Max (Work + Synch Wait Time + Comm Cost)

* Need to keep communication balanced across processors as well

ECE669 L6: Programming for Performance February 17, 2004

Reducing Extra Work

° Common sources of extra work:

« Computing a good partition
- e.g. partitioning in Barnes-Hut

 Using redundant computation to avoid communication

 Task, data and process management overhead
- applications, languages, runtime systems, OS

« Imposing structure on communication
- coalescing messages, allowing effective naming

° Architectural Implications:

 Reduce need by making communication and orchestration
efficient

Sequential Work

Speedup < -
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

ECE669 L6: Programming for Performance February 17, 2004

Reducing Inherent Communication

° Communication is expensive!
° Measure: communication to computation ratio

° Inherent communication
 Determined by assignment of tasks to processes
 One produces data consumed by others

Replicate computations
=> Use algorithms that communicate less

=> Assign tasks that access same data to same
process

« same row or block to same process in each iteration

ECE669 L6: Programming for Performance February 17, 2004

Domain Decomposition

° Works well for scientific, engineering, graphics, ...
applications

° Exploits local-biased nature of physical problems
* Information requirements often short-range
 Or long-range but fall off with distance

° Simple example: nearest-neighbor grid
computation

.
|

R P P P
P, P Ps }
l B | R | Po| P
Perimeter to Area comm-to-comp ratio (areato volumein 3-
-Depends on n,p: decreases with n, increases with p

=]

9000000040
08080880
00080880
08080880
00080880
08080880
00008088 Q
R T NN NNN R
000000 0Q
-4— | —>

(@R
—

ECE669 L6: Programming for Performance February 17, 2004

Domain Decomposition

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition:

“/;) - n —

A

I n

“/;) Pg P Po | Pu1

°Comm to comp: Lﬁos for block, 2;p for strip

°> Application dependent: strip may be better in other cases

ECE669 L6: Programming for Performance February 17, 2004

Finding a Domain Decomposition

° Static, by inspection
* Must be predictable: grid example, Ocean

° Static, but not by inspection
* Input-dependent, require analyzing input structure
« E.g sparse matrix computations

° Semi-static (periodic repartitioning)
» Characteristics change but slowly; e.g. Barnes-Hut

° Static or semi-static, with dynamic task stealing
* Initial decomposition, but highly unpredictable

ECE669 L6: Programming for Performance February 17, 2004

Summary: Analyzing Parallel Algorithms

° Requires characterization of multiprocessor and
algorithm

> Historical focus on algorithmic aspects:
partitioning, mapping

°][3RAM model: data access and communication are
ree

* Only load balance (including serialization) and extra work matter

Speedup < Sequential Instructions
- Max (Instructions + Synch Wait Time + Extra Instructions)

o Useful for early development, but unrealistic for real performance
e Ignores communication and also the imbalances it causes
» Can lead to poor choice of partitions as well as orchestration

ECE669 L6: Programming for Performance February 17, 2004

Orchestration for Performance

° Reducing amount of communication:
* Inherent: change logical data sharing patterns in algorithm

o Artifactual: exploit spatial, temporal locality in extended
hierarchy

- Techniques often similar to those on uniprocessors

° Structuring communication to reduce cost

ECE669 L6: Programming for Performance February 17, 2004

Reducing Communication

° Message passing model
« Communication and replication are both explicit
« Communication is in messages

° Shared address space model
 More interesting from an architectural perspective
 Occurs transparently due to interactions of program and system
- sizes and granularities in extended memory hierarchy

° Use shared address space to illustrate issues

ECE669 L6: Programming for Performance February 17, 2004

Exploiting Temporal Locality

« Structure algorithm so working sets map well to hierarchy
- often techniques to reduce inherent communication do well here
- schedule tasks for data reuse once assigned

« Solver example: blocking

0O0C O 0000 CO0OO0OO0000 oo 000000000000
oC © 000 0¢C00C0Oo0ae Q0 0 0 Q0 Q0 Q0O Qo Qda
00| e eeee |00 0 0) (7 v, > 0|00
0o | For—0— 000000 =010 0 Qo é_//// 00
o0 %oo oo / o0
0 0 | HT——o—o—o—0— soloo 0o| EE e 00
00 ————o oo oo 9o o0
o0 Qa0 0o a0
00 aaQ 0o Qo0
o0 00 g0 00
oo 00 aa o0
00 ada QQ o0
OO0 0000 O0COO0OCGCO OO0 OO0 0O OO O0OOCOO0C 00000
OO0 o o0 00000000 OO0 0 0O 0O 00 00 0 C GCo0OUd
(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4

ECE669 L6: Programming for Performance February 17, 2004

Exploiting Spatial Locality

o

Besides capacity, granularities are important:
e Granularity of allocation
e Granularity of communication or data transfer
» Granularity of coherence

o

Major spatial-related causes of artifactual communication:
* Conflict misses
» Data distribution/layout (allocation granularity)
 Fragmentation (communication granularity)
 False sharing of data (coherence granularity)

o

All depend on how spatial access patterns interact with data
structures

* Fix problems by modifying data structures, or layout/alignment

o

Examine later in context of architectures
 one simple example here: data distribution in SAS solver

ECE669 L6: Programming for Performance February 17, 2004

Spatial Locality Example

 Repeated sweeps over 2-d grid, each time adding 1 to elements
 Natural 2-d versus higher-dimensional array representation

Contiguity in memory layout

» R S
[P P 3 t = I g 3
— o
1 el 7 -
|
|
4 Ps * B P 4 I_Fq 6 7
/
Do / T 1 P /
e m=y [
| -t —
/ /
I\ \
/
/ A / A\
Page st addI/ Pag dé
e straddles e does
partition boundaries: g?gggl iosgrtiti on not straddle Cache block is
difficult to distribute)\ 4 ary partition within a partition
memory well boundary
(& Two-dimensional array (b) Four-dimensional array

ECE669 L6: Programming for Performance February 17, 2004

Architectural Implications of Locality

° Communication abstraction that makes exploiting
It easy

° For cache-coherent SAS

« Size and organization of levels of memory hierarchy
- cost-effectiveness: caches are expensive
- caveats: flexibility for different and time-shared workloads

* Replication in main memory useful? If so, how to manage?
- hardware, OS/runtime, program?

« Granularities of allocation, communication, coherence (?)
- small granularities => high overheads, but easier to program

° Machine granularity (resource division among
processors, memory...)

ECE669 L6: Programming for Performance February 17, 2004

Example Performance Impact

° Equation solver on SGI Origin2000

30 —
—— Rows
- —— 4D
—e— 2D
20 —
o o
=) =)
o 15 D
() ()
o o
n n
10
5
O ULLLL Ll i
1 3 5 7 91113151719212325272931

Number of processors

ECE669 L6: Programming for Performance

50
45

40

ftetee

4D pe
4D-rr

Rows

Rows-rr
2D

i
==

O |-

1113151719 21232527 2931

Number of processors

February 17, 2004

Summary of Tradeoffs

° Different goals often have conflicting demands
 Load Balance
- fine-grain tasks
- random or dynamic assignment
« Communication
- usually coarse grain tasks
- decompose to obtain locality: not random/dynamic
« Extra Work
- coarse grain tasks
- simple assighment
« Communication Cost:
- big transfers: amortize overhead and latency
- small transfers: reduce contention

ECE669 L6: Programming for Performance February 17, 2004

