
ECE669  L6: Programming for Performance February 17, 2004 

ECE 669

Parallel Computer Architecture

Lecture 6

Programming for Performance



ECE669  L6: Programming for Performance February 17, 2004 

Introduction

° Rich space of techniques and issues
• Trade off and interact with one another

° Issues can be addressed/helped by software or 
hardware

• Algorithmic or programming techniques
• Architectural techniques

° Focus here on  performance issues and software 
techniques

• Partitioning
• Communication
• Orchestration



ECE669  L6: Programming for Performance February 17, 2004 

Partitioning for Performance

° Initially consider how to segment program without 
view of programming model

° Important factors:
• Balancing workload
• Reducing communication
• Reducing extra work needed for management

° Goals similar for parallel computer and VLSI design

° Algorithms or manual approaches

° Perhaps most important factor for performance



ECE669  L6: Programming for Performance February 17, 2004 

Performance Goal => Speedup
° Architect Goal

• observe how program uses machine and improve the design to 
enhance performance

° Programmer Goal
• observe how the program uses the machine and improve the 

implementation to enhance performance

° What do you observe?

° Who fixes what?



ECE669  L6: Programming for Performance February 17, 2004 

Partitioning for Performance

° Balancing the workload and reducing wait time at 
synch points

° Reducing inherent communication

° Reducing extra work

° Even these algorithmic issues trade off:
• Minimize comm. => run on 1 processor => extreme load imbalance
• Maximize load balance => random assignment of tiny tasks => no 

control over communication
• Good partition may imply extra work to compute or manage it

° Goal is to compromise
• Fortunately, often not difficult in practice



ECE669  L6: Programming for Performance February 17, 2004 

Load Balance and Synch Wait Time

° Limit on speedup:    Speedupproblem(p)  <

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

° Four parts to load balance and reducing synch wait 
time:

° 1.  Identify enough concurrency

° 2.  Decide how to manage it

° 3.  Determine the granularity at which to exploit it

° 4.  Reduce serialization and cost of synchronization

Sequential Work
Max Work on any Processor



ECE669  L6: Programming for Performance February 17, 2004 

Identifying Concurrency

° Techniques seen for equation solver:
• Loop structure, fundamental dependences, new algorithms

° Data Parallelism versus Function Parallelism

° Often see orthogonal levels of parallelism; e.g. VLSI 
routing

Wire W2 expands to segments

Segment S23 expands to routes

W1 W2 W3

S21 S22 S23 S24 S25 S26

(a)

(b)

(c)



ECE669  L6: Programming for Performance February 17, 2004 

Load Balance and Synchronization

Sequential Work
Max Work on any Processor

Speedup problem(p)   <

° Instantaneous load imbalance revealed as wait 
time

• at completion
• at barriers
• at receive

P0

P1

P2

P3

P0

P1

P2

P3

Sequential Work
Max (Work + Synch Wait Time)



ECE669  L6: Programming for Performance February 17, 2004 

Improving Load Balance

° Decompose into more smaller tasks (>>P)

° Distribute uniformly
• variable sized task
• randomize
• bin packing
• dynamic assignment

° Schedule more carefully
• avoid serialization
• estimate work
• use history info.

P0

P1

P2

P4

for_all i = 1 to n do 

for_all j = i to n do 

A[ i, j ] = A[i-1, j] + A[i, j-1] + ...



ECE669  L6: Programming for Performance February 17, 2004 

(a) The spatial domain (b) Quadtr ee r epr esentation

Example: Barnes-Hut 

° Divide space into roughly equal # particles

° Particles close together in space should be on 
same processor

° Nonuniform,  dynamically changing



ECE669  L6: Programming for Performance February 17, 2004 

Dynamic Scheduling with Task Queues

° Centralized versus distributed queues

° Task stealing with distributed queues
• Can compromise comm and locality, and increase 

synchronization
• Whom to steal from, how many tasks to steal, ...
• Termination detection
• Maximum imbalance related to size of task

QQ 0 Q2Q1 Q3

All remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per pr ocess)

Others may
steal

All processes
insert tasks

(a) Centralized task queue



ECE669  L6: Programming for Performance February 17, 2004 

Deciding How to Manage Concurrency

° Static versus Dynamic techniques

° Static:
• Algorithmic assignment based on input; won’t change
• Low runtime overhead
• Computation must be predictable
• Preferable when applicable (except in 

multiprogrammed/heterogeneous environment)

° Dynamic:
• Adapt at runtime to balance load
• Can increase communication and  reduce locality
• Can  increase task management overheads



ECE669  L6: Programming for Performance February 17, 2004 

Dynamic Assignment

° Profile-based (semi-static):
• Profile work distribution at runtime, and repartition dynamically
• Applicable in many computations, e.g. Barnes-Hut, some graphics

° Dynamic Tasking:
• Deal with unpredictability in program or environment (e.g. 

Raytrace)
- computation, communication, and memory system 

interactions 
- multiprogramming and heterogeneity
- used by runtime systems and OS too

• Pool of tasks; take and add tasks until done
• E.g. “self-scheduling” of loop iterations (shared loop counter)



ECE669  L6: Programming for Performance February 17, 2004 

Impact of Dynamic Assignment

° Barnes-Hut and Ray Tracing on SGI Origin 2000 
and Challenge (cache-coherent shared memory)

° Semistatic – periodic run-time re-evaluation of task 
assignment

S
pe

ed
up

l
l
l

l

l

l

l

6
6
6

6

6

n
n
n

n

n

n

n

s
s
s

s

s

1 3 5 7 9 11 13 15 17

Number of processors Number of processors

19 21 23 25 27 29 31
0

5

10

15

S
pe

ed
up

20

25

30

0(a) (b)

5

10

15

20

25

30

l
l

l

l

l

l

l

6
6

6

6

6

n
n
n

n

n

n

n

s
s
s

s

s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

l Origin, dynamic
6 Challenge, dynamic
n Origin, static
s Challenge, static

l Origin, semistatic
6 Challenge, semistatic
n Origin, static
s Challenge, static



ECE669  L6: Programming for Performance February 17, 2004 

Determining Task Granularity

° Task granularity:  amount of work associated with a 
task

° General rule:
• Coarse-grained => often  less load balance
• Fine-grained => more overhead, often  more communication and 

contention

° Communication and contention affected by 
assignment, not size

• Overhead an issue, particularly with task queues



ECE669  L6: Programming for Performance February 17, 2004 

Reducing Serialization

° Be careful about assignment and orchestration
• including scheduling

° Event synchronization
• Reduce use of conservative synchronization

- Point-to-point instead of global barriers
• Fine-grained synch more difficult to program, more synch ops. 

° Mutual exclusion
• Separate locks for separate data

- e.g. locking records in a database: lock per process, record, 
or field

- lock per task in task queue, not per queue
- finer grain => less contention,  more space, less reuse

• Smaller, less frequent critical sections
- don’t do  reading/testing in critical section, only modification



ECE669  L6: Programming for Performance February 17, 2004 

Implications of Load Balance

° Extends speedup limit expression to:    

° Generally, responsibility of software

° Architecture can support task stealing and synch 
efficiently

• Fine-grained communication, low-overhead access to queues
- efficient support allows smaller tasks, better load balance

• Naming logically shared data in the presence of task stealing

• Efficient support for point-to-point communication

Sequential Work
Max (Work + Synch Wait Time)

Speedupproblem(p)  <



ECE669  L6: Programming for Performance February 17, 2004 

Architectural Implications of Load Balancing

° Naming
• Global position independent naming separates decomposition 

from layout
• Allows diverse, even dynamic assignments

° Efficient fine-grained communication & synch
• Requires: 

- messages
- locks

• point-to-point synchronization

° Automatic replication of tasks



ECE669  L6: Programming for Performance February 17, 2004 

Implications of Comm-to-Comp Ratio

° Architects examine application needs to see where 
to spend money

° If denominator is execution time, ratio gives 
average BW needs

° If operation count, gives extremes in impact of 
latency and bandwidth

• Latency: assume no latency hiding
• Bandwidth:  assume all latency hidden
• Reality is somewhere in between

° Actual impact of comm. depends on structure and  
cost as well

• Need to keep communication balanced across processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup   <



ECE669  L6: Programming for Performance February 17, 2004 

Reducing Extra Work

° Common sources of extra work:
• Computing a good partition

- e.g. partitioning in Barnes-Hut
• Using redundant computation to avoid communication
• Task, data and process management overhead

- applications, languages, runtime systems, OS
• Imposing structure on communication

- coalescing messages, allowing effective naming

° Architectural Implications:
• Reduce need by making communication and orchestration 

efficient

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup   <



ECE669  L6: Programming for Performance February 17, 2004 

Reducing Inherent Communication

° Communication is expensive! 

° Measure: communication to computation ratio

° Inherent communication 
• Determined by assignment of tasks to processes
• One produces data consumed by others

° Replicate computations

=> Use algorithms that communicate less

=> Assign tasks that access same data to same 
process

• same row or block to same process in each iteration



ECE669  L6: Programming for Performance February 17, 2004 

Perimeter to Area comm-to-comp ratio (area to volume in 3-d)
•Depends on n,p:  decreases with n, increases with p

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14

P10

n

n n
p

n
p

P15

Domain Decomposition

° Works well for scientific, engineering, graphics, ... 
applications

° Exploits local-biased nature of physical problems
• Information requirements often short-range
• Or long-range but fall off with distance

° Simple example:  nearest-neighbor grid 
computation



ECE669  L6: Programming for Performance February 17, 2004 

Domain Decomposition

° Comm to comp:           for block,  for strip

° Application dependent: strip may be better in other cases

4*p0.5

n
2*p
n

Best domain decomposition depends on information requirements
Nearest neighbor example:  block versus strip decomposition:

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p
------

n

p
------



ECE669  L6: Programming for Performance February 17, 2004 

Finding a Domain Decomposition

° Static, by inspection
• Must be predictable: grid example, Ocean

° Static, but not by inspection
• Input-dependent, require analyzing input structure
• E.g  sparse matrix computations

° Semi-static (periodic repartitioning)
• Characteristics change but slowly; e.g. Barnes-Hut

° Static or semi-static, with dynamic task stealing
• Initial  decomposition, but highly unpredictable



ECE669  L6: Programming for Performance February 17, 2004 

Summary: Analyzing Parallel Algorithms

° Requires characterization of multiprocessor and 
algorithm

° Historical focus on algorithmic aspects: 
partitioning, mapping

° PRAM model: data access and communication are 
free

• Only load balance (including serialization) and extra work matter

• Useful for early development, but unrealistic for real performance
• Ignores communication and also the imbalances it causes
• Can lead to poor choice of partitions as well as orchestration

Sequential Instructions
Max (Instructions + Synch Wait Time + Extra Instructions)

Speedup   <



ECE669  L6: Programming for Performance February 17, 2004 

Orchestration for Performance

° Reducing amount of communication:
• Inherent: change logical data sharing patterns in algorithm
• Artifactual: exploit spatial, temporal locality in extended 

hierarchy
- Techniques often similar to those on uniprocessors

° Structuring communication to reduce cost



ECE669  L6: Programming for Performance February 17, 2004 

Reducing Communication

° Message  passing model
• Communication and replication are both explicit
• Communication is in messages

° Shared address space model
• More interesting from an architectural perspective
• Occurs transparently due to interactions of program and system

- sizes and granularities in extended memory  hierarchy

° Use shared address space to illustrate issues



ECE669  L6: Programming for Performance February 17, 2004 

Exploiting Temporal Locality

• Structure algorithm so working sets map well to hierarchy
- often techniques to reduce inherent communication do well here
- schedule tasks for data reuse once assigned

• Solver example: blocking

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4



ECE669  L6: Programming for Performance February 17, 2004 

Exploiting Spatial Locality

° Besides capacity, granularities are important:
• Granularity of allocation

• Granularity of communication or data transfer

• Granularity of coherence

° Major spatial-related causes of artifactual communication:
• Conflict misses

• Data distribution/layout (allocation granularity)

• Fragmentation (communication granularity)

• False sharing of data (coherence granularity)

° All depend on how spatial access patterns interact with data 
structures

• Fix problems by modifying data structures, or layout/alignment

° Examine later in context of architectures
• one simple example here: data distribution in SAS solver



ECE669  L6: Programming for Performance February 17, 2004 

Spatial Locality Example

• Repeated sweeps over 2-d grid, each time adding 1 to elements
• Natural 2-d versus higher-dimensional array representation

P6 P7P4

P8

P0 P3

P5 P6 P7P4

P8

P0 P1 P2 P3

P5

P2P1

Page straddles
partition boundaries:
difficult to distribute 
memory well

Cache block
straddles partition
boundary

(a) Two-dimensional array

Page does
not straddle
partition
boundary

Cache block is 
within a partition

(b) Four-dimensional array

Contiguity in memory layout



ECE669  L6: Programming for Performance February 17, 2004 

Architectural Implications of Locality

° Communication abstraction that makes exploiting 
it easy

° For cache-coherent SAS
• Size and organization of  levels of memory hierarchy

- cost-effectiveness: caches are expensive
- caveats: flexibility for different and time-shared workloads

• Replication in main memory useful? If so, how to manage?
- hardware, OS/runtime, program?

• Granularities of allocation, communication, coherence (?)
- small granularities => high overheads, but easier to program

° Machine granularity (resource division among 
processors, memory...)



ECE669  L6: Programming for Performance February 17, 2004 

Example Performance Impact

° Equation solver on SGI Origin2000

S
pe

ed
up

Number of processors

S
pe

ed
up

Number of processors

l
l
l

l

l

l

s
s
s

s

s

s

n
n
n

n

n

n

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30

ll
l

l

l

l

l

nn
n

n

n

n

n

s s
s

s

s

s

s

uu
u

u

u

u

u

66
6

6

6

6

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

15

20

25

30

35

40

45

50
4D

4D-rr

n 2D-rr

s 2D

u Rows-rr

6 Rowsl 2D

n 4D

s Rows



ECE669  L6: Programming for Performance February 17, 2004 

Summary of Tradeoffs

° Different goals often have conflicting demands
• Load Balance

- fine-grain tasks
- random or dynamic assignment

• Communication
- usually coarse grain tasks
- decompose to obtain locality:  not random/dynamic

• Extra Work
- coarse grain tasks
- simple assignment

• Communication Cost:
- big transfers: amortize overhead and latency
- small transfers: reduce contention


