
ECE669 L4: Parallel Applications February 10, 2004

ECE 669

Parallel Computer Architecture

Lecture 4

Parallel Applications

ECE669 L4: Parallel Applications February 10, 2004

Outline

° Motivating Problems (application case studies)

° Classifying problems

° Parallelizing applications

° Examining tradeoffs

° Understanding communication costs

• Remember: software and communication!

ECE669 L4: Parallel Applications February 10, 2004

Simulating Ocean Currents

° Model as two-dimensional grids
• Discretize in space and time
• finer spatial and temporal resolution => greater accuracy

° Many different computations per time step
- set up and solve equations

• Concurrency across and within grid computations
° Static and regular

(a) Cross sections (b) Spatial discretization of a cross section

ECE669 L4: Parallel Applications February 10, 2004

Creating a Parallel Program

° Pieces of the job:
• Identify work that can be done in parallel

- work includes computation, data access and I/O
• Partition work and perhaps data among processes
• Manage data access, communication and synchronization

° Simplification:
• How to represent big problem using simple computation and

communication

° Identifying the limiting factor
• Later: balancing resources

ECE669 L4: Parallel Applications February 10, 2004

4 Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

° Decomposition of computation in tasks

° Assignment of tasks to processes

° Orchestration of data access, comm, synch.

° Mapping processes to processors

ECE669 L4: Parallel Applications February 10, 2004

Decomposition

° Identify concurrency and decide level at which to
exploit it

° Break up computation into tasks to be divided
among processors

• Tasks may become available dynamically
• No. of available tasks may vary with time

° Goal: Enough tasks to keep processors busy, but
not too many

• Number of tasks available at a time is upper bound on
achievable speedup

ECE669 L4: Parallel Applications February 10, 2004

Limited Concurrency: Amdahl’s Law

° Most fundamental limitation on parallel speedup

° If fraction s of seq execution is inherently serial,
speedup <= 1/s

° Example: 2-phase calculation
• sweep over n-by-n grid and do some independent computation
• sweep again and add each value to global sum

° Time for first phase = n2/p

° Second phase serialized at global variable, so time = n2

° Speedup <= or at most 2

° Trick: divide second phase into two
• accumulate into private sum during sweep
• add per-process private sum into global sum

° Parallel time is n2/p + n2/p + p, and speedup at best

2n2

n2

p + n2

2n2

2n2 + p2

ECE669 L4: Parallel Applications February 10, 2004

Understanding Amdahl’s Law

1

p

1

p

1

n2/p

n2

p

w
or

k
do

ne
 c

on
cu

rr
en

tly

n2

n2

Time
n2/p n2/p

(c)

(b)

(a)

ECE669 L4: Parallel Applications February 10, 2004

Concurrency Profiles

• Area under curve is total work done, or time with 1 processor
• Horizontal extent is lower bound on time (infinite processors)

• Speedup is the ratio: , base case:

• Amdahl’s law applies to any overhead, not just limited concurrency

C
on

cu
rr

en
cy

15
0

21
9

24
7

28
6

31
3

34
3

38
0

41
5

44
4

48
3

50
4

52
6

56
4

58
9

63
3

66
2

70
2

73
3

0

200

400

600

800

1,000

1,200

1,400

Clock cycle number

fk k

fk
k
p∑

k=1

∞

∑
k=1

∞
1

s + 1-s
p

ECE669 L4: Parallel Applications February 10, 2004

Applications

° Classes of problems
• Continuum
• Particle
• Graph, Combinatorial

° Goal: Demystifying

° Differential equations ---> Parallel Program

ECE669 L4: Parallel Applications February 10, 2004

Particle Problems

° Simulate the interactions of many particles
evolving over time

° Computing forces is expensive
• Locality
• Methods take advantage of force law: G m1m2

r2

•Many time-steps, plenty of concurrency across stars within one

Star on which for ces
are being computed

Star too close to
appr oximate

Small gr oup far enough away to
appr oximate to center of mass

Large gr oup far
enough away to
appr oximate

ECE669 L4: Parallel Applications February 10, 2004

Graph problems

• Traveling salesman
• Network flow
• Dynamic programming

° Searching, sorting, lists,

° Generally unstructured

•

•

•

•

•
2

1

5

4

3

•6

2

3

2

2

21

1

5

5

6

4

7

ECE669 L4: Parallel Applications February 10, 2004

Continuous systems

° Hyperbolic

° Parabolic

° Elliptic

° Examples:
• Heat diffusion

• Electrostatic potential

• Electromagnetic waves

∂ 2A
C2∂T2 = ∇2A+ B

Laplace: B is zero
Poisson: B is non-zero

∂A

C∂T
= ∇2A+ B

0 = ∇2A +B

ECE669 L4: Parallel Applications February 10, 2004

Numerical solutions

° Let’s do finite difference first

° Solve
• Discretize
• Form system of equations
• Solve ---> • Direct methods

• Indirect methods
• Iterative

finite difference methods
finite element methods

.

.

.

Result in
system of
equations

Eg.

∂ A
∂ T

=
∂ 2 A
∂ x 2

ECE669 L4: Parallel Applications February 10, 2004

Discretize

° Time
• Where

° Space

° 1st
• Where

° 2nd

• Can use other discretizations
- Backward
- Leap frog

Forward
difference

∂ A
∂ x

=
A i + 1 − A i

∆ x

∂ A
∂ T

=
A n + 1 − A n

∆ t

∆ t =

1
T steps

A12A11

Space

Boundary
conditions

n-2
n-1

n

Time

∂
∂ x

∂ A
∂ x

 =

A i + 1 − A i() − A i − A i − 1()
∆ x 2

∂ 2 A
∂ x 2 =

A i + 1 − 2 A i + A i − 1

∆ x 2

∆ x =
1

X grid points

ECE669 L4: Parallel Applications February 10, 2004

1D Case

° Or

∂ A
∂ T

=
∂ 2 A
∂ x 2

+ B

A i

n + 1 =
∆ t

∆ x 2 A i + 1
n − 2 A i

n + A i −1
n[]+ B i ∆ t + A i

n

A x
n + 1

A i
n + 1

A 2
n + 1

A i
n + 1

=
∆ t

∆ x 2

− 2 ∆ t

∆ x 2
+ 1

∆ t

∆ x 2

A x
n

A i

A 2
n

A i
n

+ B

 0

0

A i
n + 1 − A i

n

∆ t
=

1

∆ x 2 A i + 1
n − 2 A i

n + Ai-1
n[] + Bi

ECE669 L4: Parallel Applications February 10, 2004

Poisson’s

For

Or

A x = b

∂ 2 A

∂ x 2
+ B = 0

∀ i 0 =

1

∆ x 2
Ai +1 − 2A i + A i −1[] + B i

.

.

.

1

∆ x 2

− 2
∆ x 2

1
∆ x 2

A 0

A 1

Ai

=

B 0

B 1

Bi

 .

.

.

.

.

.

.

.

.

0

0

ECE669 L4: Parallel Applications February 10, 2004

2-D case

∂ A
∂ T

=
∂ 2 A

∂ x 2
+

∂ 2 A

∂ y 2
+ B

i , j
n +1A − i , j

nA
∆ t

=
1

∆ s 2 i +1, j
nA + i −1, j

nA + i , j +1
nA + i , j −1

nA − 4 A i , j
n[]+ i , jB

i , j
n +1Α =

∆ t
∆s2 i +1, j

nΑ + i −1, j
nΑ + i , j +1

nΑ + i , j −1
nΑ − i , j

n4Α[]+ Bi , j ∆t + Α i, j
n

 i, j
n +1A[]= ?[] i, j

nA[]+ i, jB[]

n

A11 A12 A13 . . .

A21 A22 . . .

 ∆ s

 ∆s

° What is the form of this matrix?

ECE669 L4: Parallel Applications February 10, 2004

Current status

° We saw how to set up a system of equations

° How to solve them

° Poisson: Basic idea

° In iterative methods

• Iterate till no difference
• The ultimate parallel method

Iterative
Direct

Jacobi, ...
Multigrid...

.

.

.

Or

0 for Laplace

0 =

1

∆ s 2 i +1 , jA + i −1 , jA + i , j + 1A + i , j − 1
kA − i , j4 A[] + i , jB

Ai , j =

Ai +1, j + Ai −1, j + i , j +1A + i , j −1A
4

+ i , jC

i , j
k +1A = i +1, j

kA + i −1, j
kA + i , j +1

kA + i , j −1
kA

4
= i , jC

ECE669 L4: Parallel Applications February 10, 2004

In Matrix notation Ax = b

° Set up a system of equations.

° Now, solve

° Direct:

° Iterative:

Direct methods
Semi-direct - CG
Iterative

Gaussian elim.
Recursive dbl.

Jacobi
MG

Solve Ax=b directly LU

Ax = b
= -Ax+b

Mx = Mx - Ax + b
Mx = (M - A) x + b

Mx k+1 = (M - A) xk + b

Solve iteratively

ECE669 L4: Parallel Applications February 10, 2004

Machine model

• Data is distributed among memories (ignore initial I/O costs)
• Communication over network-explicit
• Processor can compute only on data in local memory. To effect

communication, processor sends data to other node (writes
into other memory).

Interconnection
network

M

P

M M

P P

ECE669 L4: Parallel Applications February 10, 2004

Summary

° Many types of parallel applications

• Attempt to specify as classes (graph, particle, continuum)

° We examine continuum problems as a series of
finite differences

° Partition in space and time

° Distribute computation to processors

° Understand processing and communication
tradeoffs

