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Outline

° Motivating Problems (application case studies)

° Classifying problems

° Parallelizing applications

° Examining tradeoffs

° Understanding communication costs

• Remember: software and communication!  
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Simulating Ocean Currents

° Model as two-dimensional grids
• Discretize in space and time
• finer spatial and temporal resolution => greater accuracy

° Many different computations per time step
- set up and solve equations

• Concurrency across and within grid computations
° Static and regular

(a) Cross sections (b) Spatial discretization of a cross section
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Creating a Parallel Program

° Pieces of the job:
• Identify work that can be done in parallel

- work includes computation, data access and I/O
• Partition work and perhaps data among processes
• Manage data access, communication and synchronization

° Simplification:
• How to represent big problem using simple computation and 

communication

° Identifying the limiting factor
• Later: balancing resources
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4 Steps in Creating a Parallel Program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

° Decomposition of computation in tasks

° Assignment of tasks to processes

° Orchestration of data access, comm, synch.

° Mapping processes to processors
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Decomposition

° Identify concurrency and decide level at which to 
exploit it 

° Break up computation into tasks to be divided 
among processors

• Tasks may become available dynamically
• No. of available tasks may vary with time

° Goal:  Enough tasks to keep processors busy, but 
not too many

• Number of tasks available at a time is upper bound on 
achievable speedup
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Limited Concurrency: Amdahl’s Law

° Most fundamental limitation on parallel speedup

° If fraction s of seq execution is inherently serial,
speedup <= 1/s

° Example: 2-phase calculation
• sweep over n-by-n grid and do some independent computation
• sweep again and add each value to global sum

° Time for first phase = n2/p

° Second phase serialized at global variable, so time = n2

° Speedup <=                    or at most 2

° Trick: divide second phase into two
• accumulate into private sum during sweep
• add per-process private sum into global sum

° Parallel time is n2/p + n2/p + p, and  speedup  at best 

2n2

n2
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2n2

2n2 + p2
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Understanding Amdahl’s Law
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Concurrency Profiles

• Area under curve is total work done, or time with 1 processor
• Horizontal extent is lower bound on time (infinite processors)

• Speedup is the ratio:                     , base case:  

• Amdahl’s law applies to any overhead, not just limited concurrency
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Applications

° Classes of problems
• Continuum
• Particle
• Graph, Combinatorial

° Goal: Demystifying

° Differential equations ---> Parallel Program
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Particle Problems

° Simulate the interactions of many particles 
evolving over time

° Computing forces is expensive
• Locality
• Methods take advantage of force law:  G m1m2

r2

•Many time-steps, plenty of concurrency across stars within one

Star on which for ces
are being computed

Star too close to
appr oximate

Small gr oup far enough away to
appr oximate to center of mass

Large gr oup far
enough away to
appr oximate 
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Graph problems

• Traveling salesman
• Network flow
• Dynamic programming

° Searching, sorting, lists, 

° Generally unstructured

•
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Continuous systems

° Hyperbolic

° Parabolic

° Elliptic

° Examples:
• Heat diffusion

• Electrostatic potential

• Electromagnetic waves

    

∂ 2A
C2∂T2 = ∇2A+ B

Laplace:  B is zero
Poisson:  B is non-zero

    
∂A

C∂T
= ∇2A+ B

0 = ∇2A +B
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Numerical solutions

° Let’s do finite difference first

° Solve
• Discretize
• Form system of equations
• Solve --->  • Direct methods

• Indirect methods
• Iterative

finite difference methods
finite element methods

.

.

.

Result in
system of 
equations

    
Eg.  

∂ A
∂ T

=
∂ 2 A
∂ x 2
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Discretize

° Time
• Where

° Space

° 1st
• Where

° 2nd

• Can use other discretizations
- Backward
- Leap frog

Forward 
difference

    

∂ A
∂ x

=
A i + 1 − A i

∆ x

    

∂ A
∂ T

=
A n + 1 − A n

∆ t

    
∆ t =

1
T  steps

A12A11

Space

Boundary 
conditions

n-2
n-1

n

Time

    

∂
∂ x

∂ A
∂ x

 
 
  

 
 =

A i + 1 − A i( ) − A i − A i − 1( )
∆ x 2

    

∂ 2 A
∂ x 2 =

A i + 1 − 2 A i + A i − 1

∆ x 2

∆ x =
1

X grid points



ECE669  L4: Parallel Applications February 10, 2004 

1D Case

° Or

    

∂ A
∂ T

=
∂ 2 A
∂ x 2

+ B

    
A i

n + 1 =
∆ t

∆ x 2 A i + 1
n − 2 A i

n + A i −1
n[ ]+ B i ∆ t + A i

n
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n + Ai-1
n[ ] + Bi
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Poisson’s

For 

Or

A x =  b

    

∂ 2 A

∂ x 2
+ B = 0

    
∀ i   0 =

1

∆ x 2
Ai +1 − 2A i + A i −1[ ] + B i

.
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2-D case

    

∂ A
∂ T

=
∂ 2 A

∂ x 2
+

∂ 2 A

∂ y 2
+ B

    
i , j
n +1A − i , j

nA
∆ t     

=
1

∆ s 2 i +1, j
nA + i −1, j

nA + i , j +1
nA + i , j −1

nA − 4 A i , j
n[ ]+ i , jB

    
i , j
n +1Α =

∆ t
∆s2 i +1, j

nΑ + i −1, j
nΑ + i , j +1

nΑ + i , j −1
nΑ − i , j

n4Α[ ]+ Bi , j ∆t + Α i, j
n

    i, j
n +1A[ ]=  ?[ ] i, j

nA[ ]+ i, jB[ ]

n

A11 A12 A13 . . . 

A21 A22 . . .

  ∆ s

  ∆s

° What is the form of this matrix?
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Current status

° We saw how to set up a system of equations

° How to solve them

° Poisson: Basic idea

° In iterative methods

• Iterate till no difference
• The ultimate parallel method

Iterative
Direct

Jacobi, ...
Multigrid...

.

.

.

Or

0 for Laplace

    
0 =

1

∆ s 2 i +1 , jA + i −1 , jA + i , j + 1A + i , j − 1
kA − i , j4 A[ ] + i , jB

    
Ai , j =

Ai +1, j + Ai −1, j + i , j +1A + i , j −1A
4

+ i , jC

    
i , j
k +1A = i +1, j

kA + i −1, j
kA + i , j +1

kA + i , j −1
kA

4
= i , jC
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In Matrix notation  Ax = b

° Set up a system of equations.

° Now, solve

° Direct:

° Iterative:

Direct methods
Semi-direct - CG
Iterative

Gaussian elim.
Recursive dbl.

Jacobi
MG

Solve Ax=b directly      LU

Ax = b
= -Ax+b

Mx = Mx - Ax + b
Mx = (M - A) x + b

Mx k+1 = (M - A) xk + b

Solve iteratively
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Machine model

• Data is distributed among memories (ignore initial I/O costs)
• Communication over network-explicit
• Processor can compute only on data in local memory.  To effect 

communication, processor sends data to other node (writes 
into other memory).

Interconnection
network

M

P

M M

P P
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Summary

° Many types of parallel applications

• Attempt to specify as classes (graph, particle, continuum)

° We examine continuum problems as a series of 
finite differences

° Partition in space and time

° Distribute computation to processors

° Understand processing and communication 
tradeoffs


